Introduction to Source Coding/Data Compression

Course is about the **Theory** and **Practice** of **Source Coding**, a.k.a. **Data Compression**

Data compression is process of **encoding** data from some **source** into **bits** in such a way that it can be **decoded** back into a **reproduction** of the original data.

Source code = data compressor = data compression system = **encoder** + **decoder**

![Diagram of encoder, storage/transmission medium, decoder, user]

encoder creates bits, decoder creates reproduction from bits

Goals:

- **efficiency:** as few bits as possible
- **accuracy, fidelity:** reproduction as much like original as possible

Source is assumed to produce **discrete-time samples or symbols**

- e.g. text or samples of speech
- we won't spend significant time on sampling issues; just assume the source is already sampled
- source will be modelled as a **random process**, usually **stationary** and **ergodic**

 why assume random?? because if not, why encode it? because can exploit statistical characteristics (what occurs more frequently, what values, what combinations of values (correlation))
 autoregressive Gauss-Markov (AR) processes make nice tractable models of speech and image sources.
Rate is our measure of efficiency
rate = number of bits/sample
AVOID "compression ratio"
why encode into bits?? no big deal, just the most useful convention

Average Distortion wrt some distortion measure is our measure of fidelity
satisfactory human perception is usually the "ultimate" criteria
most commonly MSE
empirical distortion = D = \(\frac{1}{n} \sum_{i=1}^{n} (X_i-Y_i)^2 \)
statistical distortion = D = \(E \left[\frac{1}{n} \sum_{i=1}^{n} (X_i-Y_i)^2 \right] \) or \(E(X-Y)^2 \)

why MSE? pro's and cons
other distortion measures
usually empirical = statistical or else we're wasting our time with statistical

Summary: code performance on a given source is characterized by rate and distortion

Lossless coding is when \(\hat{X} \) must equal X; i.e. D = 0
Lossy coding is the other case
course is 3/4's lossy, 1/4 lossless, projects are mostly lossy, so we begin with lossy

January 6, 2003 2
Complexity is other big issue
implementation complexity
number of arithmetic operations per sample
bytes of auxiliary storage, e.g. for tables
these influence:

building cost -- cost of building or buying hardware for computing and storing

running/operating cost -- cost of operating (depreciation, power, heat, rental, or sharing of resources)

design complexity is a lesser issue
performance vs. complexity

![Graph showing distortion vs. encoding rate for low and high complexity methods]
We're not concerned with **channel errors**

Though it's possible to build source codes that are terribly sensitive to channel errors, it is also possible to build them that are not. Any source code can be "fixed" so it is not too sensitive to errors, with only small loss. Typically, \(p = 10^{-4} \) is small enough for speech and images, and even \(10^{-3} \).

Shannon says that an optimum communication system can have a separation of source code and channel code.

But there are many situations where we're just storing data and the storage medium is so reliable that it doesn't make sense to model it as a noisy channel.

Working through lossy coding (quantization) with channel errors makes interesting exercises.
Source Coding Issues

1. Sources (skip or skim)
 - **discrete valued** -- English text, binary images (e.g. FAX) -- produce symbols
 - **continuous valued** -- speech, images, audio, video, etc. -- produce samples or pixels
 - **source models** -- for design and analysis
 - some methods don't require source models
 - we find Gaussian autoregressive, ARMA and Markov especially easy to deal with
 - also IID, stationary memoryless

2. Performance Measures (skip or skim)
 - **Rate** (not much question)
 - **Distortion** -- MSE
 - lossless vs. lossy
 - lossless for discrete-valued only

3. Code Structure: we will consider a variety of such
 - **independently code each sample/symbol**
 - **dependent coding** -- block, sliding-window, finite-state, predictive,
 feedback, adaptive, linear transform, waveform or spectral domain
 - **fixed-rate** -- constant number of bits produced per symbol/sample
 - **variable-rate** -- variable number of bits produced per symbol/sample

4. Code design to optimize performance of certain type of code.
 - Generic Question 1: How to optimize a given type of code?
5. **Complexity/Cost** of implementation. (skip or skim)

 performance does not mean speed of implementation in this course

 arithmetic -- number of ops/sample

 storage -- number of bits of auxiliary storage required

 building cost -- cost of building or buying hardware for computing and storing

 running cost -- cost of operating (depreciation, power, heat, rental, or sharing of resources)

 Tradeoffs: rate, distortion, and complexity.

6. **Analysis**

 to **predict performance** of specific types of codes and to **predict how to optimize** them and to **identify key characteristics** of good codes.

 to **predict best possible performance of any type of code** and to understand basic properties of optimal codes

Generic Question 2: What is the best possible performance attainable with a given type of code.

In this class we use mostly **asymptotic quantization theory** for lossy coding and **entropy theory** for lossless coding. There will be a brief overview of **rate-distortion theory**, a branch of information theory

difficult question: how does complexity reducing structure limit performance??

 theory is lacking
Typical Examples of Lossy Compression

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncompressed</th>
<th>Compressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech</td>
<td>64 Kbps</td>
<td>9.6K bps (CELP)</td>
</tr>
<tr>
<td>B/W Images</td>
<td>8 bpp</td>
<td>1 bpp (JPEG)</td>
</tr>
<tr>
<td>Color Images</td>
<td>24 bpp</td>
<td>1.25 bits/pixel</td>
</tr>
<tr>
<td>Video</td>
<td>100M bps</td>
<td>.01-20M bps</td>
</tr>
<tr>
<td>Audio</td>
<td>1.4M bps</td>
<td>256K bps (MPEG)</td>
</tr>
</tbody>
</table>

Typical Example of Lossless Compression

| English Text | 7 bits/symbol | 3 bits/symbol |