VARIABLE-RATE VQ (AKA VQ WITH ENTROPY CODING)

- Variable-Rate VQ = Quantization + Lossless Variable-Length Binary Coding
- A range of options -- from simple to complex
 a. Uniform scalar quantization with variable-length coding, one index at a time.
 \[
 \begin{array}{cccccccccc}
 1100 & 1101 & 100 & 00 & 01 & 101 & 1110 & 1111 \\
 \end{array}
 \]
 \[
 w_1 \quad w_2 \quad \Delta \quad w_N
 \]
 b. Nonuniform scalar quantization with variable-length coding -- one index at a time.
 c. Scalar quantization with higher-order variable-length coding -- either block coding of \(n \) indices at a time or \(n \)-th order conditional coding of the indices.
 d. \(k \)-dimen'l VQ with variable-length coding, one index at a time.
 e. \(k \)-dimen'l VQ with higher-order variable-length coding -- either block coding of \(n \) indices at a time or \(n \)-th order conditional coding of the indices.
 f. \(k \)-dimen'l VQ with other types of lossless coding

- We study e. with block coding. Conditional coding is just a slight variation. a.-d. are special cases of e.

D. VQ WITH 1ST-ORDER LOSSLESS CODING

- Key characteristics: \(k \)-dimensional VQ with partition \(S = \{S_1, \ldots, S_M\} \), codebook \(C = \{w_1, \ldots, w_M\} \), quantization rule \(Q \), and binary prefix codebook \(B = C_b = \{c_1, \ldots, c_M\} \) with lengths \(\{L_1, \ldots, L_M\} \)
- Decompose encoder into "partition" and "binary encoder"
 Given \(x \), the partition produces index \(i \) when \(x \in S_i \)
 The binary encoder outputs binary codeword \(c_i \) with length \(L_i \)
- Decompose decoder into "binary decoder" and "codebook"
 The binary decoder decodes the bits into the index \(i \).
 The codebook outputs \(w_i \).
- Rate = \(R = \frac{1}{k} \sum_{x} L(x) \ p(x) = \frac{1}{k} \times \text{rate of binary encoder} \)
 we often assume \(R = \frac{1}{k} H(I) = \frac{1}{k} H(Q(X)) \) ("VQ with entropy coding")
- Distortion = \(D = \frac{1}{k} \sum_{x} ||X - Q(X)||^2 \) (not affected by choice of lossless coder)
E. VQ WITH BLOCK LOSSLESS CODING

- k-dimen'l VQ with variable-length coding of indices in blocks of n.
- Decompose encoder into "partition" and "binary encoder":
 "Partition" n successive k-dim'l source vectors \(X_1, \ldots, X_n \) into indices \(I_1, \ldots, I_n \), where \(X_j = (X_{j,1}, \ldots, X_{j,k}) \). Losslessly encode n indices at once, \((I_1, \ldots, I_n)\), using FVL block lossless code with prefix codebook \(C_b \) containing \(M^n \) binary codewords.
- Decompose decoder into "binary decoder" and "codebook":
 Decode binary codeword into n indices \(I_1, \ldots, I_n \). Output corresponding quantization vectors \(w_{i_1}, \ldots, w_{i_n} \) as reproductions of \(X_1, \ldots, X_n \), respectively.
- "Block lossless binary coding" is an easy to analyze paradigm for studying the benefits of variable-length coding (a.k.a entropy coding).
- **We usually assume source is stationary**, so that \(X_j \) has the same pdf for all \(j \), which will be denoted \(f_{X}(x) \), \(f(x) \) or \(f_k(x) \).

SUMMARY OF CHARACTERISTICS

Quantizer = k-dimensional VQ
- \(k = \) dimension
- \(M = \) size (not necessarily power of 2, not so important, may be infinite)
- \(S = \{S_1, \ldots, S_M\} = \) k-dimensional partition
- \(C = \{w_1, \ldots, w_M\} = \) k-dimensional codebook
- \(Q(x) = \) quantization rule

Binary Encoder:
- \(n = \) order of binary encoder (i.e. input blocklength)
- \(C_b = \{c_j : j \in J\} = \) binary prefix codebook -- one cdwrd for each seq. of \(n \) indices
 where \(J = \) set of cell index n-tuples = \(\{j = (i_1, \ldots, i_n) : 1 \leq i_1 \leq M, \ldots, 1 \leq i_n \leq M\} \)
 \(c_j = (c_{i_1}, \ldots, c_{i_n}) = \) binary codeword of length \(L_j \) for \(j \)

Derivative Characteristics:
- quantization rule: \(Q(x_j) = w_i \) when \(x_j \in S_i \)
- encoding rule: \(e(x_1, \ldots, x_n) = c_j \), when \(j = (i_1, \ldots, i_n) \) and \(x_j \in S_i \), \(j = 1, \ldots, n \)
- decoding rule: \(d(c_j) = (w_1, w_2, \ldots, w_n) \)
PERFORMANCE

Distortion (same as usual)

\[D = \frac{1}{k} E \|X - Q(X)\|^2 = \frac{1}{k} \sum_{i=1}^{M} \int_{S_i} \|x - y_i\|^2 f_k(x) \, dx \]

where \(X = (X_1, \ldots, X_k) \) and \(f_k(x) \) is its density. Dist'n depends on \(S \) and \(C \) but not \(C_B \).

Rate

\[R = \frac{1}{k n} \bar{L} = \frac{1}{k n} \sum_j P_j L_j \text{ bits/sample} \]

where \(\bar{L} \) = average length of binary codewords

\[P_j = \text{probability of binary codeword } c_j = \Pr(X_1 \in S_{i1}, \ldots, X_n \in S_{in}), \quad j \in I \]

From lossless coding theorem

\[H(I) \leq \bar{L}_n \leq H(I) + 1 \]

where \(\bar{L}_n \) = least avg. length of prefix code for given VQ & \(n \)

\[H(I) = -\sum_j P_j \log_2 P_j = \text{entropy of } I \text{ (or of } (Y_1, \ldots, Y_n)) \]

From now on we assume (unless otherwise stated) that

\[R = \frac{1}{k n} H(I) = \frac{1}{k} H_n(I) = \frac{1}{k n} H(Y_1, \ldots, Y_n) = H_{kn}(Y) \]

We call this "**VQ with nth-order entropy coding (EC)**".

IMPLEMENTATION AND COMPLEXITY

- Quantizer -- same issues as with fixed-rate coding
- Lossless Coder -- table lookup is the brute force method
 - Table stores \(M^n \) binary codewords of various lengths
 - \(M = 2^{nkR_f} \) where \(R_f = \frac{1}{k} \log_2 M \) is "fixed-rate" rate
 - Complexity of brute force implementation of entropy increases exponentially with \(nkR_f \).

OPTIMAL PERFORMANCE

- OPTA functions we seek

\[\delta(k,n,R) \overset{\Delta}{=} \text{least MSE of k-dim'l VQ w. nth-order entropy coding and rate } R \text{ or less} \]

\[S(k,n,R) \overset{\Delta}{=} \text{max SNR of k-dim'l VQ's w. nth-order entropy coding and rate } R \text{ or less} \]

\[\delta(R) \overset{\Delta}{=} \inf_{k,n} \delta(k,n,R) = \text{least MSE of VQ with EC and rate } R \text{ or less (any } k,n) \]

\[S(R) \overset{\Delta}{=} \sup_{k,n} \delta(k,n,R) = \text{max SNR of VQ with EC and rate } R \text{ or less (any } k,n) \]
HIGH-RESOLUTION ANALYSIS

- As before, assume the VQ has mostly small cells, negligible overload distortion, large \(M \), neighboring cells with similar sizes & shapes, point density approx'ly \(\Lambda(x) \), inertial profile approx'y \(m(x) \)
- Since quantizer size is unimportant (e.g. its not related to rate), and can even be infinite, we use unnormalized point density, \(\Lambda(x) \), which is a function such that

 1. \(\int_A \Lambda(x) \, dx \equiv \) number of codevectors (or cells) in region \(A \)

 2. If \(A \) is small, but much larger than the cells in the vicinity of \(x \),
 \(\Lambda(x) \, |A| \equiv \# \) points\cells in \(A \)

 3. \(\Lambda(x) \geq 0, \int \Lambda(x) \, dx = M = \) total number of quantization points (can be \(\infty \))

 4. Ordinarily \(\Lambda(x) \) is a smooth or piecewise smooth function.

 5. \(\Lambda(x) \equiv \frac{1}{|S_i|} \) when \(x \in S_i \)

DISTORTION: BENNETT'S INTEGRAL

Under high-resolution conditions, a derivation like that for the original Bennett shows

\[
D \equiv \int \frac{m(x)}{\Lambda^{2/k}(x)} \, f_k(x) \, dx
\]

RATE: ASYMPTOTIC ENTROPY FORMULA

Fact: If \(X_1, \ldots, X_n \) are identically distributed, then under high-resolution conditions,

\[
R = \frac{1}{kn} H(l) \equiv h_{kn} + \frac{1}{k} \int f_k(x) \log_2 \Lambda(x) \, dx
\]

where

\[
\bar{x} = (x_1 \ldots x_k)
\]

\[
h_{kn} = \frac{1}{kn} h(X_1, \ldots, X_{kn}) = \text{kn-th order differential entropy}
\]

\[
= -\frac{1}{kn} \int f_{kn}(x_1 \ldots x_{kn}) \log_2 f_{kn}(x_1 \ldots x_{kn}) \, dx_1 \ldots dx_{kn}
\]
Most Important Example:
Uniform scalar quantizer with step size Δ, infinite support, and infinitely many levels

$$\Lambda(x) \equiv \frac{1}{\Delta}$$

Then from the approximate rate formula

$$R \approx h_k n + \frac{1}{k} \int f_k(x) \log_2 \Lambda(x) \, dx$$

$$= h_n - \log \Delta = h_n - \frac{1}{2} \log 12 \frac{\Delta^2}{12}$$

$$\approx h_n - \frac{1}{2} \log 12 \, D$$

Equivalently

$$D \approx \frac{1}{12} 2^{2h_n} 2^{-2R}$$

DERIVATION OF ASYMPTOTIC FORMULA FOR $H(I)$

First case: $n = 1$ (for simplicity)

$$H(I) = - \sum_i P_i \log P_i , \text{ where } P_i = \Pr(X_1 \in S_i) = \int_{S_i} f_k(x) \, dx$$

$$= - \sum_i \left(\int_{S_i} f_k(x) \, dx \right) \log \left(\int_{S_i} f_k(x) \, dx \right)$$

$$\approx - \sum_i f_k(w_i) |S_i| \log \left(f_k(w_i) |S_i| \right) \text{ because cells are small}$$

$$= - \sum_i f_k(w_i) |S_i| \log \left(f_k(w_i) |S_i| \right)$$

$$= - \sum_i \left(f_k(w_i) \log f_k(w_i) \right) |S_i| - \sum_i \left(f_k(w_i) \log \frac{1}{\Lambda(w_i)} \right) |S_i|$$

$$\approx - \int f_k(x) \log f(x) \, dx + \int f_k(x) \log \Lambda(x) \, dx$$

$$= h_k + \frac{1}{k} \int f_k(x) \log \Lambda(x) \, dx$$
General case: \(n \geq 1 \)

\[
H(I) = - \sum_{i} P_i \log P_i
\]

where \(\bar{x} = (x_1 \ldots x_{kn}) \)

\[
\approx - \sum_{i} \left(\int_{S_i} f_{kn}(w_i) \, \log f_{kn}(w_i) \right) \mid S_i \mid \log (\mid S_i \mid)
\]

The first summation above can be approximated by the integral

\[
- \int f_{kn}(x) \log f_{kn}(x) \, dx = kn \ h_{kn}
\]

Before approximating the second sum, note that

\[
\log |S_i| = \log (|S_1| IS_2 | \ldots IS_n|) = \sum_{j=1}^{n} \log |S_j| \equiv - \sum_{j=1}^{n} \log \Lambda(w_j)
\]

Substitute the above into the second summation:

\[
\approx - \sum_{i} \left(f_{kn}(w_i) \log |S_i| \right) \mid S_i \mid
\]

\[
\approx \int f_{kn}(x_1 \ldots x_n) \sum_{j=1}^{n} \log \Lambda(x_j) \, dx_1 \ldots dx_k
\]

\[
= \sum_{j=1}^{n} \int f_{kn}(x_1 \ldots x_n) \log \Lambda(x_j) \, dx_1 \ldots dx_k
\]

\[
= \sum_{j=1}^{n} \int f_k(x_j) \log \Lambda(x_j) \, dx_j
\]

\[
= n \int f_k(x_1) \log \Lambda(x) \, dx_1 \quad \text{because } X_1, \ldots X_n \text{ are identical}
\]

Substituting (\(\ast \)) and (\(\ast \ast \)) into the expression for \(H(I) \) gives

\[
\frac{1}{kn} H(I) = \frac{1}{kn} \left(kn \ h_{kn} + n \int f_k(x_1) \log \Lambda(x) \, dx_1 \right)
\]

\[
= h_{kn} + \frac{1}{k} \int f_k(x) \log_2 \Lambda(x) \, dx
\]
ZADOR-GERSHO THEOREM FOR VARIABLE-RATE VQ

For a stationary source and large R, the least distortion of k-dim'l VQ with nth-order entropy coding and rate R or less is

$$\delta(k,n,R) \equiv m^*_k \sigma^2 \eta_{kn} 2^{-2R} \triangleq Z(k,nR)$$

where

- $Z(k,n,R)$ = Zador-Gersho function for k-dim'l VQ with nth-order entropy coding
- m^*_k = best inertial profile = least NMI of any tessel'g polytope (Gersho's conj.)
- $\eta_{kn} = \frac{1}{\sigma^2} 2^{2h_{kn}}$

Equivalently, $S(k,n,R) \approx 6.02 R - 10 \log_{10} m^*_k \eta_{kn}$. (Again, 6 dB per bit.)

Notes:

- k-dimensional VQ-EC with $n = 1$ is at least as good as VQ-FR, because the latter is a special case of the former. Later we show directly that $\eta_k \leq \beta_k$, which implies $Z(k,1,R) \leq Z(k,R)$.
- The proof shows that an approximately optimal k-dimensional VQ with nth-order entropy coding can be constructed with a partition that is a tesselation of the best k-dimensional polytope, scaled to volume $2^{k(h_{kn}-R)}$. This has constant inertial profile $m(x) = m^*_k$, constant point density $\Lambda(x) = \Lambda^*_k = 2^{k(R-h_{kn})}$, distortion $D \equiv m^*_k (\Lambda^*_k)^{-2/k} = Z(k,nR)$.

PROOF OF ZADOR-GERSHO THEOREM

We begin with

$$\delta(k,n,R) \equiv \min_{m(x),\Lambda(x)} \int \frac{m(x)}{\Lambda^{2/k}(x)} f(x) \, dx$$

where $x = (x_1...x_k)$ and the minimization is over all inertial profiles $m(x)$ and all point densities $\Lambda(x)$ such that

$$h_{kn} + \frac{1}{R} \int f(x) \log_2 \Lambda(x) \, dx \leq R \quad \text{(such a } \Lambda \Rightarrow \text{ rate } \leq R)$$

- Best inertial profile:
 - We assume Gersho's conjecture -- In the high rate, small distortion regime, most cells of an optimal quantizer are, approximately, congruent to the tesselating polytope with least NMI.
 - We conclude: The best inertial profile is $m^*_k(x) = m^*_k \triangleq$ least NMI of k-dimen'l tess'ng polytopes
 - It follows that

$$\delta(k,n,R) \equiv m^*_k \min_{\Lambda(x)} \int \frac{1}{\Lambda^{2/k}(x)} f(x) \, dx$$

where the min is taken over functions $\Lambda(x)$ such that $\Lambda(x) \geq 0$ and

$$h_{kn} + \frac{1}{R} \int f(x) \log_2 \Lambda(x) \, dx \leq R$$
Best point density:

Suppose $\Lambda(x)$ satisfies

$$h_{kn} + \frac{1}{k} \int f(x) \log_2 \Lambda(x) \, dx \leq R \quad (\star)$$

Then by convexity of the logarithm and Jensen's inequality

$$\log_2 \int \frac{1}{\Lambda^{2/k}(x)} f(x) \, dx \geq \int \log_2 \left(\frac{1}{\Lambda^{2/k}(x)} \right) f(x) \, dx \quad \text{equality iff } \Lambda(x) \text{ is constant with probability one}$$

$$= -\frac{2}{k} \int f(x) \log \Lambda(x) \, dx \geq 2h_{kn} - 2R$$

Hence,

$$\int \frac{1}{\Lambda^{2/k}(x)} f(x) \, dx \geq 2^{2h_{kn} - 2R} \quad (\star\star)$$

with equality iff $\Lambda(x)$ is a constant with probability one.

(\star) and $(\star\star) \Rightarrow \delta(k,n,R) \equiv m_k^* 2^{2h_{kn}} 2^{-2R} = m_k^* \sigma^2 \eta_{kn} 2^{-2R}$

Moreover, we have shown that the optimal point density is a constant. The constant must be such that (\star) holds with equality. Therefore,

$$\Lambda(x) = 2^{k(R-h)} \triangleq \Lambda_k^*$$

We see from the proof that an approximately VQ can be constructed with a partition that is a tesselation of the best k-dimensional polytope, scaled to volume $2^{k(h_{kn}-R)}$.

Indeed, the tesselation need only cover the region where $f(x)$ is not small.

SUMMARY OF FIXED- AND VARIABLE-RATE VQ

Let 0th-order entropy coding denote fixed-rate coding.

Then, given a stationary source and large R, the least distortion of VQ with rate R or less, dimension k, and nth-order order entropy coding is

$$\delta(k,n,R) \equiv \mathcal{Z}(k,n,R) = m_k^* \sigma^2 \eta_{k,n} \sigma^2 2^{-2R},$$

where

$$\eta_{k,n} = \begin{cases}
\beta_k, & n = 0 \\
2^{2h_{kn}}/\sigma^2, & n \geq 1
\end{cases}$$

Notice the ",," in $\eta_{k,n}$ but not in h_{kn}!