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Abstract—The history of the theory and practice of quan-
tization dates to 1948, although similar ideas had appeared
in the literature as long ago as 1898. The fundamental role
of quantization in modulation and analog-to-digital conversion
was first recognized during the early development of pulse-
code modulation systems, especially in the 1948 paper of Oliver,
Pierce, and Shannon. Also in 1948, Bennett published the first
high-resolution analysis of quantization and an exact analysis of
quantization noise for Gaussian processes, and Shannon pub-
lished the beginnings of rate distortion theory, which would
provide a theory for quantization as analog-to-digital conversion
and as data compression. Beginning with these three papers of
fifty years ago, we trace the history of quantization from its
origins through this decade, and we survey the fundamentals of
the theory and many of the popular and promising techniques
for quantization.

Index Terms—High resolution theory, rate distortion theory,
source coding, quantization.

I. INTRODUCTION

T HE dictionary (Random House) definition of quantization
is the division of a quantity into a discrete number

of small parts, often assumed to be integral multiples of
a common quantity. The oldest example of quantization is
rounding off, which was first analyzed by Sheppard [468]
for the application of estimating densities by histograms. Any
real number can be rounded off to the nearest integer, say

, with a resulting quantization error so that
. More generally, we can define a quantizer as

consisting of a set of intervals orcells , where
the index set is ordinarily a collection of consecutive integers
beginning with or , together with a set ofreproduction
valuesor pointsor levels , so that the overall
quantizer is defined by for , which can be
expressed concisely as

(1)

where the indicator function is if and
otherwise. For this definition to make sense we assume that
is a partition of the real line. That is, the cells are disjoint and
exhaustive. The general definition reduces to the rounding off
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Fig. 1. A nonuniform quantizer:a0 = 1, a5 = 1.

example if and for all integers .
More generally, the cells might take the form
where the ’s, which are calledthresholds, form an increasing
sequence. The width of a cell is its length . The
function is often called thequantization rule. A simple
quantizer with five reproduction levels is depicted in Fig. 1 as
a collection of intervals bordered by thresholds along with the
levels for each interval.

A quantizer is said to beuniform if, as in the roundoff case,
the levels are equispaced, say apart, and the thresholds

are midway between adjacent levels. If an infinite number
of levels are allowed, then all cells will have width equal
to , the separation between levels. If only a finite number of
levels are allowed, then all but two cells will have width
and the outermost cells will be semi-infinite. An example of a
uniform quantizer with cell width and levels is given
in Fig. 2. Given a uniform quantizer with cell width , the
region of the input space within of some quantizer level
is called thegranular regionor simply thesupportand that
outside (where the quantizer error is unbounded) is called the
overloador saturationregion. More generally, the support or
granular region of a nonuniform quantizer is the region of the
input space within a relatively small distance of some level,
and the overload region is the complement of the granular
region. To be concrete, “small” might be defined as half the
width of the largest cell of finite width.

The quality of a quantizer can be measured by the goodness
of the resulting reproduction in comparison to the original.
One way of accomplishing this is to define a distortion
measure that quantifies cost or distortion resulting
from reproducing as and to consider the average distor-
tion as a measure of the quality of a system, with smaller
average distortion meaning higher quality. The most common
distortion measure is the squared error ,
but we shall encounter others later. In practice, the average
will be a sample average when the quantizer is applied to a
sequence of real data, but the theory views the data as sharing a
common probability density function (pdf) corresponding
to a generic random variable and the average distortion
becomes an expectation

(2)
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Fig. 2. A uniform quantizer.

If the distortion is measured by squared error, becomes
the mean squared error (MSE), a special case on which we
shall mostly focus.

It is desirable to have the average distortion as small as
possible, and in fact negligible average distortion is achievable
by letting the cells become numerous and tiny. There is a
cost in terms of the number of bits required to describe the
quantizer output to a decoder, however, and arbitrarily reliable
reproduction will not be possible for digital storage and
communication media with finite capacity. A simple method
for quantifying the cost for communications or storage is to
assume that the quantizer “codes” an inputinto a binary
representation or channel codeword of the quantizer index
specifying which reproduction level should be used in the
reconstruction. If there are possible levels and all of the
binary representations or binary codewords have equal length
(a temporary assumption), the binary vectors will need
(or the next larger integer, , if is not an integer)
components or bits. Thus one definition of therate of the code
in bits per input sample is

(3)

A quantizer with fixed-length binary codewords is said to have
fixed ratebecause all quantizer levels are assumed to have
binary codewords of equal length. Later this restriction will
be weakened. Note that all logarithms in this paper will have
base , unless explicitly specified otherwise.

In summary, the goal of quantization is to encode the data
from a source, characterized by its probability density function,
into as few bits as possible (i.e., with low rate) in such a way
that a reproduction may be recovered from the bits with as high
quality as possible (i.e., with small average distortion). Clearly,
there is a tradeoff between the two primary performance
measures: average distortion (or simplydistortion, as we will
often abbreviate) and rate. This tradeoff may be quantified as
theoperational distortion-rate function , which is defined
to be the least distortion of any scalar quantizer with rate
or less. That is,

(4)

Alternatively, one can define the operationalrate-distortion
function as the least rate of any fixed-rate scalar quantizer
with distortion or less, which is the inverse of .

We have so far describedscalar quantization with fixed-rate
coding, a technique whereby each data sample is independently
encoded into a fixed number of bits and decoded into a
reproduction. As we shall see, there are many alternative quan-
tization techniques that permit a better tradeoff of distortion
and rate; e.g., less distortion for the same rate, or vice versa.
The purpose of this paper is to review the development of such

techniques, and the theory of their design and performance.
For example, for each type of technique we will be interested
in its operational distortion-rate function, which is defined
to be the least distortion of any quantizer of the given
type with rate or less. We will also be interested in the
best possible performance amongall quantizers. Both as a
preview and as an occasional benchmark for comparison, we
informally define the class of all quantizers as the class of
quantizers that can 1) operate on scalars or vectors instead of
only on scalars (vector quantizers), 2) have fixed or variable
rate in the sense that the binary codeword describing the
quantizer output can have length depending on the input,
and 3) be memoryless or have memory, for example, using
different sets of reproduction levels, depending on the past.
In addition, we restrict attention to quantizers that do not
change with time. That is, when confronted with the same
input and the same past history, a quantizer will produce
the same output regardless of the time. We occasionally use
the term lossy source codeor simply codeas alternatives to
quantizer. The rate is now defined as the average number of
bits per source symbol required to describe the corresponding
reproduction symbol. We informally generalize the operational
distortion-rate function providing the best performance
for scalar quantizers, to , which is defined as the infimum
of the average distortion over all quantization techniques
with rate or less. Thus can be viewed as the best
possible performance over all quantizers with no constraints
on dimension, structure, or complexity.

Section II begins with a historical tour of the development
of the theory and practice of quantization over the past fifty
years, a period encompassing almost the entire literature on
the subject. Two complementary approaches dominate the
history and present state of the theory, and three of the key
papers appeared in 1948, two of them in Volume 27 (1948)
of the Bell Systems Technical Journal. Likely the approach
best known to the readers of these TRANSACTIONS is that
of rate-distortion theory or source coding with a fidelity
criterion—Shannon’s information-theoretic approach to source
coding—which was first suggested in his 1948 paper [464]
providing the foundations of information theory, but which
was not fully developed until his 1959 source coding paper
[465]. The second approach is that of high resolution (or high-
rate or asymptotic) quantization theory, which had its origins
in the 1948 paper on PCM by Oliver, Pierce, and Shannon
[394], the 1948 paper on quantization error spectra by Bennett
[43], and the 1951 paper by Panter and Dite [405]. Much of
the history and state of the art of quantization derives from
these seminal works.

In contrast to these two asymptotic theories, there is also a
small but important collection of results that are not asymptotic
in nature. The oldest such results are the exact analyses
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for special nonasymptotic cases, such as Clavier, Panter,
and Grieg’s 1947 analysis of the spectra of the quantization
error for uniformly quantized sinusoidal signals [99], [100],
and Bennett’s 1948 derivation of the power spectral density
of a uniformly quantized Gaussian random process [43].
The most important nonasymptotic results, however, are the
basic optimality conditions and iterative-descent algorithms for
quantizer design, such as first developed by Steinhaus (1956)
[480] and Lloyd (1957) [330], and later popularized by Max
(1960) [349].

Our goal in the next section is to introduce in historical
context many of the key ideas of quantization that originated
in classical works and evolved over the past 50 years, and
in the remaining sections to survey selectively and in more
detail a variety of results which illustrate both the historical
development and the state of the field. Section III will present
basic background material that will be needed in the remainder
of the paper, including the general definition of a quantizer and
the basic forms of optimality criteria and descent algorithms.
Some such material has already been introduced and more
will be introduced in Section II. However, for completeness,
Section III will be largely self-contained. Section IV reviews
the development of quantization theories and compares the
approaches. Finally, Section V describes a number of specific
quantization techniques.

In any review of a large subject such as quantization there
is no space to discuss or even mention all work on the subject.
Though we have made an effort to select the most important
work, no doubt we have missed some important work due to
bias, misunderstanding, or ignorance. For this we apologize,
both to the reader and to the researchers whose work we may
have neglected.

II. HISTORY

The history of quantization often takes on several parallel
paths, which causes some problems in our clustering of topics.
We follow roughly a chronological order within each and order
the paths as best we can. Specifically, we will first track the
design and analysis of practical quantization techniques in
three paths: fixed-rate scalar quantization, which leads directly
from the discussion of Section I, predictive and transform
coding, which adds linear processing to scalar quantization in
order to exploit source redundancy, and variable-rate quantiza-
tion, which uses Shannon’s lossless source coding techniques
[464] to reduce rate. (Lossless codes were originally called
noiseless.) Next we follow early forward-looking work on
vector quantization, including the seminal work of Shannon
and Zador, in which vector quantization appears more to be
a paradigm for analyzing the fundamental limits of quantizer
performance than a practical coding technique. A surprising
amount of such vector quantization theory was developed out-
side the conventional communications and signal processing
literature. Subsequently, we review briefly the developments
from the mid-1970’s to the mid-1980’s which mainly concern
the emergence of vector quantization as a practical technique.
Finally, we sketch briefly developments from the mid-1980’s
to the present. Except where stated otherwise, we presume
squared error as the distortion measure.

A. Fixed-Rate Scalar Quantization:
PCM and the Origins of Quantization Theory

Both quantization and source coding with a fidelity crite-
rion have their origins in pulse-code modulation (PCM), a
technique patented in 1938 by Reeves [432], who 25 years
later wrote a historical perspective on and an appraisal of the
future of PCM with Deloraine [120]. The predictions were
surprisingly accurate as to the eventual ubiquity of digital
speech and video. The technique was first successfully imple-
mented in hardware by Black, who reported the principles and
implementation in 1947 [51], as did another Bell Labs paper
by Goodall [209]. PCM was subsequently analyzed in detail
and popularized by Oliver, Pierce, and Shannon in 1948 [394].
PCM was the firstdigital technique for conveying an analog
information signal (principally telephone speech) over an
analog channel (typically, a wire or the atmosphere). In other
words, it is a modulation technique, i.e., an alternative to AM,
FM, and various other types of pulse modulation. It consists
of three main components: a sampler (including a prefilter), a
quantizer (with a fixed-rate binary encoder), and a binary pulse
modulator. The sampler converts a continuous-time waveform

into a sequence of samples , where is the
sampling frequency. The sampler is ordinarily preceded by a
lowpass filter with cutoff frequency . If the filter is ideal,
then the Shannon–Nyquist or Shannon–Whittaker–Kotelnikov
sampling theorem ensures that the lowpass filtered signal can,
in principle, be perfectly recovered by appropriately filtering
the samples. Quantization of the samples renders this an ap-
proximation, with the MSE of the recovered waveform being,
approximately, the sum of the MSE of the quantizer and
the high-frequency power removed by the lowpass filter. The
binary pulse modulator typically uses the bits produced by the
quantizer to determine the amplitude, frequency, or phase of a
sinusoidal carrier waveform. In the evolutionary development
of modulation techniques it was found that the performance
of pulse-amplitude modulation in the presence of noise could
be improved if the samples were quantized to the nearest of
a set of levels before modulating the carrier (64 equally
spaced levels was typical). Though this introduces quantization
error, deciding which of the levels had been transmitted
in the presence of noise could be done with such reliability
that the overall MSE was substantially reduced. Reducing the
number of quantization levels made it even easier to decide
which level had been transmitted, but came at the cost of a
considerable increase in the MSE of the quantizer. A solution
was to fix at a value giving acceptably small quantizer
MSE and to binary encode the levels, so that the receiver had
only to make binary decisions, something it can do with great
reliability. The resulting system, PCM, had the best resistance
to noise of all modulations of the time.

As the digital era emerged, it was recognized that the
sampling, quantizing, and encoding part of PCM performs
an analog-to-digital (A/D) conversion, with uses extending
much beyond communication over analog channels. Even in
the communications field, it was recognized that the task of
analog-to-digital conversion (and source coding) should be
factored out of binary modulation as a separate task. Thus
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PCM is now generally considered to just consist of sampling,
quantizing, and encoding; i.e., it no longer includes the binary
pulse modulation.

Although quantization in the information theory literature
is generally considered as a form of data compression, its
use for modulation or A/D conversion was originally viewed
as data expansion or, more accurately, bandwidth expansion.
For example, a speech waveform occupying roughly 4 kHz
would have a Nyquist rate of 8 kHz. Sampling at the Nyquist
rate and quantizing at 8 bits per sample and then modulating
the resulting binary pulses using amplitude- or frequency-shift
keying would yield a signal occupying roughly 64 kHz, a
16–fold increase in bandwidth! Mathematically this constitutes
compression in the sense that a continuous waveform requiring
an infinite number of bits is reduced to a finite number of bits,
but for practical purposes PCM is not well interpreted as a
compression scheme.

In an early contribution to the theory of quantization,
Clavier, Panter, and Grieg (1947) [99], [100] applied Rice’s
characteristic function or transform method [434] to provide
exact expressions for the quantization error and its moments
resulting from uniform quantization for certain specific inputs,
including constants and sinusoids. The complicated sums of
Bessel functions resembled the early analyses of another
nonlinear modulation technique, FM, and left little hope for
general closed-form solutions for interesting signals.

The first general contributions to quantization theory came
in 1948 with the papers of Oliver, Pierce, and Shannon [394]
and Bennett [43]. As part of their analysis of PCM for
communications, they developed the oft-quoted result that for
large rate or resolution, a uniform quantizer with cell width

yields average distortion . If the quantizer
has levels and rate , and the source has input
range (orsupport) of width , so that is the natural
choice, then the approximation yields the familiar form
for the signal-to-noise ratio (SNR) of

dB

showing that for large rate, the SNR of uniform quantization
increases 6 dB for each one-bit increase of rate, which is often
referred to as the “6-dB-per-bit rule.” The formula is
considered ahigh-resolutionformula; indeed, the first such
formula, in that it applies to the situation where the cells
and average distortion are small, and the rate is large, so that
the reproduction produced by the quantizer is quite accurate.
The result also appeared many years earlier (albeit in
somewhat disguised form) in Sheppard’s 1898 treatment [468].

Bennett also developed several other fundamental results
in quantization theory. He generalized the high-resolution
approximation for uniform quantization to provide an approx-
imation to for companders, systems that preceded a
uniform quantizer by a monotonic smooth nonlinearity called
a “compressor,” say , and used the inverse nonlinearity when
reconstructing the signal. Thus the output reproductiongiven
an input was given by , where is a

uniform quantizer. Bennett showed that in this case

(5)

where , is the cellwidth of the uniform
quantizer, and the integral is taken over the granular range of
the input. (The constant in the above assumes that
maps to the unit interval .) Since, as Bennett pointed out,
any nonuniform quantizer can be implemented as a compander,
this result, often referred to as “Bennett’s integral,” provides
an asymptotic approximation for any quantizer. It is useful to
jump ahead and point out thatcan be interpreted, as Lloyd
would explicitly point out in 1957 [330], as a constant times
a “quantizer point-density function ,” that is, a function
with the property that for any region

number of quantizer levels in (6)

Since integrating over a region gives the fraction of
quantizer reproduction levels in the region, it is evident that

is normalized so that . It will also prove
useful to consider the unnormalized quantizer point density

, which when integrated over gives the total number of
levels within rather than the fraction. In the current situation

, but the unnormalized density will generalize
to the case where is infinite.

Rewriting Bennett’s integral in terms of the point-density
function yields its more common form

(7)

The idea of a quantizer point-density function will generalize
to vectors, while the compander approach will not in the sense
that not all vector quantizers can be represented as companders
[192].

Bennett also demonstrated that, under assumptions of high
resolution and smooth densities, the quantization error behaved
much like random “noise”: it had small correlation with the
signal and had approximately a flat (“white”) spectrum. This
led to an “additive-noise” model of quantizer error, since with
these properties the formula could
be interpreted as representing the quantizer output as the sum
of a signal and white noise. This model was later popularized
by Widrow [528], [529], but the viewpoint avoids the fact
that the “noise” is in fact dependent on the signal and the
approximations are valid only under certain conditions. Signal-
independent quantization noise has generally been found to
be perceptually desirable. This was the motivation for ran-
domizing the action of quantization by the addition of a
dither signal, a method introduced by Roberts [442] as a
means of making quantized images look better by replacing
the artifacts resulting from deterministic errors by random
noise. We shall return to dithering in Section V, where it
will be seen that suitable dithering can indeed make exact
the Bennett approximations of uniform distribution and signal
independence of the overall quantizer noise. Bennett also used
a variation of Rice’s method to derive an exact computation
of the spectrum of quantizer noise when a Gaussian process
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is uniformly quantized, providing one of the very few exact
computations of quantization error spectra.

In 1951 Panter and Dite [405] developed a high-resolution
formula for the distortion of a fixed-rate scalar quantizer using
approximations similar to Bennett’s, but without reference to
Bennett. They then used variational techniques to minimize
their formula and found the following formula for the opera-
tional distortion-rate function of fixed-rate scalar quantization:
for large values of

(8)

which is now called the Panter and Dite formula.1 As part of
their derivation, they demonstrated that an optimal quantizer
resulted in roughly equal contributions to total average dis-
tortion from each quantization cell, a result later called the
“partial distortion theorem.” Though they did not rederive
Bennett’s integral, they had in effect derived the optimal
compressor function for a compander, or, equivalently, the
optimal quantizer point density

(9)

Indeed, substituting this point density into Bennett’s integral
and using the fact that yields (8). As an example,
if the input density is Gaussian with variance, then

(10)

The fact that for large rates decreases with as
implies that the signal-to-noise ratio increases according to the
6-dB-per-bit rule. Virtually all other high resolution formulas
to be given later will also obey this rule. However, the constant
that adds to will vary with the source and quantizer being
considered.

The Panter–Dite formula for can also be derived
directly from Bennett’s integral using variational methods, as
did Lloyd (1957) [330], Smith (1957) [474], and, much later
without apparent knowledge of earlier work, Roe (1964) [443].
It can also be derived without using variational methods by
application of Ḧolder’s inequality to Bennett’s integral [222],
with the additional benefit of demonstrating that the claimed
minimum is indeed global. Though not known at the time, it
turns out that for a Gaussian source with independent and iden-
tically distributed (i.i.d.) samples, the operational distortion-
rate function given above is times larger
than , the least distortion achievable by any quantization
technique with rate or less. (It was not until Shannon’s 1959
paper [465] that was known.) Equivalently, the induced
signal-to-noise ratio is 4.35 dB less than the best possible, or
for a fixed distortion the rate is 0.72 bits/sample larger than
that achievable by the best quantizers.

In 1957, Smith [474] re-examined companding and PCM.
Among other things, he gave somewhat cleaner derivations of

1They also indicated that it had been derived earlier by P. R. Aigrain.

Bennett’s integral, the optimal compressor function, and the
Panter–Dite formula.

Also in 1957, Lloyd [330] made an important study of
quantization with three main contributions. First, he found
necessary and sufficient conditions for a fixed-rate quantizer to
be locally optimal; i.e., conditions that if satisfied implied that
small perturbations to the levels or thresholds would increase
distortion. Any optimal quantizer (one with smallest distortion)
will necessarily satisfy these conditions, and so they are often
called theoptimality conditionsor the necessary conditions.
Simply stated, Lloyd’s optimality conditions are that for a
fixed-rate quantizer to be optimal, the quantizer partition must
be optimal for the set of reproduction levels, and the set of
reproduction levels must be optimal for the partition. Lloyd
derived these conditions straightforwardly from first principles,
without recourse to variational concepts such as derivatives.
For the case of mean-squared error, the first condition implies
a minimum distance or nearest neighbor quantization rule,
choosing the closest available reproduction level to the source
sample being quantized, and the second condition implies that
the reproduction level corresponding to a given cell is the
conditional expectation orcentroid of the source value given
that it lies in the specified cell; i.e., it is the minimum mean-
squared error estimate of the source sample. For some sources
there are multiple locally optimal quantizers, not all of which
are globally optimal.

Second, based on his optimality conditions, Lloyd devel-
oped an iterative descent algorithm for designing quantizers for
a given source distribution: begin with an initial collection of
reproduction levels; optimize the partition for these levels by
using a minimum distortion mapping, which gives a partition
of the real line into intervals; then optimize the set of levels for
the partition by replacing the old levels by the centroids of the
partition cells. The alternation is continued until convergence
to a local, if not global, optimum. Lloyd referred to this
design algorithm as “Method I.” He also developed a Method
II based on the optimality properties. First choose an initial
smallest reproduction level. This determines the cell threshold
to the right, which in turn implies the next larger reproduction
level, and so on. This approach alternately produces a level
and a threshold. Once the last level has been chosen, the
initial level can then be rechosen to reduce distortion and
the algorithm continues. Lloyd provided design examples
for uniform, Gaussian, and Laplacian random variables and
showed that the results were consistent with the high resolution
approximations. Although Method II would initially gain more
popularity when rediscovered in 1960 by Max [349], it is
Method I that easily extends to vector quantizers and many
types of quantizers with structural constraints.

Third, motivated by the work of Panter and Dite but
apparently unaware of that of Bennett or Smith, Lloyd re-
derived Bennett’s integral and the Panter–Dite formula based
on the concept of point-density function. This was a critically
important step for subsequent generalizations of Bennett’s
integral to vector quantizers. He also showed directly that
in situations where the global optimum is the only local
optimum, quantizers that satisfy the optimality conditions
have, asymptotically, the optimal point density given by (9).
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Unfortunately, Lloyd’s work was not published in an
archival journal at the time. Instead, it was presented at
the 1957 Institute of Mathematical Statistics (IMS) meeting
and appeared in print only as a Bell Laboratories Technical
Memorandum. As a result, its results were not widely known
in the engineering literature for many years, and many
were independently rediscovered. All of the independent
rediscoveries, however, used variational derivations, rather
than Lloyd’s simple derivations. The latter were essential for
later extensions to vector quantizers and to the development of
many quantizer optimization procedures. To our knowledge,
the first mention of Lloyd’s work in the IEEE literature came in
1964 with Fleischer’s [170] derivation of a sufficient condition
(namely, that the log of the source density be concave) in order
that the optimal quantizer be the only locally optimal quantizer,
and consequently, that Lloyd’s Method I yields a globally
optimal quantizer. (The condition is satisfied for common
densities such as Gaussian and Laplacian.) Zador [561] had
referred to Lloyd a year earlier in his Ph.D. dissertation, to
be discussed later.

Later in the same year in another Bell Telephone Laborato-
ries Technical Memorandum, Goldstein [207] used variational
methods to derive conditions for global optimality of a scalar
quantizer in terms of second-order partial derivatives with
respect to the quantizer levels and thresholds. He also provided
a simple counterintuitive example of a symmetric density for
which the optimal quantizer was asymmetric.

In 1959, Shtein [471] added terms representing overload
distortion to the formula and to Bennett’s integral and
used them to optimize uniform and nonuniform quantizers.
Unaware of prior work, except for Bennett’s, he rederived the
optimal compressor characteristic and the Panter–Dite formula.

In 1960, Max [349] published a variational proof of the
Lloyd optimality properties for th-power distortion measures,
rediscovered Lloyd’s Method II, and numerically investigated
the design of fixed-rate quantizers for a variety of input
densities.

Also in 1960, Widrow [529] derived an exact formula for the
characteristic function of a uniformly quantized signal when
the quantizer has an infinite number of levels. His results
showed that under the condition that the characteristic function
of the input signal be zero when its argument is greater
than , the moments of the quantized random variable
are the same as the moments of the signal plus an additive
signal-independent random variable uniformly distributed on

. This has often been misinterpreted as saying
that the quantized random variable can be approximated as
being the input plus signal-independent uniform noise, a
clearly false statement since the quantizer error
is a deterministic function of the signal. The “bandlimited”
property of the characteristic function implies from Fourier
transform theory that the probability density function must
have infinite support since a signal and its transform cannot
both be perfectly bandlimited.

We conclude this subsection by mentioning early work
that appeared in the mathematical and statistical literature
and which, in hindsight, can be viewed as related to scalar
quantization. Specifically, in 1950–1951 Daleniuset al. [118],

[119] used variational techniques to consider optimal group-
ing of Gaussian data with respect to average squared error.
Lukaszewicz and H. Steinhaus [336] (1955) developed what
we now consider to be the Lloyd optimality conditions using
variational techniques in a study of optimum go/no-go gauge
sets (as acknowledged by Lloyd). Cox in 1957 [111] also
derived similar conditions. Some additional early work, which
can now be seen as relating to vector quantization, will be
reviewed later [480], [159], [561].

B. Scalar Quantization with Memory

It was recognized early that common sources such as
speech and images had considerable “redundancy” that scalar
quantization could not exploit. The term “redundancy” was
commonly used in the early days and is still popular in some
of the quantization literature. Strictly speaking, it refers to
the statistical correlation or dependence between the samples
of such sources and is usually referred to asmemory in
the information theory literature. As our current emphasis is
historical, we follow the traditional language. While not dis-
rupting the performance of scalar quantizers, such redundancy
could be exploited to attain substantially better rate-distortion
performance. The early approaches toward this end combined
linear processing with scalar quantization, thereby preserving
the simplicity of scalar quantization while using intuition-
based arguments and insights to improve performance by
incorporating memory into the overall code. The two most
important approaches of this variety were predictive coding
and transform coding. A shared intuition was that a prepro-
cessing operation intended to make scalar quantization more
efficient should “remove the redundancy” in the data. Indeed,
to this day there is a common belief that data compression
is equivalent to redundancy removal and that data without
redundancy cannot be further compressed. As will be discussed
later, this belief is contradicted both by Shannon’s work,
which demonstrated strictly improved performance using vec-
tor quantizers even for memoryless sources, and by the early
work of Fejes Toth (1959) [159]. Nevertheless, removing
redundancy leads to much improved codes.

Predictive quantization appears to originate in the 1946
delta modulation patent of Derjavitch, Deloraine, and Van
Mierlo [129], but the most commonly cited early references are
Cutler’s patent [117] 2 605 361 on “Differential quantization
of communication signals” and on DeJager’s Philips technical
report on delta modulation [128]. Cutler stated in his patent
that it “is the object of the present invention to improve the
efficiency of communication systems by taking advantage of
correlation in the signals of these systems” and Derjavitchet
al. also cited the reduction of redundancy as the key to the re-
duction of quantization noise. In 1950, Elias [141] provided an
information-theoretic development of the benefits of predictive
coding, but the work was not published until 1955 [142]. Other
early references include [395], [300], [237], [511], and [572].
In particular, [511] claims Bennett-style asymptotics for high-
resolution quantization error, but as will be discussed later,
such approximations have yet to be rigorously derived.

From the point of view of least squares estimation theory, if
one were to optimally predict a data sequence based on its past
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Fig. 3. Predictive quantizer encoder/decoder.

in the sense of minimizing the mean-squared error, then the
resulting error or residual or innovations sequence would be
uncorrelated and it would have the minimum possible variance.
To permit reconstruction in a coded system, however, the
prediction must be based on past reconstructed samples and
not true samples. This is accomplished by placing a quantizer
inside a prediction loop and using the same predictor to decode
the signal. A simple predictive quantizer or differential pulse-
coded modulator (DPCM) is depicted in Fig. 3. If the predictor
is simply the last sample and the quantizer has only one bit,
the system becomes a delta-modulator. Predictive quantizers
are considered to havememoryin that the quantization of a
sample depends on previous samples, via the feedback loop.

Predictive quantizers have been extensively developed, for
example there are many adaptive versions, and are widely used
in speech and video coding, where a number of standards are
based on them. In speech coding they form the basis of ITU-
G.721, 722, 723, and 726, and in video coding they form the
basis of the interframe coding schemes standardized in the
MPEG and H.26X series. Comprehensive discussions may be
found in books [265], [374], [196], [424], [50], and [458], as
well as survey papers [264] and [198].

Though decorrelation was an early motivation for predictive
quantization, the most common view at present is that the
primary role of the predictor is to reduce the variance of
the variable to be scalar-quantized. This view stems from the
facts that a) it is the prediction errors rather than the source
samples that are quantized, b) the overall quantization error
precisely equals that of the scalar quantizer operating on the
prediction errors, c) the operational distortion-rate function

for scalar quantization is proportional to variance (more
precisely, a scaling of the random variable being quantized
by a factor results in a scaling of by ), and
d) the density of the prediction error is usually sufficiently
similar in form to that of the source that its operational
distortion-rate function is smaller than that of the original
source by, approximately, the ratio of the variance of the
source to that of the prediction error, a quantity that is often

called a prediction gain [350], [396], [482], [397], [265].
Analyses of this form usually claim that under high-resolution
conditions the distribution of the prediction error approaches
that of the error when predictions are based on past source
samples rather than past reproductions. However, it is not clear
that the accuracy of this approximation increases sufficiently
rapidly with finer resolution to ensure that the difference
between the operational distortion-rate functions of the two
types of prediction errors is small relative to their values,
which are themselves decreasing as the resolution becomes
finer. Indeed, it is still an open question whether this type
of analysis, which typically uses Bennett and Panter–Dite
formulas, is asymptotically correct. Nevertheless, the results
of such high resolution approximations are widely accepted
and often compare well with experimental results [156], [265].
Assuming that they give the correct answer, then for large
rates and a stationary, Gaussian source with memory, the
distortion of an optimized DPCM quantizer is less than that
of a scalar quantizer by the factor , where is the
variance of the source and is the one-step prediction error;
i.e., the smallest MSE of any prediction of one sample based
on previous samples. It turns out that this exceeds by the
same factor by which the distortion of optimal fixed-rate scalar
quantization exceeds for a memoryless Gaussian source.
Hence, it appears that DPCM does a good job of exploiting
source memory given that it is based on scalar quantization,
at least under the high-resolution assumption.

Because it has not been rigorously shown that one may
apply Bennett’s integral or the Panter–Dite formula directly
to the prediction error, the analysis of such feedback quan-
tization systems has proved to be notoriously difficult, with
results limited to proofs of stability [191], [281], [284], i.e.,
asymptotic stationarity, to analyses of distortion via Hermite
polynomial expansions for Gaussian processes [124], [473],
[17], [346], [241], [262], [156], [189], [190], [367]–[369],
[293], to analyses of distortion when the source is a Wiener
process [163], [346], [240], and to exact solutions of the
nonlinear difference equations describing the system and hence
to descriptions of the output sequences and their moments,
including power spectral densities, for constant and sinusoidal
signals and finite sums of sinusoids using Rice’s method,
results which extend the work of Panter, Clavier, and Grieg
to quantizers inside a feedback loop [260], [71], [215], [216],
[72]. Conditions for use in code design resembling the Lloyd
optimality conditions have been studied for feedback quanti-
zation [161], [203], [41], but the conditions are not optimality
conditions in the Lloyd sense, i.e., they are not necessary
conditions for a quantizer within a feedback loop to yield the
minimum average distortion subject to a rate constraint. We
will return to this issue when we consider finite-state vector
quantizers. There has also been work on the optimality of
certain causal coding structures somewhat akin to predictive or
feedback quantization [331], [414], [148], [534], [178], [381],
[521].

Transform codingis the second approach to exploiting
redundancy by using scalar quantization with linear prepro-
cessing. Here, the source samples are collected into a vector of,
say, dimension that is multiplied by an orthogonal matrix (an
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Fig. 4. Transform code.

orthogonal transform) and the resulting transform coefficients
are scalar quantized, usually with a different quantizer for
each coefficient. The operation is depicted in Fig. 4. This
style of code was introduced in 1956 by Kramer and Mathews
[299] and analyzed and popularized in 1962–1963 by Huang
and Schultheiss [247], [248]. Kramer and Mathews simply
assumed that the goal of the transform was to decorrelate the
symbols, but Huang and Schultheiss proved that decorrelating
does indeed lead to optimal transform code design, at least in
the case of Gaussian sources and high resolution. Transform
coding has been extensively developed for coding images
and video, where the discrete cosine transform (DCT) [7],
[429] is most commonly used because of its computational
simplicity and its good performance. Indeed, DCT coding is
the basic approach dominating current image and video coding
standards, including H.261, H.263, JPEG, and MPEG. These
codes combine uniform scalar quantization of the transform
coefficients with an efficient lossless coding of the quantizer
indices, as will be considered in the next section as a variable-
rate quantizer. For discussions of transform coding for images
see [533], [422], [375], [265], [98], [374], [261], [424], [196],
[208], [408], [50], [458], and More recently, transform coding
has also been widely used in high-fidelity audio coding [272],
[200].

Unlike predictive quantizers, the transform coding approach
lent itself quite well to the Bennett high-resolution approx-
imations, the classical analysis being that of Huang and
Schultheiss [247], [248] of the performance of optimized
transform codes for fixed-rate scalar quantizers for Gaussian
sources, a result which demonstrated that the Karhunen–Loève
decorrelating transform was optimum for this application for
the given assumptions. If the transform is the Karhunen–Loève
transform, then the coefficients will be uncorrelated (and hence
independent if the input vector is also Gaussian). The seminal
work of Huang and Schultheiss showed that high-resolution
approximation theory could provide analytical descriptions of
optimal performance and design algorithms for optimizing
codes of a given structure. In particular, they showed that
under the high-resolution assumptions with Gaussian sources,
the average distortion of the best transform code with a
given rate is less than that of optimal scalar quantization by
the factor , where is the average of the

variances of the components of the source vector and
is its covariance matrix. Note that this reduction in
distortion becomes larger for sources with more memory (more
correlation) because the covariance matrices of such sources
have smaller determinants. Whenis large, it turns out that
the distortion of optimized transform coding with a given
rate exceeds by the same factor by which the distortion
of optimal fixed-rate scalar quantization exceeds for a
memoryless Gaussian source. Hence, like DPCM, transform
coding does a good job of exploiting source memory given
that it is a system based on scalar quantization.

C. Variable-Rate Quantization

Shannon’s lossless source coding theory (1948) [464] made
it clear that assigning equal numbers of bits to all quantization
cells is wasteful if the cells have unequal probabilities. Instead,
the number of bits produced by the quantizer will, on the
average, be reduced if shorter binary codewords are assigned
to higher probability cells. Of course, this means that longer
codewords will need to be assigned to the less probable cells,
but Shannon’s theory shows that, in general, there is a net
gain. This leads directly tovariable-rate quantization, which
has the partition into cells and codebook of levels as before,
but now has binary codewords of varying lengths assigned
to the cells (alternatively, the levels). Ordinarily, the set of
binary codewords is chosen to satisfy the prefix condition
that no member is a prefix of another member, in order to
insure unique decodability. As will be made precise in the next
section, one may view a variable-rate quantizer as consisting
of a partition, a codebook, and a lossless binary code, i.e., an
assignment of binary codewords.

For variable-rate quantizers the rate is no longer defined as
the logarithm of the codebook size. Rather, the instantaneous
rate for a given input is the number of binary symbols in
the binary codeword (the length of the binary codeword)
and the rate is the average length of the binary codewords,
where the average is taken over the probability distribution
of the source samples. The operational distortion-rate function

using this definition is the smallest average distortion
over all (variable-rate) quantizers having rateor less. Since
we have weakened the constraint by expanding the allowed
set of quantizers, this operational distortion-rate function will
ordinarily be smaller than the fixed-rate optimum.

Huffman’s algorithm [251] provides a systematic method
of designing binary codes with the smallest possible average
length for a given set of probabilities, such as those of the
cells. Codes designed in this way are typically called Huffman
codes. Unfortunately, there is no known expression for the
resulting minimum average length in terms of the probabilities.
However, Shannon’s lossless source coding theorem implies
that given a source and a quantizer partition, one can always
find an assignment of binary codewords (indeed, a prefix set)
with average length not more than , and that no
uniquely decodable set of binary codewords can have average
length less than , where
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is the Shannonentropy of the quantizer output and
is the probability that the source sample lies

in the th cell . Shannon also provided a simple way of
attaining performance within the upper bound: if the quantizer
index is , then assign it a binary codeword with length

(the Kraft inequality ensures that this is always
possible by simply choosing paths in a binary tree). Moreover,
tighter bounds have been developed. For example, Gallager
[181] has shown that the entropy can be at most
smaller than the average length of the Huffman code, when

, the largest of the ’s, is less than . See [73] for
discussion of this and other bounds. Since is ordinarily
much smaller than , this shows that is generally
a fairly accurate estimate of the average rate, especially in the
high-resolution case.

Since there is no simple formula determining the rate of the
Huffman code, but entropy provides a useful estimate, it is rea-
sonable to simplify the variable-length quantizer design prob-
lem a little by redefining the instantaneous rate of a variable-
rate quantizer as for the th quantizer level and hence
to define the average rate as , the entropy of its
output. As mentioned above, this underestimates the true rate
by a small amount that in no case exceeds one. We could again
define an operational distortion-rate function as the minimum
average distortion over all variable-rate quantizers with output
entropy . Since the quantizer output entropy is
a lower bound to actual rate, this operational distortion-rate
function may be optimistic; i.e., it falls below defined
using average length as rate. A quantizer designed to provide
the smallest average distortion subject to an entropy constraint
is called anentropy-constrained scalar quantizer.

Variable-rate quantization is also calledvariable-length
quantization or quantization with entropy coding. We will
not, except where critical, take pains to distinguish entropy-
constrained quantizers and entropy-coded quantizers. And we
will usually blur the distinction between average length and
entropy as measures of the rate of such quantizers unless,
again, it is important in some particular discussion. This is
much the same sort of blurring as using instead of

as the measure of rate in fixed-rate quantization.
It is important to note that the number of quantization

cells or levels does not play a primary role in variable-rate
quantization because, for example, there can be many levels
in places where the source density is small with little effect on
either distortion or rate. Indeed, the number of levels can be
infinite, which has the advantage of eliminating the overload
region and resulting overload distortion.

A potential drawback of variable-rate quantization is the
necessity of dealing with the variable numbers of bits that it
produces. For example, if the bits are to be communicated
through a fixed-rate digital channel, one will have to use
buffering and to take buffer overflows and underflows into ac-
count. Another drawback is the potential for error propagation
when bits are received by the decoder in error.

The most basic and simple example of a variable-rate
quantizer, and one which plays a fundamental role as a
benchmark for comparison, is a uniform scalar quantizer with
a variable-length binary lossless code.

The possibility of applying variable-length coding to quan-
tization may well have occurred to any number of people
who were familiar with both quantization and Shannon’s 1948
paper. The earliest references to such that we have found are
in the 1952 papers by Kretzmer [300] and Oliver [395]. In
1960, Max [349] had such in mind when he computed the
entropy of nonuniform and uniform quantizers that had been
designed to minimize distortion for a given number of levels.
For a Gaussian source, his results showed that variable-length
coding would yield rate reductions of about 0.5 bit/sample.

High-resolution analysis of variable-rate quantization devel-
oped in a handful of papers from 1958 to 1968. However, since
these papers were widely scattered or unpublished, it was not
until 1968 that the situation was well understood in the IEEE
community.

The first high-resolution analysis was that of Schutzenberger
(1958) [462] who showed that the distortion of optimized
variable-rate quantization (both scalar and vector) decreases
with rate as , just as with fixed-rate quantization. But
he did not find the multiplicative factors, nor did he describe
the nature of the partitions and codebooks that are best for
variable-rate quantization.

In 1959, Renyi [433] showed that a uniform scalar quantizer
with infinitely many levels and small cell width has output
entropy given approximately by

(11)

where

is thedifferential entropyof the source variable .
In 1963, Koshelev [579] discovered the very interesting fact

that in the high-resolution case, the mean-squared error of
uniform scalar quantization exceeds that of the least distortion
achievable by any quantization scheme whatsoever, i.e.,,
by a factor of only . Equivalently, the induced
signal-to-noise ratio is only 1.53 dB less than the best possible,
or for a fixed distortion , the rate is only 0.255 bit/sample
larger than that achievable by the best quantizers. (For the
Gaussian source, it gains 2.82 dB or 0.47 bit/sample over
the best fixed-rate scalar quantizer.) It is also of interest to
note that this was the first paper to compare the performance
of a specific quantization scheme to . Unfortunately,
Koshelev’s paper was published in a journal that was not
widely circulated.

In an unpublished 1966 Bell Telephone Laboratories Tech-
nical Memo [562], Zador also studied variable-rate (as well
as fixed-rate) quantization. As his focus was on vector quan-
tization, his work will be described later. Here we only point
out that for variable-rate scalar quantization with large rate,
his results showed that the operational distortion-rate function
(i.e., the least distortion of such codes with a given rate) is

(12)

Though he was not aware of it, this turns out to be the formula
found by Koshelev, therby demonstrating that in the high-
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resolution case, uniform is the best type of scalar quantizer
when variable-rate coding is applied.

Finally, in 1967 and 1968 two papers appeared in the IEEE
literature (in fact in these TRANSACTIONS) on variable-rate
quantization, without reference to any of the aforementioned
work. The first, by Goblick and Holsinger [205], showed by
numerical evaluation that uniform scalar quantization with
variable-rate coding attains performance within about 1.5
dB (or 0.25 bit/sample) of the best possible for an i.i.d.
Gaussian source. The second, by Gish and Pierce [204],
demonstrated analytically what the first paper had found
empirically. Specifically, it derived (11), and more generally,
the fact that a high-resolution nonuniform scalar quantizer has
output entropy

(13)

where is the unnormalized point density of the quan-
tizer. They then used these approximations along with Ben-
nett’s integral to rederive (12) and to show that in the high-
resolution case, uniform scalar quantizers achieve the oper-
ational distortion-rate function of variable-rate quantization.
Next, by comparing to what is called theShannon lower bound
to , they showed that for i.i.d. sources, the latter is only
1.53 dB (0.255 bit/sample) from the best possible performance

of any quantization system whatsoever, which is what
Koshelev [579] found earlier. Their results showed that such
good performance was attainable for any source distribution,
not just the Gaussian case checked by Goblick and Holsinger.
They also generalized the results from squared-error distortion
to nondecreasing functions of magnitude error.

Less well known is their proof of the fact that in the
high resolution case, the entropy of successive outputs
of a uniformly scalar quantized stationary source, e.g., with
memory, is

(14)

They used this, and the generalization of (13) to vectors, to
show that when rate and are large, uniform scalar quanti-
zation with variable-length coding of successive quantizer
outputs (block entropy coding) achieves performance that is
1.53 dB (0.255 bit/sample) from , even for sources
with memory. (They accomplished this by comparing to
Shannon lower bounds.) This important result was not widely
appreciated until rediscovered by Ziv (1985) [578], who also
showed that a similar result holds for small rates. Note that
although uniform scalar quantizers are quite simple, the loss-
less code capable of approaching theth-order entropy of the
quantized source can be quite complicated. In addition, Gish
and Pierce observed that when coding vectors, performance
could be improved by using quantizer cells other than the cube
implicitly used by uniform scalar quantizers and noted that the
hexagonal cell was superior in two dimensions, as originally
demonstrated by Fejes Toth [159] and Newman [385].

Though uniform quantization is asymptotically best for
entropy-constrained quantization, at lower rates nonuniform

quantization can do better, and a series of papers explored
algorithms for designing them. In 1969, Wood [539] pro-
vided a numerical descent algorithm for designing an entropy-
constrained scalar quantizer, and showed, as predicted by Gish
and Pierce, that the performance was only slightly superior to
a uniform scalar quantizer followed by a lossless code.

In a 1972 paper dealing with a vector quantization technique
to be discussed later, Berger [47] described Lloyd-like condi-
tions for optimality of an entropy-constrained scalar quantizer
for squared-error distortion. He formulated the optimization as
an unconstrained Lagrangian minimization and developed an
iterative algorithm for the design of entropy-constrained scalar
quantizers. He showed that Gish and Pierce’s demonstration
of approximate optimality of uniform scalar quantization for
variable-rate quantization holds approximately even when the
rate is not large and holds exactly for exponential densities,
provided the levels are placed at the centroids. In 1976,
Netravali and Saigal introduced a fixed-point algorithm with
the same goal of minimizing average distortion for a scalar
quantizer with an entropy constraint [376]. Yet another ap-
proach was taken by Noll and Zelinski (1978) [391]. Berger
refined his approach to entropy-constrained quantizer design
in [48].

Variable-rate quantization was also extended to DPCM and
transform coding, where high-resolution analysis shows that
it gains the same relative to fixed-rate quantization as it does
when applied to direct scalar quantizing [154], [398]. We note,
however, that the variable-rate quantization analysis for DPCM
suffers from the same flaws as the fixed-rate quantization
analysis for DPCM.

Numerous extensions of the Bennett-style asymptotic ap-
proximations and the approximation of or and
the characterizations of properties of optimal high-resolution
quantization for both fixed- and variable-rate quantization
for squared error and other error moments appeared during
the 1960’s, e.g., [497], [498], [55], [467], [8]. An excellent
summary of the early work is contained in a 1970 paper by
Elias [143].

We close this section with an important practical observa-
tion. The current JPEG and related standards can be viewed as
a combination of transform coding and variable-length quan-
tization. It is worth pointing out how the standard resembles
and differs from the models considered thus far. As previously
stated, the transform coefficients are separately quantized by
possibly different uniform quantizers, the bin lengths of the
quantizers being determined by a customizable quantization
table. This typically produces a quantized transformed image
with many zeros. The lossless, variable-length code then
scans the image in a zig-zag (or Peano) fashion, producing
a sequence of runlengths of the zeros and indices correspond-
ing to nonzero values, which are then Huffman-coded (or
arithmetic-coded). This procedure has the effect of coding only
the transform coefficients with the largest magnitude, which
are the ones most important for reconstruction. The early
transform coders typically coded the first, say,coefficients,
and ignored the rest. In essence, the method adopted for the
standards selectively coded the most important coefficients,
i.e., those having the largest magnitude, rather than simply
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the lowest frequency coefficients. The runlength coding step
can in hindsight be viewed as a simple way of locating the
most significant coefficients, which in turn are described the
most accurately. This implicit “significance” map was an early
version of an idea that would later be essential to wavelet
coders.

D. The Beginnings of Vector Quantization

As described in the three previous subsections, the 1940’s
through the early 1970’s produced a steady stream of advances
in the design and analysis of practical quantization tech-
niques, principally scalar, predictive, transform, and variable-
rate quantization, with quantizer performance improving as
these decades progressed. On the other hand, at roughly the
same time there was a parallel series of developments that were
more concerned with the fundamental limits of quantization
than with practical quantization issues. We speak primarily
of the remarkable work of Shannon and the very important
work of Zador, though there were other important contributors
as well. This work dealt with what is now calledvector
quantization(VQ) (or blockor multidimensional quantization),
which is just like scalar quantization except that all compo-
nents of a vector, of say successive source samples, are
quantized simultaneously. As such they are characterized by a
-dimensional partition, a-dimensional codebook (containing
-dimensionalpoints, reproduction codewordsor codevectors),

and an assignment of binary codewords to the cells of the
partition (equivalently, to the codevectors).

An immediate advantage of vector quantization is that it
provides a model of a general quantization scheme operating
on vectors without any structural constraints. It clearly includes
transform coding as a special case and can also be considered
to include predictive quantization operating locally within
the vector. This lack of structural constraints makes the
general model more amenable to analysis and optimization.
In these early decades, vector quantization served primarily
as a paradigm for exploring fundamental performance limits;
it was not yet evident whether it would become a practical
coding technique.

Shannon’s Source Coding Theory:In his classic 1948 pa-
per, Shannon [464] sketched the idea of the rate of a source
as the minimum bit rate required to reconstruct the source to
some degree of accuracy as measured by a fidelity criterion
such as mean-squared error. The sketch was fully developed
in his 1959 paper [465] for i.i.d. sources, additive measures
of distortion, and block source codes, now called vector
quantizers. In this later paper, Shannon showed that when
coding at some rate , the least distortion achievable by
vector quantizers of any kind is equal to a function ,
subsequently called theShannon distortion-rate function, that
is determined by the statistics of the source and the measure
of distortion.2

2Actually, Shannon described the solution to the equivalent problem of
minimizing rate subject to a distortion constraint and found that the answer was
given by a functionR(D), subsequently called theShannon rate-distortion
function, which is the inverse ofD(R). Accordingly, the theory is often called
rate-distortion theory, cf. [46].

To elaborate on Shannon’s theory, we note that one can
immediately extend the quantizer notation of (1), the distor-
tion and rate definitions of (2) and (3), and the operational
distortion-rate functions to define the smallest distortion
possible for a -dimensional fixed-rate vector quantizer that
achieves rate or less. (The distortion between two-
dimensional vectors is defined to be the numerical average
of the distortions between their respective components. The
rate is times the (average) number of bits to describe a
-dimensional source vector.) We will make the dimension

explicit in the notation when we are allowing it to vary and
omit it when not. Furthermore, as with Shannon’s channel
coding and lossless source coding theories, one can consider
the best possible performance over codes ofall dimensions
(assuming the data can be blocked into vectors of arbitrary
size) and define an operational distortion-rate function

(15)

The operational rate-distortion functions and are
defined similarly. For finite dimension, the function
will depend on the definition of rate, i.e., whether it is the log
of the reproduction size, the average binary codeword length,
or the quantizer output entropy. It turns out, however, that

is not affected by this choice. That is, it is the same for
all definitions of rate.

For an i.i.d. source , the Shannon distortion-rate
function is defined as the minimum average distortion

over all conditional distributions of given
for which the mutual information is at most ,
where we emphasize that and are scalar variables here.
In his principal result, the coding theorem for source coding
with a fidelity criterion, Shannon showed that for every,

. That is, no VQ of any dimensionwith rate
could yield smaller average distortion than , and that for
some dimension—possibly very large—there exists a VQ with
rate no greater than and distortion very nearly . As
an illustrative example, the Shannon distortion-rate function
of an i.i.d. Gaussian source with variance is

(16)

where is the variance of the source. Equivalently, the
Shannon rate-distortion function is ,

. Since it is also known that this represents
the best possible performance of any quantization scheme
whatsoever, it is these formulas that we used previously when
comparing the performance of scalar quantizers to that of the
best quantization schemes. For example, comparing (10) and
(16), one sees why we made earlier the statement that the
operational distortion-rate function of scalar quantization is

times larger than . Notice that (16) shows that for
this source the exponential rate of decay of distortion
with rate, demonstrated by high resolution arguments for high
rates, extends to all rates. This is not usually the case for
other sources.

Shannon’s approach was subsequently generalized to
sources with memory, cf. [180], [45], [46], [218], [549],
[127], [126], [282], [283], [138], and [479]. The general
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definitions of distortion-rate and rate-distortion functions
resemble those for operational distortion-rate and rate-
distortion functions in that they are infima ofth-order
functions. For example, theth-order distortion-rate function

of a stationary random process is defined as
an infimum of the average distortion over all
conditional probability distributions of
given for which average mutual
information . The distortion-rate function
for the process is then given by . For
i.i.d. sources , where is what we
previously called for i.i.d. sources. (The rate-distortion
functions and are defined similarly.) A source
coding theorem then shows under appropriate conditions that,
for sources with memory, for all rates . In
other words, Shannon’s distortion-rate function represents an
asymptotically achievable, but never beatable, lower bound to
the performance of any VQ of any dimension. Thepositive
coding theoremdemonstrating that the Shannon distortion-rate
function is in fact achievable if one allows codes of arbitrarily
large dimension and complexity is difficult to prove, but the
existence of good codes rests on the law of large numbers,
suggesting that large dimensions might indeed be required for
good codes, with consequently large demands on complexity,
memory, and delay.

Shannon’s results, like those of Panter and Dite, Zador,
and Gish and Pierce provide benchmarks for comparison for
quantizers. However, Shannon’s results provide an interesting
contrast with these early results on quantizer performance.
Specifically, the early quantization theory had derived the
limits of scalar quantizer performance based on the assump-
tion of high resolution and showed that these bounds were
achievable by a suitable choice of quantizer. Shannon, on the
other hand, had fixed a finite, nonasymptotic rate, but had
considered asymptotic limits as the dimensionof a vector
quantizer was allowed to become arbitrarily large. The former
asymptotics, high resolution for fixed dimension, are generally
viewed as quantization theory, while the latter, fixed-rate and
high dimension, are generally considered to be source coding
theory or information theory. Prior to 1960, quantization
had been viewed primarily as PCM, a form of analog-to-
digital conversion or digital modulation, while Shannon’s
source coding theory was generally viewed as a mathematical
approach to data compression. The first to explicitly apply
Shannon’s source coding theory to the problem of analog-to-
digital conversion combined with digital transmission appear
to be Goblick and Holsinger [205] in 1967, and the first
to make explicit comparisons of quantizer performance to
Shannon’s rate-distortion function was Koshelev [579] in
1963.

A distinct variation on the Shannon approach was in-
troduced to the English literature in 1956 by Kolmogorov
[288], who described several results by Russian information
theorists inspired by Shannon’s 1948 treatment of coding with
respect to a fidelity criterion. Kolmogorov considered two
notions of the rate with respect to a fidelity criterion: His
second notion was the same as Shannon’s, where a mutual
information was minimized subject to a constraint on the

average distortion, in this case measured by squared error. The
first peformed a similar minimization of mutual information,
but with the requirement that maximum distortion between
the input and reproduction did not exceed a specified level
. Kolmogorov referred to both functions as the “-entropy”

of a random object , but the name has subsequently
been considered to apply to the maximum distortion being
constrained to be less than, rather than the Shannon function,
later called the rate-distortion function, which constrained the
average distortion. Note that the maximum distortion with
respect to a distortion measure can be incorporated in
the average distortion formulation if one considers a new
distortion measure defined by

if
otherwise.

(17)

As with Shannon’s rate-distortion function, this was an
information-theoretic definition. As with quantization, there
are corresponding operational definitions. The operational ep-
silon entropy (-entropy) of a random variable can be
defined as the smallest entropy of a quantized output such
that the reproduction is no further from the input than(at
least with probability ):

(18)

This is effectively a variable-rate definition since lossless
coding would be required to achieve a bit rate near the entropy.
Alternatively, one could define the operational epsilon entropy
as , where is the smallest number of reproduction
codevectors for which all inputs are (with probability) within

of a codevector. This quantity is clearly infinite if the random
object does not have finite support. As in the Shannon case,
all these definitions can be made for-dimensional vectors
and the limiting behavior can be studied. Results regarding the
convergence of such limits and the equality of the information-
theoretic and operational notions of epsilon entropy can be
found, e.g., in [421], [420], [278], and [59]. Much of the theory
is concerned with approximating epsilon entropy for small.

Epsilon entropy extends to function approximation theory
with a slight change by removing the notion of probability.
Here the epsilon entropy becomes the log of the smallest
number of balls of radius required to cover a compact metric
space (e.g., a function space—see, e.g., [520] and [420] for a
discussion of various notions of epsilon entropy).

We mention epsilon entropy because of its close mathe-
matical connection to rate-distortion theory. Our emphasis,
however, is on codes that minimize average, not maximum,
distortion.

The Earliest Vector Quantization Work:Outside of Shan-
non’s sketch of rate-distortion theory in 1948, the earliest
work with a definite vector quantization flavor appeared in the
mathematical and statistical literature. Most important was the
remarkable work of Steinhaus in 1956 [480], who considered
a problem equivalent to a three-dimensional generalization of
scalar quantization with a squared-error distortion measure.
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Suppose that a mass density is defined on Euclidean
space. For any finite , let be a
partition of Euclidean space into disjoint bodies (cells) and
let be a collection of vectors,
one associated with each cell of the partition. What partition

and collection of vectors minimizes

the sum of the moments of inertia of the cells about the
associated vectors? This problem is formally equivalent
to a fixed-rate three-dimensional vector quantizer with a
squared-error distortion measure and a probability density

. Steinhaus derived what we now consider
to be the Lloyd optimality conditions (centroid and nearest
neighbor mapping) from fundamental principles (without
variational techniques), proved the existence of a solution,
and described the iterative descent algorithm for finding a
good partition and vector collection. His derivation applies
immediately to any finite-dimensional space and hence,
like Lloyd’s, extends immediately to vector quantization of
any dimension. Steinhaus was aware of the problems with
local optima, but stated that “generally” there would be a
unique solution. No mention is made of “quantization,” but
this appears to be the first paper to both state the vector
quantization problem and to provide necessary conditions for
a solution, which yield a design algorithm.

In 1959, Fejes Toth described the specific application of
Steinhaus’ problem in two dimensions to a source with a uni-
form density on a bounded support region and to quantization
with an asymptotically large number of points [159]. Using an
earlier inequality of his [158], he showed that the optimal two-
dimensional quantizer under these assumptions tessellated the
support region with hexagons. This was the first evaluation of
the performance of a genuinely multidimensional quantizer. It
was rederived in a 1964 Bell Laboratories Technical Memoran-
dum by Newman [385]; its first appearance in English. It made
a particularly important point: even in the simple case of two
independent uniform random variables, with no redundancy
to remove, the performance achievable by quantizing vectors
using a hexagonal-lattice encoding partition is strictly better
than that achievable by uniform scalar quantization, which
can be viewed as a two-dimensional quantizer with a square
encoding lattice.

The first high-resolution approximations for vector quanti-
zation were published by Schutzenberger in 1958 [462], who
found upper and lower bounds to the least distortion of-
dimensional variable-rate vector quantizers, both of the form

. Unfortunately, the upper and lower bounds diverge
as increases.

In 1963, Zador [561] made a very large advance by using
high-resolution methods to show that for large rates, the
operational distortion-rate function of fixed-rate quantization
has the form

(19)

where is a term that is independent of the source, is
the -dimensional source density, and

is the term that depends on the source. This generalized the
Panter–Dite formula to the vector case. While the formula for

obviously matches the Shannon distortion-rate function
when both dimension and rate are large (because in this

case both are approximations to ), Zador’s for-
mula has the advantage of being applicable for any dimension

while the Shannon theory is applicable only for large.
On the other hand, Shannon theory is applicable for any rate

while high resolution theory is applicable only for large
rates. Thus the two theories are complementary. Zador also
explicitly extended Lloyd’s optimality properties to vectors
with distortion measures that were integer powers of the
Euclidean norm, thereby also generalizing Steinhaus’ results
to dimensions higher than three, but he did not specifically
consider descent design algorithms. Unfortunately, the results
of Zador’s thesis were not published until 1982 [563] and
were little known outside of Bell Laboratories until Gersho’s
important paper of 1979 [193], to be described later.

Zador’s dissertation also dealt with the analysis of variable-
rate vector quantization, but the asymptotic formula given
there is not the correct one. Rather it was left to his subsequent
unpublished 1966 memo [562] to derive the correct formula.
(Curiously, his 1982 paper [563] reports the formula from
the thesis rather than the memo.) Again using high-resolution
methods, he showed that for large rates, the operational
distortion-rate function of variable-rate vector quantization has
the form

(20)

where is a term that is independent of the source and
is the dimension-normalized dif-

ferential entropy of the source. This completed what he and
Schutzenberger had begun.

In the mid-1960’s, the optimality properties described by
Steinhaus, Lloyd, and Zador and the design algorithm of
Steinhaus and Lloyd were rediscovered in the statistical clus-
tering literature. Similar algorithms were introduced in 1965
by Forgey [172], Ball and Hall [29], [230], Jancey [263],
and in 1969 by MacQueen [341] (the “-means” algorithm).
These algorithms were developed for statistical clustering
applications, the selection of a finite collection of templates
that well represent a large collection of data in the MSE
sense, i.e., a fixed-rate VQ with an MSE distortion measure in
quantization terminology, cf. Anderberg [9], Diday and Simon
[133], or Hartigan [238]. MacQueen used an incremental
incorporation of successive samples of a training set to design
the codes, each vector being first mapped into a minimum-
distortion reproduction level representing a cluster, and then
the level for that cluster being replaced by an adjusted centroid.
Forgey and Jancey used simultaneous updates of all centroids,
as did Steinhaus and Lloyd.
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Unfortunately, many of these early results did not propa-
gate among the diverse groups working on similar problems.
Zador’s extensions of Lloyd’s results were little known outside
of Bell Laboratories. The work of Steinhaus has been virtually
unknown in the quantization community until recently. The
work in the clustering community on what were effectively
vector quantizer design algorithms in the context of statistical
clustering was little known at the time in the quantization
community, and it was not generally appreciated that Lloyd’s
algorithm was in fact a clustering algorithm. Part of the lack
of interest through the 1950’s was likely due to the fact that
there had not yet appeared any strong motivation to consider
the quantization of vectors instead of scalars. This motivation
came as a result of Shannon’s landmark 1959 paper on source
coding with a fidelity criterion.

E. Implementable Vector Quantizers

As mentioned before, it was not evident from the earliest
studies that vector quantization could be a practical technique.
The only obvious encoding procedure is brute-force nearest
neighbor encoding: compare the source vector to be quantized
with all reproduction vectors in the codebook. Since a (fixed-
rate) VQ with dimension and rate has codevectors, the
number of computations required to do this grows exponen-
tially with the dimension-rate product , and gets quickly out
of hand. For example, if and , there are roughly
one million codevectors. Moreover, these codevectors need
to be stored, which also consumes costly resources. Finally,
the proof of Shannon’s source coding theorem relies on the
dimension becoming large, suggesting that large dimension
might be needed to attain good performance. As a point
of reference, we note that in the development of channel
codes, for which Shannon’s theory had also suggested large
dimension, it was common circa 1970 to consider channel
codes with dimensions on the order of 100 or more. Thus it
no doubt appeared to many that similarly large dimensions
might be needed for effective quantization. Clearly, a brute-
force implementation of VQ with such dimensions would be
out of the question. On the other hand, the channel codes of
this era with large dimension and good performance, e.g., BCH
codes, were highlystructuredso that encoding and decoding
need not be done by brute force.

From the above discussion, it should not be surprising
that the first VQ intended as a practical technique had a
reproduction codebook that was highly structured in order to
reduce the complexity of encoding and decoding. Specifically,
we speak of the fixed-rate vector quantizer introduced in 1965
by Dunn [137] for multidimensional i.i.d. Gaussian vectors.
He argued that his code was effectively a permutation code
as earlier used by Slepian [472] for channel coding, in that
the reproduction codebook contains only codevectors that are
permutations of each other. This leads to a quantizer with
reduced (but still fairly large) complexity. Dunn compared
numerical computations of the performance of this scheme
to the Shannon rate-distortion function. As mentioned earlier,
this was the first such comparison. In 1972, Berger, Jelinek,
and Wolf [49], and Berger [47] introduced lower complexity

encoding algorithms for permutation codes, and Berger [47]
showed that for large dimensions, the operational distortion-
rate function of permutation codes is approximately equal to
that of optimal variable-rate scalar quantizers. While they
do not attain performance beyond that of scalar quantiza-
tion, permutation codes have the advantage of avoiding the
buffering and error propagation problems of variable-rate
quantization.

Notwithstanding the skepticism of some about the feasibility
of brute-force unstructured vector quantization, serious studies
of such began to appear in the mid-1970’s, when several
independent results were reported describing applications of
clustering algorithms, usually-means, to problems of vector
quantization. In 1974–1975, Chaffee [76] and Chaffee and
Omura [77] used clustering ideas to design a vector quan-
tizer for very low rate speech vocoding. In 1977, Hilbert
used clustering algorithms for joint image compression and
image classification [242]. These papers appear to be the first
applications of direct vector quantization for speech and image
coding applications. Also in 1977, Chen used an algorithm
equivalent to a two-dimensional Lloyd algorithm to design
two-dimensional vector quantizers [87].

In 1978 and 1979, a vector extension of Lloyd’s Method
I was applied to linear predictive coded (LPC) speech pa-
rameters by Buzo and others [220],[67], [68], [223] with a
weighted quadratic distortion measure on parameter vectors
closely related to the Itakura–Saito spectral distortion measure
[258], [259], [257]. Also in 1978, Adoul, Collin, and Dalle
[3] used clustering ideas to design two-dimensional vector
quantizers for speech coding. Caprio, Westin, and Esposito
in 1978 [74] and Menez, Boeri, and Esteban in 1979 [353]
also considered clustering algorithms for the design of vector
quantizers with squared error and magnitude error distortion
measures.

The most important paper on quantization during the 1970’s
was without a doubt Gersho’s paper on “Asymptotically
optimal block quantization” [193]. The paper popularized high
resolution theory and the potential performance gains of vector
quantization, provided new, simplified variations and proofs
of Zador’s results and vector extensions of Gish and Pierce’s
results with squared-error distortion, and introduced lattice
vector quantization as a means of achieving the asymptotically
optimal quantizer point density for entropy-constrained vector
quantization for a random vector with bounded support. The
simple derivations combined the vector quantizer point-density
approximations with the use of Ḧolder’s and Jensen’s in-
equalities, generalizing a scalar quantizer technique introduced
in 1977 [222]. One step of the development rested on a
still unproved conjecture regarding the asymptotically optimal
quantizer cell shapes and Zador’s constants, a conjecture which
since has borne Gersho’s name and which will be considered at
some length in Section IV. Portions of this work were extended
to nondecreasing functions of norms in [554].

Gersho’s work stimulated renewed interest in the theory
and design of direct vector quantizers and demonstrated that,
contrary to the common impression that very large dimensions
were required, significant gains could be achieved over scalar
quantization by quantizing vectors of modest dimension and,
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as a result, such codes might be competitive with predictive
and transform codes in some applications.

In 1980, Linde, Buzo, and Gray explicitly extended Lloyd’s
algorithm to vector quantizer design [318]. As we have seen,
the clustering approach to vector quantizer design originated
years earlier, but the Lindeet al. paper introduced it as a
direct extension to the original Lloyd optimal PCM design
algorithm, extended it to more general distortion measures than
had been previously considered (including an input-weighted
quadratic distortion useful in speech coding), and succeeded in
popularizing the algorithm to the point that it is often referred
to as the “LBG algorithm.” A “splitting” method for designing
the quantizer from scratch was developed, wherein one first
designs a quantizer with two words (-means), then doubles
the codebook size by adding a new codevector near each
existing codevector, then runs Lloyd’s algorithm again, and so
on. The numerical examples of quantizer design complemented
Gersho’s high-resolution results much as Lloyd’s had comple-
mented Panter and Dite: it was shown that even with modest
dimensions and modest rates, significant gains over scalar
quantization could be achieved by direct vector quantization
of modest complexity. Later in the same year, Buzoet al.
[69] developed a tree-structured vector quantizer (TSVQ) for
ten-dimensional LPC vectors that greatly reduced the encoder
complexity from exponential growth with codebook size to
linear growth by searching a sequence of small codebooks
instead of a single large codebook. The result was an 800-bits/s
LPC speech coder with intelligible quality comparable to that
of scalar-quantized LPC speech coders of four times the rate.
(See also [538].) In the same year, Adoul, Debray, and Dalle
[4] also used a spectral distance measure to optimize predictors
for DPCM and the first thorough study of vector quantization
for image compression was published by Yamada, Fujita, and
Tazaki [551].

In hindsight, the surprising effectiveness of low-dimensional
VQ, e.g., to , can be explained by the fact that
in Shannon’s theory large dimension is needed to attain
performance arbitrarily close to the ideal. In channel coding
at rates less than capacity, ideal performance means zero
error probability, and large dimension is needed for codes to
approach this. However, when quantizing at a given rate,
ideal performance means distortion equal to . Since this
is not zero, there is really no point to making the difference
between actual and ideal performance arbitrarily small. For
example, it might be enough to come within 5% to 20%
(0.2 to 0.8 dB) of , which does not require terribly large
dimension. We will return to this in Section IV with estimates
of the required dimension.

There followed an active period for all facets of quantization
theory and design. Many of these results developed early in the
decade were fortuitously grouped in the March 1982 special is-
sue on Quantization of these TRANSACTIONS, which published
the Bell Laboratories Technical Memos of Lloyd, Newman,
and Zador along with Berger’s extension of the optimality
properties of entropy-constrained scalar quantization toth-
power distortion measures and his extensive comparison of
minimum-entropy quantizers and fixed-rate permutation codes
[48], generalizations by Trushkin of Fleischer’s conditions for

uniqueness of local optima [503], results on the asymptotic be-
havior of Lloyd’s algorithm with training-sequence size based
on the theory of -means consistency by Pollard [418], two
seminal papers on lattice quantization by Conway and Sloane
[103], [104], rigorous developments of the Bennett theory
for vector quantizers andth-power distortion measures by
Bucklew and Wise [64], Kieffer’s demonstration of stochastic
stability for a general class of feedback quantizers including
the historic class of predictive quantizers and delta modulators
along with adaptive generalizations [281], Kieffer’s study of
the convergence rate of Lloyd’s algorithm [280], and the
demonstration by Garey, Johnson, and Witsenhausen that the
Lloyd–Max optimization was NP-hard [187].

Toward the middle of the 1980’s, several tutorial articles
on vector quantization appeared, which greatly increased the
accessibility of the subject [195], [214], [342], [372].

F. The Mid-1980’s to the Present

In the middle to late 1980’s, a wide variety of vector
quantizer design algorithms were developed and tested for
speech, images, video, and other signal sources. Some of
the quantizer design algorithms developed as alternatives to
Lloyd’s algorithm include simulated annealing [140], [507],
[169], [289], deterministic annealing [445]–[447], pairwise
nearest neighbor [146] (which had its origins in earlier cluster-
ing techniques [524]), stochastic relaxation [567], [571], self-
organizing feature maps [290], [544], [545], and other neural
nets [495], [301], [492], [337], [65]. A variety of quantization
techniques were introduced by constraining the structure of
the vector quantization to better balance complexity with
performance and these methods were applied to real signals
(especially speech and images) as well as to random sources,
which permitted comparison to the theoretical high-resolution
and Shannon bounds. The literature begins to grow too large to
cite all works of possible interest, but several of the techniques
will be considered in Section V. Here, we only mention
several examples with references and leave further discussion
to Section V.

As will be discussed in some depth in Section V, fast
search algorithms were developed for unstructured reproduc-
tion codebooks, and even faster searches for reproduction
codebooks constrained to have a simple structure, for example
to be a subset of points of a regular lattice as in a lattice
vector quantizer. Additional structure can be imposed for faster
searches with virtually no loss of performance, as in Fisher’s
pyramid VQ [164], which takes advantage of the asymptotic
equipartition property to choose a structured support region
for the quantizer. Tree-structured VQ uses a tree-structured
reproduction codebook with a matched tree-structured search
algorithm. A tree-structured VQ with far less memory is
provided by a multistage or residual VQ. A variety of product
vector quantizers use a Cartesian product reproduction code-
book, which often can be rapidly searched. Examples include
polar vector quantizers, mean-removed vector quantizers, and
shape-gain vector quantizers. Trellis encoders and trellis-coded
quantizers use a Viterbi algorithm encoder matched to a
reproduction codebook with a trellis structure. Hierarchical



2340 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

table-lookup vector quantizers provide fixed-rate vector quan-
tizers with minimal computational complexity. Many of the
early quantization techniques, results, and applications can be
found in original form in Swaszek’s 1985 reprint collection on
quantization [484] and Abut’s 1990 IEEE Reprint Collection
on Vector Quantization [2].

We close this section with a brief discussion of two specific
works which deal with optimizing variable-rate scalar quantiz-
ers without additional structure, the problem that leads to the
general formulation of optimal quantization in the next section.
In 1984 Farvardin and Modestino [155] extended Berger’s [47]
necessary conditions for optimality of an entropy-constrained
scalar quantizer to more general distortion measures and
described two design algorithms: the first is similar to Berger’s
iterative algorithm, but the second was a fixed-point algorithm
which can be considered as a natural extension of Lloyd’s
Method I from fixed-rate to variable-rate vector quantiza-
tion. In 1989, Chouet al. [93] developed a generalized
Lloyd algorithm for entropy-constrained vector quantization
that generalized Berger’s [47], [48] Lagrangian formulation
for scalar quantization and Farvardin and Modestino’s fixed-
point design algorithm [155] to vectors. Optimality properties
for minimizing a Lagrangian distortion were
derived, where rate could be either average length or entropy.
Lloyd’s optimal decoder remained unchanged and the lossless
code is easily seen to be an optimal lossless code for the
encoded vectors, but this formulation shows that the optimal
encoder must simultaneously consider both the distortion and
rate resulting from the encoder. In other words, quantizers
with variable rate should use an encoder that minimizes a
sum of squared error and weighted bit rate, and not only the
squared error. Another approach to entropy-constrained scalar
quantization is described in [285].

This is a good place to again mention Gish and Pierce’s
result that if the rate is high, optimal entropy-constrained
scalar or vector quantization can provide no more than roughly
1/4-bit improvement over uniform scalar quantization with
block entropy coding. Berger [47] showed that permutation
codes achieved roughly the same performance with a fixed-rate
vector quantizer. Ziv [578] showed in 1985 that if subtractive
dithering is allowed, dithered uniform quantization followed
by block lossless encoding will be at most 0.754 bit worse
than the optimal entropy-constrained vector quantizer with the
same block size, even if the rate is not high. (Subtractive
dithering, as will be discussed later, adds a random dither
signal to the input and removes it from the decompressed
output.) As previously discussed, these results do not eliminate
the usefulness of fixed-rate quantizers, because they may be
simpler and avoid the difficulties associated with variable-
rate codes. These results do suggest, however, that uniform
quantization and lossless coding is always a candidate and a
benchmark for performance comparison. It is not known if the
operational distortion-rate function of variable-rate quantiza-
tion with dithering is better than that without dithering.

The present decade has seen continuing activity in de-
veloping high resolution theory and design algorithms for a
variety of quantization structures, and in applying many of
the principles of the theory to optimizing signal processing

and communication systems incorporating quantizers. As the
arrival of the present is a good place to close our historical tour,
many results of the current decade will be sketched through
the remaining sections. It is difficult to resist pointing out,
however, that in 1990 Lloyd’s algorithm was rediscovered in
the statistical literature under the name of “principal points,”
which are distinguished from traditional-means by the as-
sumption of an absolutely continuous distribution instead of an
empirical distribution [171], [496], a formulation included in
the VQ formulation for a general distribution. Unfortunately,
these works reflect no awareness of the rich quantization
literature.

Most quantizers today are indeed uniform and scalar, but
are combined with prediction or transforms. In many niche
applications, however, the true vector quantizers, including
lattices and other constrained code structures, exhibit ad-
vantages, including the coding of speech residuals in code
excited linear predictive (CELP) speech coding systems and
VXTreme/Microsoft streaming video in WebTheater. Vector
quantization, unlike scalar quantization, is usually applied to
digital signals, e.g., signals that have already been “finely”
quantized by an A/D converter. In this case, quantization
(vector or scalar) truly represents compression since it reduces
the number of bits required to describe a signal and it reduces
the bandwidth required to transmit the signal description if an
analog link is used.

Modern video coding schemes often incorporate the La-
grangian distortion viewpoint for accomplishing rate control,
while using predictive quantization in a general sense through
motion compensation and uniform quantizers with optimized
lossless coding of transform coefficients for the intraframe
coding (cf. [201], [202]).

III. QUANTIZATION BASICS:
ENCODING, RATE, DISTORTION, AND OPTIMALITY

This section presents, in a self-contained manner, the basics
of memoryless quantization, that is, vector quantizers which
operate independently on successive vectors. For brevity, we
omit the “memoryless” qualifier for most of the rest of this
section. A key characteristic of any quantizer is itsdimension
, a positive integer. Its input is a -dimensional vector

from some alphabet . (Abstract
alphabets are also of interest in rate-distortion theory, but
virtually all alphabets encountered in quantization are real-
valued vector spaces, in which case the alphabet is often
called the support of the source distribution.) If
the quantizer isscalar; otherwise, it isvector. In any case,
the quantizer consists of three components—alossy encoder

, where the index set is an arbitrary countable
set, usually taken as a collection of consecutive integers, a
reproduction decoder , where is the
reproduction alphabet, and alossless encoder , an
invertible mapping (at least with probability) into a collection

of variable-length binary vectors that satisfies the prefix
condition. Alternatively, a lossy encoder is specified by a
partition of , where ; a
reproduction decoder is specified by a(reproduction) codebook
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of points, codevectors, or reproduction
codewords; and the lossless encodercan be described by
its binary codebook containingbinary
or channel codewords. The quantization ruleis the function

or, equivalently, whenever
.

A -dimensional quantizer is used by applying its lossy and
lossless encoders, followed by the corresponding decoders,
to a sequence of -dimensional input vectors

extracted from the data being encoded. There is
not a unique way to do such vector extraction; and the design
and performance of the quantizer usually depend significantly
on the specific method that is used. For data that naturally
forms a sequence of scalar-valued samples, e.g.,
speech, vector extraction is almost always done by parsing the
data into successive-tuples of adjacent samples, i.e.,

As an example of other possibilities,
one could also extract the first even samples, followed by
the first odd samples, the next even samples, and so
on. This subsampling could be useful for a multiresolution
reconstruction, as in interpolative vector quantization [234],
[194]. For other types of data there may be no canonical
extraction method. For example, in stereo speech the-
dimensional vectors might consist just of left samples, or just
of right samples, or half from each, orfrom the left followed
by from the right, etc. Another example is grayscale imagery
where the -dimensional vectors might come from parsing the
image into rectangular -by- blocks of pixels, where
, or into other tiling polytopes, such as hexagons and other

shapes aimed at taking advantage of the eye’s insensitivity
to noise along diagonals in comparison with along horizontal
and vertical lines [226]. Or the vectors might come from some
less regular parsing. If the image has color, with each pixel
value represented by some three-dimensional vector, then-
dimensional vectors can be extracted in even more ways. And
if the data is a sequence of color of images, e.g., digital video,
the extraction possibilities increase immensely.3

There are two generic domains in which (memoryless)
quantization theory, both analysis and design, can proceed. In
the first, which we call therandom vector domain, the input
data, i.e., source, to be quantized is described by a fixed value
of , an alphabet , and a probability distribution on ;
and the quantizer must be-dimensional. This is the case when
the specific vector dimension and contents are not allowed to
vary, e.g., when ten-dimensional speech parameter vectors of
line spectral pairs or reflection coefficients are coded together.
In the second, which we call therandom process domain, the
input data is characterized as a discrete parameter random
process, i.e., a countable collection (usually infinite) of ran-
dom variables; and different ways of extracting vectors from
its component variables may be considered and compared,
including different choices of the dimension. As indicated
above, there are in general many ways to do this. However,
for concreteness and because it provides the opportunity to
make some key points, whenever the random process domain
is of interest in this and the next section, we focus exclusively

3For example, the video community has had a longstanding debate between
progressive versus interlaced scanning—two different extraction methods.

on the canonical case where the data naturally forms a one-
dimensional, scalar-valued sequence, and successive-tuples
of adjacent samples are extracted for quantization. We will
also assume that the random process is stationary, unless a
specific exception is made. Stationary models can easily be
defined to include processes that exhibit distinct local and
global stationarity properties (such as speech and images) by
the use of models such as composite, hidden Markov, and
mixture sources. In the random vector domain, there is no first-
order stationarity assumption; e.g., the individual components
within each vector need not be identically distributed. In
either domain we presume that the quantizer operates on a
-dimensional random vector , usually

assumed to be absolutely continuous so that it is described by a
probability density function (pdf) . Densities are usually
assumed to have finite variance in order to avoid technical
difficulties.

Memoryless quantizers, as described here, are also referred
to as “vanilla” vector quantizers or block-source codes. The
alternative is a quantizer withmemory. Memory can be incor-
porated in a variety of ways; it can be used separately for the
lossy encoder (for example, different mappings can be used,
conditional on the past) or for the lossless encoder (the index
produced by a quantizer can be coded conditionally based on
previous indices). We shall return to vector quantizers with
memory in Section V, but our primary emphasis will remain
on memoryless quantizers. We will occasionally use the term
codeas a generic substitute forquantizer.

The instantaneous rate of the quantizer applied to a particu-
lar input is the normalized length of
the channel codeword, the number of bits per source symbol
that must be sent to describe the reproduction. An important
special case is when all binary codewords have the same length
, in which case the quantizer is referred to asfixed-lengthor

fixed-rate.
To measure the quality of the reproduction, we assume the

existence of a nonnegative distortion measure which
assigns a distortion or cost to the reproduction of inputby

. Ideally, one would like a distortion measure that is easy
to compute, useful in analysis, and perceptually meaningful
in the sense that small (large) distortion means good (poor)
perceived quality. No single distortion measure accomplishes
all three goals, but the common squared-error distortion

satisfies the first two. Although much maligned for lack of
perceptual meaningfulness, it often is a useful indicator of
perceptual quality and, perhaps more importantly, it can be
generalized to a class of distortion measures that have proved
useful in perceptual coding, the input-weighted quadratic dis-
tortion measures of the form

(21)

where is a positive-definite matrix that depends on the
input, cf. [258], [259], [257], [224], [387], [386], [150], [186],
[316], [323], [325]. Most of the theory and design techniques
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considered here extend to such measures, as will be discussed
later. We also assume that if and only if ,
an assumption that involves no genuine loss of generality and
allows us to consider a lossless code as a code for which

for all inputs .
There exists a considerable literature for various other

distortion measures, including and other norms of dif-
ferences and convex or nondecreasing functions of norms
of differences. These have rarely found application in real
systems, however, so our emphasis will be on the MSE
with comments on generalizations to input-weighted quadratic
distortion measures.

The overall performance of a quantizer applied to a source
is characterized by the normalized rate

and the normalized average distortion

Every quantizer is thus described by a rate-distortion
pair . The goal of compression system
design is to optimize the rate-distortion tradeoff. Fixed-rate
quantizers constrain this optimization by not allowing a code
to assign fewer bits to inputs that might benefit from such, but
they provide simpler codes that avoid the necessity of buffering
in order to match variable-rate codewords to a possibly fixed-
rate digital channel.

The optimal rate-distortion tradeoff for a fixed dimension
can be formalized in several ways: by optimizing distortion

for a constrained rate, by optimizing rate for a constrained
distortion, or by an unconstrained optimization using a La-
grange approach. These approaches lead, respectively, to the
operational distortion-rate function

the operational rate-distortion function

and the operational Lagrangian or weighted distortion-rate
function

where is a nonnegative number. A small value ofleads to
a low-distortion, high-rate solution and a large value leads to
a low-rate, high-distortion solution. Note that

so that the bracketed term can be considered to be a modified
or Lagrangian distortion, and that is the smallest average

Lagrangian distortion. All of these formalizations of optimal
performance have their uses, and all are essentially equivalent:
the distortion-rate and rate-distortion functions are duals and
every distortion-rate pair on the convex hull of these curves
corresponds to the Lagrangian for some value of. Note that
if one constrains the problem to fixed-rate codes, then the
Lagrangian approach reduces to the distortion-rate approach
since no longer depends on the code andcan be
considered as just a binary indexing of.

Formal definitions of quantizer optimality easily yield opti-
mality conditions as direct vector extensions and variations
on Lloyd’s conditions. The conditions all have a common
flavor: if two components of the code are fixed,
then the third component must have a specific form for the
code to be optimal. The resulting optimality properties are
summarized below. The proofs are simple and require no
calculus of variations or differentiation. Proofs may be found,
e.g., in [94] and [196].

• For a fixed lossy encoder, regardless of the lossless
encoder , the optimal reproduction decoder is given
by

the output minimizing the conditional expectation of the
distortion between the output and the input given that the
encoder produced index. These vectors are called the
Lloyd centroids. Note that the optimal decoder output for
a given encoder output is simply the optimal estimate
of the input vector given in the sense
of minimizing the conditional average distortion. If the
distortion is squared-error, the reproduction decoder is
simply the conditional expectation of given it was
encoded into

centroid

If the distortion measure is the input-weighted squared
error of (21), then [318], [224]

centroid

• For a fixed lossy encoder, regardless of the reproduction
decoder , the optimal lossless encoder is the opti-
mal lossless code for the discrete source , e.g., a
Huffman code for the lossy encoded source.

• For a fixed reproduction decoder, lossless code, and
Lagrangian parameter, the optimal lossy encoder is a
minimum-distortion (nearest neighbor) encoder for the
modified Lagrangian distortion measure

If the code is constrained to be fixed-rate, then the second
property is irrelevant and the third property reduces to the
familiar minimum distortion encoding with respect to, as in
the original formulation of Lloyd (and implicit in Shannon).
(The resulting partition is often called aVoronoi partition.)
In the general variable-rate case, the minimum distance (with
respect to the distortion measure) encoder is suboptimal;
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the optimal rule takes into account both distortion and code-
word length. Thus simply cascading a minimum MSE vector
quantizer with a lossless code is suboptimal. Instead, in the
general case, instantaneous rate should be considered in an
optimal encoding, as the goal is to trade off distortion and rate
in an optimal fashion. In all of these cases, the encoder can
be viewed as a mechanism for controlling the output of the
decoder so as to minimize the total Lagrangian distortion.

The optimality conditions imply a descent algorithm for
code design: Given some, begin with an initial code

. Optimize the encoder for the other two com-
ponents, then optimize the reproduction decoderfor the
remaining components, then optimize the lossless coder
for the remaining components. Let denote the overall
transformation resulting from these three operations. One
such iteration of must decrease or leave unchanged the
average Lagrangian distortion. Iterate until convergence or the
improvement falls beneath some threshold. This algorithm is
an extension and variation on the algorithm for optimal scalar
quantizer design introduced for fixed-rate scalar quantization
by Lloyd [330]. The algorithm is a fixed-point algorithm
since if it converges to a code, the code must be a fixed
point with respect to . This generalized Lloyd algorithm
applies to any distribution, including parametric models and
empirical distributions formed from training sets of real data.
There is no obvious means of choosing the “best”, so
the design algorithm might sweep through several values to
provide a choice of rate-distortion pairs. We also mention
that Lloyd-style iterative algorithms have been used to design
many structured forms of quantization. For example, when the
codes are constrained to have fixed rate, the algorithm becomes
-means clustering, finding a fixed number of representative

points that yield the minimum average distortion when a
minimum distortion mapping is assumed.

As mentioned in Section I, a variety of other clustering
algorithms exist that can be used to design vector quantizers
(or solve any other clustering problems). Although each has
found its adherents, none has convincingly yielded significant
benefits over the Lloyd algorithm and its variations in terms
of trading off rate and distortion, although some have proved
much faster (and others much slower). Some algorithms such
as simulated and deterministic annealing have been found
experimentally to do a better job of avoiding local optima
and finding globally optimal distortion-rate pairs than has
the basic Lloyd algorithm, but repeated applications of the
Lloyd algorithm with different initial conditions has also
proved effective in avoiding local optima. We focus on the
Lloyd algorithm because of its simplicity, its proven merit at
designing codes, and because of the wealth of results regarding
its convergence properties [451], [418], [108], [91], [101],
[321], [335], [131], [36].

The centroid property of optimal reproduction decoders has
interesting implications in the special case of a squared-error
distortion measure, where it follows easily [137], [60], [193],
[184], [196] that

• , so that the quantizer output can be
considered as an unbiased estimator of the input.

• , for all so that each
component of the quantizer output is orthogonal to each
component of the quantizer error. This is an example of
the well-known fact that the minimum mean-squared error
estimate of an unknown, , given an observation, ,
causes the estimate to be orthogonal to the error. In view
of the previous property, this implies that the quantizer
error is uncorrelated with the quantizer output rather than,
as is often assumed, with the quantizer input.

• , which
implies that the energy (or variance) of the quantized
signal must be less than that in the original signal.

• , which shows
that the quantizer error isnot uncorrelated with the input.
In fact, the correlation is minus the mean-squared error.

It is instructive to consider the extreme points of the rate-
distortion tradeoff, when the distortion is zero (or )
and the rate is (when ). First suppose that
. In this case, the rate does not affect the Lagrangian

distortion at all, but MSE counts. If the source is discrete,
then one can optimize this case by forcing zero distortion,
that is, using a lossless code. In this case, Shannon’s lossless
coding theorem implies that for rate measured by average
instantaneous codelength

or, if rate is measured by entropy, then simply
, the entropy of the vector. In terms of the Lagrangian

formulation, . Conversely, suppose that . In
this case distortion costs a negligible amount and rate costs
an enormous amount, so here the optimal is attained by using
zero rate and simply tolerating whatever distortion one must
suffer. The distortion for a zero-rate code is minimized by the
centroid of the unconditional distribution,

which is simply the mean in the MSE case. Here the
Lagrangian formulation becomes .
Both of these extreme points are global optima, albeit the
second is useless in practice.

So far, we have focused on the random vector domain and
considered optimality for quantizers of a fixed dimension. In
practice, however, and in source coding theory, the dimension

may be a parameter of choice, and it is of interest to consider
how the optima depend on it. Accordingly, we now focus on
the random process domain, assuming that the source is a one-
dimensional, scalar-valued, stationary random process. In this
situation, the various operational optima explicitly note the
dimension, e.g., denotes the operational distortion-rate
function for dimension and rate and, similarly,
and denote the operational rate-distortion and Lagrange
functions. Moreover, the overall optimal performance for all
quantizers of rate less than or equal tois defined by

(22)
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Similar definitions hold for the rate-versus-distortion and the
Lagrangian viewpoints.

Using stationarity, it can be shown (cf. [562], [577], [221],
[217, Lemma 11.2.3]) that the operational distortion-rate func-
tion is subadditivein the sense that for any positive integers

and

(23)

which shows the generally decreasing trend of the ’s as
increases. It is not known whether or not is always

less than or equal to . However, it can be shown that
subadditivity implies (cf. [180, p. 112])

(24)

Hence high-dimensional quantizers can do as well as any
quantizer. Note that (23) and (24) both hold for the special
cases of fixed-rate quantizers as well as for variable-rate
quantizers.

It is important to point out that for squared error and
most other distortion measures, the “” in (22) is not a
“ .” Specifically, represents performance that cannot
be achieved exactly, except in degenerate situations such as
when or the source distribution is discrete rather than
continuous. Of course, by the infimum definition of , there
are always quantizers with performance arbitrarily close to
it. We conclude that no quantizers aretruly optimal. Thus it
is essential to understand that whenever the word “optimal”
is used in the random process domain, it isalways in the
context of some specific constraint or class of quantizers, such
as eight-dimensional fixed-rate VQ or entropy-constrained
uniform scalar quantization or pyramid coding with dimension

, to name a few at random. Indeed, though desirable,
“optimality” loses a bit of its lustre when one considers the
fact that an optimal code in one class might not work as well
as a suboptimal code in another. It should now be evident
that the importance of the Lloyd-style optimality principles
lies ultimately in their ability to guide the optimization of
quantizers within specific constraints or classes.

IV. HIGH RESOLUTION QUANTIZATION THEORY

This section presents an overview of high resolution theory
and compares its results to those of Shannon rate-distortion
theory. For simplicity, we will adopt squared error as the
distortion measure until late in the section, where extensions
to other distortion measures are discussed. There have been
two styles of high resolution theory developments: informal,
where simple approximations are made, and rigorous, where
limiting formulas are rigorously derived. Here, we proceed
with the informal style until later when the results of the
rigorous approach are summarized. We will also presume the
“random vector domain” of fixed dimension, as described in
the previous section, until stated otherwise.

A. Asymptotic Distortion

As mentioned earlier, the first and most elementary result
in high resolution theory is the approximation to the

mean-squared error of a uniform scalar quantizer with step size
[43], [394], [468], which we now derive. Consider an-

level uniform quantizer whose levels are , with
. When this quantizer is applied to a continuous

random variable with probability density , when
is small, and when overload distortion can be ignored, the
mean-squared error (MSE) distortion may be approximated as
follows:

The first approximation in the above derives from ignoring
overload distortion. If the source density is entirely contained
in the granular region of the quantizer, then this approxima-
tion is not needed. The second approximation derives from
observing that the density may be approximated as a constant
on a small interval. Usually, as in the mean value theorem
of integration, one assumes the density is continuous, but as
any measurable function is approximately continuous, when

is sufficiently small this approximation is valid even for
discontinuous densities. The third approximation derives from
recognizing that by the definition of a Riemann integral,

is approximately equal to the integral of.
Finally, the last approximation derives from again ignoring
the overload region. As mentioned in earlier sections, there are
situations, such as variable-rate quantization, where an infinite
number of levels are permitted. In such cases, if the support
of the uniform scalar quantizer contains that of the source
density, then there will be no overload distortion to ignore,
and again we have .

It is important to mention the sense in which is approx-
imated by . After all, when is small, both and

will be small, so it is not saying much to assert that their
difference is small. Rather, as discussed later in the context
of the rigorous framework for high resolution theory, it can
be shown that under ordinary conditions, the ratio ofand

tends to as decreases. Though we will not generally
mention it, all future high-resolution approximations discussed
in this paper will also hold in this ratio-tending-to-one sense.

Each of the assumptions and simple approximations made in
deriving reoccurs in some guise in the derivation of all
subsequent high-resolution formulas, such as for nonuniform,
vector, and variable-rate quantizers. Thus they might be said
to be principal suppositions. Indeed, the small cell type of
supposition is what gives the theory its “high resolution” name.
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In uniform quantization, all cells have the same size and
shape and the levels are in the center of each cell (except
for the outermost cells which are ignored). Thus the cell size

is the key performance determining gross characteristic. In
more advanced, e.g., vector, quantization, cells may differ in
size and shape, and the codevectors need not be in the centers
of the cells. Consequently, other gross characterizations are
needed. These are thepoint densityand theinertial profile.

The point density of a vector quantizer is the direct ex-
tension of the point density introduced in Section II. That
is, it is a nonnegative, usually smooth function that,
when integrated over a region, determines the approximate
fraction of codevectors contained in that region. In fixed-rate
coding, the point density is usually normalized by the number
of codevectors so that its total integral is one. In variable-
rate coding, where the number of codevectors is not a key
performance-determining parameter and may even be infinite,
the point density is usually left unnormalized. As we consider
fixed-rate coding first, we will presume is normalized,
until stated otherwise. There is clearly an inverse relationship
between the point density and the volume of cells, namely,

, where, as before, is the number of
codevectors or cells and denotes the cell containing.

As with any density that describes a discrete set of points,
there is no unique way to define it for a specific quantizer.
Rather, the point density is intended as a high-level gross
characterization, or a model or target to which a quantizer
aspires. It describes the codevectors, in much the way that
a probability density describes a set of data points—it does
not say exactly where they are located, but roughly charac-
terizes their distribution. Quantizers with different numbers
of codevectors can be compared on the basis of their point
density, and there is an ideal point density to which quantizers
aspire—they cannot achieve it exactly, but may approximate
it. Nevertheless, there are times when a concrete definition of
the point density of a specific quantizer is needed. In such
cases, the following is often used: thespecific point density
of a quantizer is . This piecewise-
constant function captures all the (fine) detail in the quantizer’s
partition, in contrast to the usual notion of a point density as a
gross characterization. As an example of its use, we mention
that for fixed-rate quantization, the ideal point density
is usually a smooth function, closely related to the source
density, and one may say that a quantizer has point density
approximately if for all in some set with
high probability (relative to the source density). When a scalar
quantizer is implemented as a compander, is proportional
to the derivative of the compressor function applied to the
input. Though the notion of point density would no doubt have
been recognizable to the earliest contributors such as Bennett,
Panter, and Dite, as mentioned earlier, it was not explicitly
introduced until Lloyd’s work [330].

In nonuniform scalar quantization and vector quantization,
there is the additional issue of codevector placement within
cells and, in the latter case, of cell shape. The effect of
point placement and cell shape is exhibited in the following
approximation to the contribution of a small cell with

codevector to the MSE of a -dimensional vector quantizer

(25)

(26)

where is the normalized moment of inertia of the
cell about the point , defined by

Normalizing by volume makes independent of the size of
the cell. Normalizing by dimension yields a kind of invariance
to dimension, namely, that .
We often write when is clear from the context. The
normalized moment of inertia, and the resulting contribution

, is smaller for sphere-like cells with codevectors in the
center than for cells that are oblong, have sharply pointed ver-
tices, or have displaced codevectors. In the latter cases, there
are more points farther from that contribute substantially
to normalized moment of inertia, especially when dimension
is large.

In some quantizers, such as uniform scalar and lattice
quantizers, all cells (with the exception of the outermost cells)
have the same shape and the same placement of codevectors
within cells. In other quantizers, however, cell shape or
codevector placement varies with position. In such cases,
it is useful to characterize the variation of cell normalized
moment of inertia by a nonnegative, usually smooth function

, called theinertial profile. That is,
when . As with point densities, we do not define

to be equal to , because we want it to
be a high-level gross characterization or model to which a
quantizer aspires. Instead, we let be
called thespecific inertial profileof the quantizer . This is
a piecewise-constant function that captures the fine details of
cell normalized moment of inertia.

Returning to expressed in (26), the effect of cell size
is obviously in the term . Using the inverse relationship
between point density and cell volume yields

which shows how point density locally influences distortion.
Summing the above over all cells and recognizing the sum as
an approximation to an integral yields the following approxi-
mation to the distortion of a vector quantizer:

(27)

For scalar quantizers with points in the middle of the
cells, and the above reduces to

(28)

which is what Bennett [43] found for companders, as restated
in terms of point densities by Lloyd [330]. Both (28) and the
more general formula (27) are calledBennett’s integral. The
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extension of Bennett’s integral to vector quantizers was first
made by Gersho (1979) [193] for quantizers with congruent
cells for which the concept of inertial profile was not needed,
and then to vector quantizers with varying cell shapes (and
codevector placements) by Na and Neuhoff (1995) [365].

Bennett’s integral (27) can be expected to be a good
approximation under the following conditions: i) Most cells are
small enough that can be approximated as being constant
over the cell. (There can be some large cells where is very
small.) Ordinarily, this requires to be large. ii) The specific
point density of the quantizer approximately equals on
a high probability set of ’s. iii) The specific inertial profile
approximately equals on a high probability set of’s. iv)
Adjacent cells have similar volumes. The last condition rules
out quantizers such as a scalar one whose cells have alternating
lengths such as . The point
density of such a quantizer is , because there
are three points in an interval of width . Assuming, for
simplicity, that the source density is uniform on , it is
easy to compute , whereas Bennett’s integral
equals . One may obtain the correct distortion by
separately applying Bennett’s integral to the union of intervals
of length and to the union of intervals of length . The
problem is that Bennett’s integral is not linear in the point
density. So for it to be accurate, cell size must change slowly
or only occasionally. Since Bennett’s integral is linear in the
inertial profile, it is not necessary to assume that adjacent cells
have similar shapes, although one would normally expect this
to be the case in situations where Bennett’s integral is applied.
Examples of the use of the vector extension of Bennett’s
integral will be given later.

Approximating the source density as a constant over each
quantization cell, which is a key step in the derivations of (26)
and (28), is like assuming that the effect of quantization is to
add noise that is uniformly distributed. However, the range of
noise values must match the size and shape of the cell. And
so when the cells are not all of the same size and shape, such
quantization noise is obviously correlated with the vector
being quantized. On the other hand, for uniform scalar and
lattice vector quantizers, the error and are approximately
uncorrelated. A more general result, mentioned in Section III,
is that the correlation between the input and the quantization
error is approximately equal to the MSE of the quantizer when
the codevectors are approximately centroids.

B. Performance of the Best-Dimensional,
Fixed-Rate Quantizers

Having Bennett’s integral for distortion, one can hope to find
a formula for , the operational distortion-rate function for
-dimensional, fixed-rate vector quantization, by choosing the

key characteristics, point density and inertial profile, to mini-
mize (27). Unfortunately, it is not known how to find the best
inertial profile. Indeed, it is not even known what functions
are allowable as inertial profiles. However, Gersho (1979)
[193] made the now widely accepted conjecture that when
rate is large, most cells of a-dimensional quantizer with rate

and minimum or nearly minimum MSE are approximately

congruent to some basic tessellating4 -dimensional cell shape
. In this case, the optimum inertial profile is a constant and

Bennett’s integral can be minimized by variational techniques
or Hölder’s inequality [193], [222], resulting in the optimal
point density

(29)

and the following approximation to the operational distortion-
rate function: for large

(30)

where , which is the least normalized moment
of inertia of -dimensional tessellating polytopes, and

is the term depending on the source distribution. Dividing by
variance makes invariant to a scaling of the source. We
will refer to , , and as, respectively, Gersho’s
constant (in dimension), Zador’s factor (for -dimensional,
fixed-rate quantization), and the Zador–Gersho function (for
-dimensional, fixed-rate quantization). (Zador’s role will be

described later.) When , reduces to the Pan-
ter–Dite formula (8).

From the form of one may straightforwardly deduce
that cells are smaller and have higher probability where
is larger, and that all cells contribute roughly the same to the
distortion; i.e., in (26) is approximately the same for all
, which is the “partial distortion theorem” first deduced for

scalar quantization by Panter and Dite.
A number of properties of and are known; here,

we mention just a few. Gersho’s constant is known only
for and , where is, respectively, an interval and
a regular hexagon. It is not known whether the ’s are
monotonically nonincreasing for all, but it can be shown
that they form a subadditive sequence, which is a property
strong enough to imply that the infimum overequals the
limit as tends to infinity. Though it has long been presumed,
only recently has it been directly shown that the ’s tend to

as increases (Zamir and Feder [564]), which is the
limit of the normalized moment of inertia of-dimensional
spheres as tends to infinity. Previously, the assertion that
the ’s tend to depended on Gersho’s conjecture.
Zador’s factor tends to be smaller for source densities that
are more “compact” (lighter tails and more uniform) and have
more dependence among the source variables.

Fortunately, high resolution theory need not rely solely
on Gersho’s conjecture, because Zador’s dissertation [561]
and subsequent memo [562] showed that for large rate
has the form , where is independent of the

4A cell T “tessellates” if there exists a partition of<k whose cells are,
entirely, translations and rotations ofT . The Voronoi cell of any lattice
tessellates, but not all tessellations are generated by lattices. Gersho also
conjectured thatTk would beadmissiblein the sense that the Voronoi partition
for the centroids of the tessellation would coincide with the tessellation. But
this is not essential.
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source distribution. Thus Gersho’s conjecture is really just a
conjecture about .

In deriving the key result, Zador first showed that for a
random vector that is uniformly distributed on the unit cube,

has the form when is large, which effectively
defines . (In this case, .) He then used this to
prove the general result by showing that no quantizer with high
rate could do better than one whose partition is hierarchically
constructed by partitioning into small equally sized cubes
and then subdividing each with the partition of the quantizer
that is best for a uniform distribution on that cube, where
the number of cells within each cube depends on the source
density in that cube. In other words, the local structure of an
asymptotically optimal quantizer can be that of the optimum
quantizer for a uniform distribution.

In this light, Gersho’s conjecture is true if and only if. at
high rates. one may obtain an asymptotically optimal quantizer
for a uniform distribution by tessellating with . The latter
statement has been proven for (cf. [106, p. 59]) and
for by Fejes Toth (1959) [159]; see also [385]. For

, it is known that the best lattice tessellation is the
body-centered cubic lattice, which is generated by a truncated
octahedron [35]. It has not been proven that this is the best
tessellation, though one would suspect that it is. In summary,
Gersho’s conjecture is known to be true only for and .
Might it be false for ? If it is, it might be that the best
quantizers for a uniform source have aperiodic tessellation in
which two or more cell shapes alternate in a periodic fashion,
like the hexagons and pentagons on the surface of a soccer
ball. If the cells in one period of the tessellation have the
same volumes, then one may apply Bennett’s integral, and
(30) holds with replaced by the average of the normalized
moment of inertia of the cells in one period. However, if the
cells have unequal volumes, then as in the example given while
discussing Condition iv) of Bennett’s integral, the MSE will
be the average of distortions computed by using Bennett’s
integral separately on the union of cells of each type, and a
macrolevel definition of will be needed. It might also be
that the structure of optimal quantizers is aperiodic. However,
it seems likely to us that, asymptotically, one could always
find a quantizer with a periodic structure that is essentially as
good as any aperiodic one.

It is an open question in dimensions three and above whether
the best tessellation is a lattice. In most dimensions, the best
known tessellation is a lattice. However, tessellations that are
better than the best known lattices have recently been found
for dimensions seven and nine by Agrell and Eriksson [149].

From now on, we shall proceed assuming Gersho’s conjec-
ture is correct, with the knowledge that if this is not the case,
then analyses based on will be wrong (for ) by the
factor , which will be larger than (but probably not
much larger), and which in any case will converge to one as

, as discussed later.

C. Performance of the Best-Dimensional,
Variable-Rate Quantizers

Extensions of high resolution theory to variable-rate quan-
tization can also be based on Bennett’s integral, as well as

approximations, originally due to Gish and Pierce [204], to the
entropy of the output of a quantizer. Two such approximations,
which can be derived using approximations much like those
used to derive Bennett’s integral, were stated earlier for scalar
quantizers in (11) and (13). However, the approximation
(13), which says that for quantizers with mostly small cells

, where is the unnormalized
point density, holds equally well for vector quantizers, when

is interpreted as a vector rather than a scalar variable. As
mentioned before, unnormalized point density is used because
with variable-rate quantization, the number of codevectors is
not a primary characteristic and may even be infinite. For
example, one can always add levels in a way that has negligible
impact on the distortion and entropy.

We could now proceed to use Bennett’s integral and the
entropy approximation to find the operational distortion-rate
function for variable-rate, -dimensional, memoryless VQ.
However, we wish to consider a somewhat more general case.
Just as Gish and Pierce found something quite interesting by
examining the best possible performance of scalar quantization
with block entropy coding, we will now consider the oper-
ational distortion-rate function for vector quantization with
block entropy coding. Specifically, we seek , which is
defined to be the infimum of the distortions of any quantizer
with rate or less, whose lossy encoder is-dimensional
and memoryless, and whose lossless encoder simultaneously
codes a block of successive quantization indices with a
variable-length prefix code. In effect, the overall code is a

-dimensional, memoryless VQ. However, we will refer
to it as a -dimensional (memoryless) quantizer withth-
order variable-length coding (or th-order entropy coding).
When , the code becomes a conventional memoryless,
variable-rate vector quantizer. It is convenient to let
connote fixed-length coding, so that means the same
as of the previous section. By finding high-resolution
approximations to for all values of and ,
we will be able to compare the advantages of increasing the
dimension of the quantizer to those of increasing the order

of the entropy coder.
To find we assume that the source produces a

sequence of identical, but not necessarily
independent, -dimensional random vectors, each with density

. A straightforward generalization of (13) shows that
under high-resolution conditions, the rate is given by

(31)

On the other hand, the distortion of such a code may be
approximated using Bennett’s integral (27), with
substituted for the normalized point density . Then, as
with fixed-rate vector quantization, one would like to find

by choosing the inertial profile and the point
density to minimize Bennett’s integral subject to a constraint
on the rate that the right-hand side of (31) be at most.

Once again, though it is not known how to find the best
inertial profile, Gersho’s conjecture suggests that when rate
is large, the cells of the best rate-constrained quantizers are,
mostly, congruent to . Hence, from now on we shall assume
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that the inertial profile of the best variable-rate quantizers is,
approximately, . In this case, using variational
techniques or simply Jensen’s inequality, one can show that
the best point density is uniform on all of (or at least over
the support of the source density). In other words, all quantizer
cells have the same size, as in a tessellation. Using this fact
along with (27) and (31) yields

(32)

where

is the term depending on the source distribution. Dividing by
variance makes it invariant to scale. We callthe ( th-order)
Zador entropy factor and a Zador–Gersho function
for variable-rate coding. Since fixed-rate coding is a special
case of variable-length coding, it must be thatis less than
or equal to in (30). This can be directly verified using
Jensen’s inequality [193].

In the case of scalar quantization , the optimality
of the uniform point density and the operational distortion-
rate function were found by Gish and Pierce (1968)
[204]. Zador (1966) [562] considered the case and
showed that has the form when is
large, where is a constant that is independent of the source
density and no larger than the constantthat he found for
fixed-rate quantization. Gersho [193] used the argument given
above to find the form of given in (32).

As with fixed-rate quantization, we shall proceed under the
assumption that Gersho’s conjecture is correct, in which case

. If it is wrong, then our analyses will be off
by the factor , which, as before, will probably be just
a little larger than one, and which in any case will converge
to one as .

D. Fixed-Rate Quantization with Arbitrary Dimension

We now restrict attention to the random process domain
wherein the source is assumed to be a one-dimensional, scalar-
valued, stationary random process. We seek a high-resolution
approximation to the operational distortion-rate function

, which represents the best possible
performance of any fixed-rate (memoryless) quantizer. As
mentioned in Section III, for stationary sources

. Therefore, taking the limit of the high-
resolution approximation (30) for yields the fact that
for large

(33)

where

and

is another Zador–Gersho function. This operational distortion-
rate function was also derived by Zador [561], who showed
that his unknown factors and converged to . The
derivation given here is due to Gersho [193]. Notice that in
this limiting case, there is no doubt about the constant.

As previously mentioned, the ’s are subadditive, so that
they are smallest when is large. Similarly, for stationary
sources it can be shown that the sequence is also
subadditive [193], so that they too are smallest whenis large.
Therefore, another expression for the above Zador–Gersho
function is .

E. The Benefits of Increasing Dimension
in Fixed-Rate Quantization

Continuing in the random process domain (stationary
sources), the generally decreasing natures of and
directly quantify the benefits of increasing dimension in
fixed-rate quantization. (Of course, there is also a cost to
increasing dimension, namely, the increase in complexity.)
For example, decreases from for
to the limit . In decibels, this represents
a 1.53-dB decrease in MSE. For an i.i.d. Gaussian source,

decreases from for to the limit
, which represents an additional 2.81-dB gain.

In total, high-dimensional quantization gains 4.35 dB over
scalar quantization for the i.i.d. Gaussian source. For a
Gauss–Markov source with correlation coefficient ,

decreases from for to the limit
or a gain of 10.0 dB, yielding a total

high-dimensional VQ gain of 11.5 dB over scalar quantization.
Because of the 6-dB-per-bit rule, any gain stated in decibels
can be translated to a reduction in rate (bits per sample) by
dividing by 6.02.

On the other hand, it is also important to understand
what specific characteristics of vector quantizers improve with
dimension and by how much. Motivated by several prior
explanations [342], [333], [365], we offer the following. We
wish to compare an optimal quantizer with dimension
to an optimal -dimensional quantizer with .
To simplify the discussion, assume is a multiple of .
Though these two quantizers have differing dimensions, their
characteristics can be fairly compared by comparingto the
“product” VQ that is implicitly formed when is used

times in succession. Specifically, the product quantizer
has quantization rule

where are the successive-tuples of , and
reproduction codebook consisting of the concatenations
of all possible sequences of codevectors from ’s repro-
duction codebook . The subscripts “” and “ ” will be
attached as needed to associate the appropriate features with
the appropriate quantizer. The distortion and rate of the product
quantizer are easily seen to be those of the-dimensional VQ.
Thus the shortcomings of an optimal-dimensional quantizer
relative to an optimal high-dimensional quantizer may be
identified with those of the product quantizer—in particular,
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with the latter’s suboptimal point density and inertial profile,
which we now find.

To simplify discussion, assume for now that ,
and let be a fixed-rate scalar quantizer, with large rate,
levels in the middle of the cells, and point density .
The cells of the product quantizer are -dimensional
rectangles formed by Cartesian products of cells from the
scalar quantizer. When the scalar cells have the same width,
a -dimensional cube is formed; otherwise, a rectangle is
formed, i.e., an “oblong” cube. Since the widths of the
cells are, approximately, determined by , the point
density and inertial profile of are determined by .
Specifically, from the rectangular nature of the product cells
one obtains [365], [378]

(34)

and

(35)

which derive, respectively, from the facts that the volume
of a rectangle is the product of its side lengths, that the
normalized moment of inertia of a rectangle is that of a
cube times the ratio of the arithmetic mean of the
square of the side lengths to their geometric mean, and that
the side lengths are determined by the scalar point density.
Note that along the diagonal of the first “quadrant” (where

), the product cells are cubes and
, the minimum value. Off the diagonal, the

cells are usually rectangular and, consequently, is
larger.

To quantify the suboptimality of the product quantizer’s
principal feature, we factor the ratio of the distortions of

and , which is a kind of loss, into terms that
reflect the loss due to the inertial profile and point density
[365], [378]5

(36)

where

is the part of Bennett’s integral that does not depend on,
where thecell-shape loss, , is the ratio of the distortion of
the product quantizer to that of a hypothetical quantizer with
same point density and an optimal inertial profile, and where

5Na and Neuhoff considered the ratio of the product code distortion to that
of an optimalk-dimensional VQ for arbitraryk, not just for largek.

the point-density loss, , is the ratio of the distortion of a
hypothetical quantizer with the point density of the product
quantizer and a constant (e.g., optimal) inertial profile to that
of a hypothetical quantizer with an optimal point density and
the same (constant) inertial profile. Substituting (35) into (36)
and using the fact that for large, , one finds

(37)

where the cell shape loss has been factored into the product
of a space-filling loss[333],6 , which is the ratio of the
normalized moment of inertia of a cube to that of a high-
dimensional sphere, and anoblongitis loss, , which is the
factor by which the rectangularity of the cells makes the cell
shape loss larger than the space-filling loss.

To proceed further, consider first an i.i.d. source (stationary
and memoryless) and consider how to choose the scalar point
density in order to minimize . On the one hand,
choosing to be uniform on the set where the one-
dimensional density7 is not small causes the product
cells in the region where the -dimensional density
is not small to be cubes and, consequently, makes ,
which is the smallest possible value. However, it causes the
product point density to be poorly matched to the source
density and, as a result, is large. On the other hand,
choosing causes the product quantizer to
have, approximately, the optimal point density8

where the last step uses the fact thatis large. However, this
choice causes to be infinite.9 The best point density, as
implicitly found by Panter and Dite, is the compromise

as given in (29). In the region where is not small,
is “more uniform” than that causes

6Actually, Lookabaugh and Gray defined the inverse as a vector quantizer
advantage. The space-filling loss was called acubic loss in [365].

7Dimension will be added as a subscript tof in places where the dimension
of X needs to be emphasized.

8The fact that product quantizers can have the optimal point density is often
overlooked.

9This implies that distortion will not decrease as2�2R.
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Fig. 5. Losses of optimalk-dimensional quantization relative to optimal high-dimensional quantization for an i.i.d. Gaussian source. The bottom curve is
point-density loss; above that is point-density loss plus oblongitis loss; and the top curve is the total loss. Fork � 4, the space-filling losses are estimates.

the product quantizer to have the optimum point density.
Therefore, it generates a product quantizer whose cells in the
region where is largest are more cubic, which explains
why it has less oblongitis loss.

As an example, for an i.i.d. Gaussian source, the optimal
choice of scalar quantizer causes the product quantizer to
have 0.94-dB oblongitis loss and 1.88-dB point-density loss.
The sum of these, 2.81 dB, which equals , has
been called the “shape loss” [333] because it is determined
by the shape of the density—the more uniform the density the
less need for compromise because the scalar point densities
leading to best product cell shapes and best point density are
more similar. Indeed, for a uniform source density, there is
no shape loss. In summary, for an i.i.d. source, in comparison
to high-dimensional quantization, the shortcomings of scalar
quantization with fixed-rate coding are 1) the -
dB space-filling loss and 2) the lack of sufficient degrees of
freedom to simultaneously attain good inertial profile (small

) and good point density (small ). On the other hand,
it is often surprising to newcomers that vector quantization
gains anything at all over scalar quantizers for i.i.d. sources,
and secondly, that the gain is more than just the recovery of
the space-filling loss.

A similar comparison can be made between-dimensional
and high-dimensional VQ, by comparing the product

quantizer formed by uses of a -dimensional VQ to an
optimal -dimensional quantizer, for large. The results are
that as increases 1) the space-filling loss
decreases, and 2) there are more degrees of freedom so that
less compromise is needed between the-dimensional point
density that minimizes oblongitis and the one that gives the
optimal point density. As a result, the oblongitis, point density,
and shape losses decrease to zero, along with the space-filling
loss. For the i.i.d. Gaussian source, these losses are plotted in
Fig. 5.

For sources with memory, scalar quantization
engenders an additional loss due to its inability to exploit
the dependence between source samples. Specifically, when
there is dependence/correlation between source samples, the

product point density cannot match the ideal point density,
not even approximately. See [333] and [365] for a definition
of memory loss. (One can factor both the point density and
oblongitis losses into two terms, one of which is due to
the quantizer’s inability to exploit memory.) There is also a
memory loss for -dimensional quantization, which decreases
to as increases. The value of for which the memory
loss becomes close to unity (i.e., negligible) can be viewed
as kind of “effective memory or correlation length” of the
source. It is closely related to the decorrelation/independence
length of the process, i.e., the smallest value ofsuch that
source samples are approximately uncorrelated when separated
by more than .

F. Variable-Rate Quantization with Arbitrary Quantizer
Dimension and Entropy Coding Order

We continue in the random process domain (stationary
sources). To find the best possible performance of vector
quantizers with block entropy coding over all possible choices
of the dimension of the lossy encoder and the orderof
the entropy coder, we examine the high-resolution approxima-
tion (32), which shows that . As
mentioned previously, the ’s are subadditive, so choosing

large makes as small as possible, namely, as small
as . Next, for stationary sources, it is well known that
th-order differential entropy is

monotonically nonincreasing in. Therefore, choosing either
or large makes as small as possible,

namely, as small as . Interestingly,
, as shown by Gersho [193], who credits

Thomas Liggett. It follows immediately that the best possible
performance of vector quantizers with block entropy coding
is given by , which is the operational
distortion-rate function of fixed-rate quantizers. In other words,
entropy coding does not permit performance better than high-
dimensional fixed-rate quantization.

Let us now re-examine the situation a bit more carefully. We
may summarize the various high-resolution approximations to
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Fig. 6. 10 log
10

�k; L for a Gauss–Markov source with correlation coef-
ficient 0:9.

operational distortion-rate functions as

(38)

where by convention refers to fixed-rate coding,
refers to th-order entropy coding, and

Note that both ’s and ’s tend to decrease as
or increase. (The ’s and the ’s are subaddi-
tive. The ’s are nonincreasing.) As an illustration, Fig.
6 plots (in decibels) versus and for a
Gauss–Markov source with correlation coefficient .

Consider how decreases, i.e., improves, withand
increasing. On the one hand, for fixed, it decreases with

increasing (actually, it is monotonically nonincreasing) to

(39)

Thus -dimensional quantization with high-order entropy cod-
ing suffers only the -dimensional space-filling loss. On the
other hand, for fixed , decreases with (actually
it is subadditive) to

(40)

Hence, high-dimensional quantization suffers no loss relative
to the best possible performance, no matter the order or
absence of an entropy coder.

From the above, we see that to attain performance close
to , must be large enough that the space-filling loss

is approximately one, and the combination ofand
must be large enough that is also approximately one.
Regarding the first of these, even (scalar quantization)
yields , representing only a 1.53-
dB loss, which may be acceptable in many situations. When
it is not acceptable, needs to be increased. Unfortunately,
as evident in Fig. 5, the space-filling loss decreases slowly
with increasing . Regarding the second, we note that one
has considerable freedom. There are two extreme cases: 1)
large and , i.e., fixed-rate high-dimensional quantization,

or 2) large and , i.e., scalar quantization with high-
order entropy coding. In fact, uniform scalar quantization will
suffice in the second case. Alternatively, one may choose
moderate values for both and . Roughly speaking,
must be approximately equal to the effective memory length
of the source plus the value needed for a memoryless source.
In effect, if the source has considerable memory, such memory
can be exploited either by the lossy encoder (large), or the
lossless encoder (large), or both (moderate values ofand

). Moreover, in such cases the potential reductions in
due to increasing or tend to be much larger than the
potential reductions in the space-filling loss. For example, for
the Gauss–Markov source of Fig. 6, decreases
10.0 dB as increases from one to infinity, and has already
decreased 8.1 dB when .

From the point of view of the lossy encoder, the benefit of
entropy coding is that it reduces the dimension required of the
lossy encoder. Similarly, from the point of view of the lossless
encoder, the benefit of increasing the dimension of the vector
quantizer is that it decreases the order required of the lossless
encoder. Stated another way, the benefits of entropy coding
decrease with increasing quantizer dimension, and the benefits
of increasing quantizer dimension decrease with increasing
entropy coding order. In summary (cf. [377]), optimal per-
formance is attainable with and only with a high-dimensional
lossy encoder, and with or without entropy coding. However,
good performance (within 1.53 dB of the best) is attainable
with uniform scalar quantizer and high-order entropy coding.
Both of these extreme approaches are quite complex, and
so practical systems tend to be compromises with moderate
quantizer dimension and entropy coding order.

As with fixed-rate quantization, it is important to understand
what specific characteristics of variable-rate quantizers cause
them to perform the way they do. Consequently, we will
take another look at variable-rate quantization, this time from
the point of view of the point density and inertial profile
of the high-dimensional product quantizer induced by an
optimal low-dimensional variable-rate quantizer. The situation
is simpler than it was for fixed-rate quantization. As mentioned
earlier, when rate is large, an optimal-dimensional variable-
rate quantizer has a uniform point density and a partition and
codebook formed by tessellating. Suppose is small and
is a large multiple of . From the structure of optimal variable-
rate quantizers, one sees that using an optimal-dimensional
quantizer times yields a -dimensional quantizer having
the same (uniform) point density as the optimal-dimensional
quantizer and differing, mainly, in that its inertial profile
equals the constant , whereas that of the optimal -
dimensional quantizer equals . Thus the loss due
to -dimensional quantization is only the space-filling loss

, which explains what Gish and Pierce found for scalar
quantizers in 1968 [204]. We emphasize that there is no point
density, oblongitis, or memory loss, even for sources with
memory. In effect, the entropy code has eliminated the need
to shape the point density, and as a result, there is no need to
compromise cell shapes.

Finally, let us compare the structure of the fixed-rate and
variable-rate approaches when dimension is large. On the one
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hand, optimal quantizers of each type have the same constant
inertial profile, namely, . On the other hand,
they have markedly different point densities: an optimal fixed-
rate quantizer has point density , whereas
an optimal variable-rate quantizer has point density that is
uniform over all of . How is it that two such disparate point
densities do in fact yield the same distortion? The answer is
provided by the asymptotic equipartition property (AEP) [110],
which is the key fact upon which most of information theory
rests. For a stationary, ergodic source with continuous random
variables, the AEP says that when dimensionis large, the -
dimensional probability density is approximately constant, ex-
cept on a set with small probability. More specifically, it shows

, where

is a set oftypical sequences, where is the
differential entropy rateof the source. It follows immediately
from the AEP and the fact that that the point
density of an optimal fixed-rate quantizer is approximately
uniform on and zero elsewhere. Moreover, for an optimal
variable-rate quantizer, whose point density is uniform over all
of , we see that the cells not in can be ignored, because
they have negligible probability, and that the cells in all
have the same probability and, consequently, can be assigned
codewords of equal length. Thus both approaches lead to
quantizers that are identical on (uniform point density and
fixed-length codewords) and differ only in what they do on
the complement of , a set of negligible probability.

It is worthwhile emphasizing that in all of the discussion
in this section we have restricted attention to quantizers with
memoryless lossy encoders and either fixed-rate, memoryless
or block lossless encoders. Though there are many lossy
and lossless encoders that are not of this form, such as
DPCM or finite-state, predictive or address vector VQ, and
Lempel–Ziv or arithmetic lossless coding, we believe that
the easily analyzed case studied here shows, representatively,
the effects of increasing memory in the lossy and lossless
encoders.

G. Other Distortion Measures

By far the most commonly assumed distortion measure is
squared error, which for scalars is defined by
and for vectors is defined by

where

Often the distortion is normalized by . A variety of
more general distortion measures have been considered in the
literature, but the simplicity and tractability of squared error
has long given it a central role. Intuitively, the average squared
error is the average energy or power in the quantization
noise. The most common extension of distortion measures
for scalars is the th-power distortion
For example, Roe [443] generalized Max’s formulation to
distortion measures of this form. Gish and Pierce [204] consid-
ered a more general distortion measure of the form

, where is a monotone increasing function of the
magnitude of its argument and with the added
property that

has the property that is monotone. None of these dis-
tortion measures has been widely used, although the magnitude
error ( th power with ) has been used in some studies,
primarily because of its simple computation in comparison
with the squared error (no multiplications).

The scalar distortion measures have various generalizations
to vectors. If the dimension is fixed, then one needs only a
distortion measure, say , defined for all . If
the dimension is allowed to vary, however, then one requires a
family of distortion measures , which
collection is called afidelity criterion in source coding theory.
Most commonly it is assumed that the fidelity criterion is
additive or single letterin the sense that

(41)

for , or, equivalently,

(42)

Additive distortion measures are particularly useful for proving
source coding theorems since the normalized distortion will
converge under appropriate conditions as the dimension grows
large, thanks to the ergodic theorem. One can also assume
more generally that the distortion measure is subbadditive in
the sense that

(43)

and the subadditive ergodic theorem will still lead to positive
and negative coding theorems [218], [340].10 An example of
a subadditive distortion measure is the Levenshtein distance
[314] which counts the number of insertions and deletions
along with the number of changes that it takes to convert one
sequence into another. Originally developed for studying error-
correcting codes, the Levenshtein distance was rediscovered in
the computer science community as the “edit distance.”

For a fixed dimension one can observe that the squared-
error distortion measure can be written as , where

is the norm

10This differs slightly from the previous definition of subadditive because
the dk are not assumed to be normalized. The previous definition applied to
dk=k is equivalent to this definition.
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This idea can be extended by using any power of anynorm,
e.g.,

where

(In this notation the norm is .) If we choose ,
then this distortion measure (sometimes referred to simply as
the th-power distortion) is additive. Zador [562] defined a
very general th-power distortion measureas any distortion
measure of the form where for any ,

, for some . This includes
th-power distortion in the narrow sense , as well as

the additive distortion measures of the form

and even weighted average distortions such as

and

where the ’s are nonnegative.
A variation on the norm is the norm defined by

, which has been proposed as
a candidate for a perceptually meaningful norm. Quantizer
design algorithms exist for this case, but to date no high-
resolution quantization theory or rate-distortion theory has
been developed for this distortion measure (cf. [347], [231],
and [348]).

High resolution theory usually considers a fixed dimension
, so neither additivity nor a family of distortion measures

is required. However, high resolution theory has tended to
concentrate on difference distortion measures, i.e., distortion
measures that have the form , where
is the usual Euclidean difference andis usually assumed to
have nice properties, such as being monotonic in some norm of
its argument. Theth-power distortion measures (of all types)
fall into this category.

Recently, the basic results of high resolution theory have
been extended to a family of nondifference distortion measures
that are locally quadratic in the sense that provided , the
distortion measure is given approximately by a Taylor series
expansion as , where is a positive
definite weighting matrix that depends on the output. This form
is ensured by assuming that the distortion measure has
continuous partial derivatives of third order almost everywhere
and that the matrix defined as a by dimensional
matrix with the th element

(44)

is positive definite almost everywhere. The basic idea for this
distortion measure was introduced by Gardner and Rao [186]
to model a perceptual distortion measure for speech, where
the matrix is referred to as the “sensitivity matrix.” The
requirement for the existence of the derivatives of third order
and for the to be positive definite were added in [316]
as necessary for the analysis. Examples of distortion measures
meeting these conditions are the time-domain form of the
Itakura–Saito distortion [258], [259], [257], [224], which has
the form of an input-weighted quadratic distortion measure of
the form of (21). For this case, the input weighting matrix

is related to the partial derivative matrix by
, so that positive definiteness of assures

that of and the derivative conditions are transferred to
. Other distortion measures satisfying the assumptions are

the image distortion measures of Eskicioglu and Fisher [150]
and Nill [386], [387]. The Bennett integral has been extended
to this type of distortion, and approximations for both fixed-
rate and variable-rate operational distortion-rate functions have
been developed [186], [316]. For the fixed-rate case, the result
is that

(45)

where the modified inertial profile is assumed to be the
limit of

A natural extension of Gersho’s conjecture to the nondiffer-
ence distortion measures under consideration implies that, as in
the squared-error case, the optimal inertial profile is assumed
to be constant (which in any case will yield a bound) and
minimizing the above (for example, using Hölder’s inequality)
yields the optimal point density

(46)

and the operational distortion-rate function (analogous to (30))

(47)

where now

(48)
generalizes Zador’s factor to the given distortion measure. As
shown later in (58), can be bounded below by the moment
of inertia of a sphere. Similarly, in the variable-rate case

(49)
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with optimal inertial profile and optimal point
density

(50)

Both results reduce to the previous results for the special case
of a squared-error distortion measure since then
. Note in particular that the optimal point density for the

entropy-constrained case is not in general a uniform density.
Parallel results for Shannon lower bounds to the rate-

distortion function have been developed for this family of
distortion measures by Linder and Zamir [323] and results for
multidimensional companding with lattice codes for similar
distortion measures have been developed by Linder, Zamir,
and Zeger [325].

H. Rigorous Approaches to High Resolution Theory

Over the years, high-resolution analyses have been pre-
sented in several styles. Informal analyses of distortion, such as
those used in this paper to obtain and Bennett’s integral
(25), generally ignore overload distortion and estimate granular
distortion by approximating the density as being constant
within each quantization cell. In contrast, rigorous analyses
generally focus on sequences of ever finer quantizers, for
which they demonstrate that, in the limit, overload distortion
becomes negligible in comparison to granular distortion and
the ratio of granular distortion to some function of the fineness
parameter tends to a constant. Though informal analyses
generally lead to the same basic results as rigorous ones,
the latter make it clear that the approximations are good
enough that their percentage errors decrease to zero as the
quantizers become finer, whereas the former do not. Moreover,
the rigorous derivations provide explicit conditions under
which the assumption of negligible overload distortion is valid.
Some analyses (informal and rigorous) provide corrections
for overload distortion, and some even give examples where
the overload distortion cannot be asymptotically ignored but
can be estimated nevertheless. Similar comments apply to
informal versus rigorous analyses of asymptotic entropy. In
the following we review the development of rigorous theory.

Many analyses—informal and rigorous—explicitly assume
the source has finite range (i.e., a probability distribution
with bounded support); so there is no overload distortion
to be ignored [43], [405], [474]. In some cases, the source
really does have finite range. In others, for example speech
and images, the source samples have infinite range, but the
measurement device has finite range. In such cases, the trun-
cation by the measurement device creates an implicit overload
distortion that is not affected by the design of the quantizer.
It makes little sense, then, to choose a quantizer so fine
that its (granular) distortion is significantly less than this
implicit overload distortion. This means there is an upper
limit to the fineness of quantizers that need be considered,
and consequently, one must question whether such fineness
is small enough that the source density can be approximated
as constant within cells. Some analyses do not explicitly

assume the source density has finite support, but merely
assert that overload distortion can be ignored. We view that
this differs only stylistically from an explicit assumption of
finite support, for both approaches ignore overload distortion.
However, assuming finite support is, arguably, humbler and
mathematically more honest.

The earliest quantizer distortion analyses to appear in the
open literature [43], [405], [474] assumed finite range and
used the density-approximately-constant-in-cells assumption.
Several papers avoided the latter by using a Taylor series ex-
pansion of the source density. For example, Lloyd [330] used
this approach to show that, ignoring overload distortion, the
approximation error in the Panter–Dite formula is ,
which means that it tends to zero, even when multiplied by

. Algazi [8], Roe [443], and Wood [539] also used Taylor
series.

Overload distortion was first explicitly considered in the
work of Shtein (1959) [471], who optimized the cell size of
uniform scalar quantization using an explicit formula for the
overload distortion (as well as for the granular distor-
tion) and while rederiving the Panter–Dite formula, added an
overload distortion term.

The earliest rigorous analysis11 is contained in Schutzen-
berger’s 1958 paper [462], which showed that for-
dimensional variable-rate quantization , th-power
distortion , and a source with finite differential
entropy and for some , there is a

, depending on the source and the dimension, such
that any -dimensional quantizer with finitely or infinitely
many cells, and output entropy , has distortion at least

. Moreover, there exists and a
sequence of quantizers with increasing output entropies
and distortion no more than . In essence, these
results show that

for all

Unfortunately, as Schutzenberger notes, the ratio of to
tends to infinity as dimension increases. As he indicates,

the problem is that in demonstrating the upper bound, he
constructs a sequence of quantizers with cubic cells of equal
size and then bounds from above the distortion in each cell
by something proportional to its diameter to theth power.
If instead one were to bound the distortion by the moment
of inertia of the cell times the maximum value of the density
within it, then would not tend to infinity.

Next, two papers appeared in the same issue ofActa
Math. Acad. Sci. Hungar.in 1959. The paper by Renyi
[433] gave, in effect, a rigorous derivation of (11) for a
uniform quantizer with infinitely many levels. Specifically, it
showed that , provided
that the source distribution is absolutely continuous and that

and are finite, where denotes a uniform
quantizer with step size and denotes a quantity that
approaches zero asgoes to . They paper also explores what
happens when the distribution is not absolutely continuous.

11Though Lloyd [330] gave a fairly rigorous analysis of distortion, we do
not include his paper in this category because it ignored overload distortion.



GRAY AND NEUHOFF: QUANTIZATION 2355

In the second paper, Fejes Toth [159] showed that for a two-
dimensional random vector that is uniformly distributed on the
unit square, the mean-squared error of any-point quantizer
is bounded from below by hexagon . This result was
independently rederived in a simpler fashion by Newman
(1964) [385]. Clearly, the lower bound is asymptotically
achievable by a lattice with hexagonal cells. It follows then
that the ratio of to hexagon tends to one,
and also, that Gersho’s conjecture holds for dimension two.

Zador’s thesis (1963) [561] was the next rigorous work.
As mentioned earlier, it contains two principal results. For
fixed-rate quantization,th-power distortion measures of the
form and a source that is uniformly distributed
on the unit cube, it first shows ([561, Lemma 2.3]) that
the operational distortion-rate function12 multiplied by

approaches a limit as . The basic idea,
which Zador attributes to J. M. Hammersley, is the following:
For any positive integers and , divide the unit cube into

subcubes, each with sides of length . Clearly, the best
code with codevectors is at least as good as the
code constructed by using the best code withpoints for
each subcube. It follows then that

, where is the operational distortion-
rate function of a source that is uniformly distributed on a
subcube and where the second relation follows from the fact
that this “sub” source is just a scaling of the original source.
Multiplying both sides by yields

Thus we see that increasing the number of codevectors from
to does not increase . A somewhat

more elaborate argument shows that this is approximately true
for any sufficiently large and, as a result, that

i.e., has a limit. One can see how the selfsimilarity
of the uniform density (it is divisible into similar subdensities)
plays a key role in this argument. Notice also that nowhere do
the shapes of the cells or the point density enter into it.

Zador next addresses nonuniform densities. With
denoting , his Theorem 2.2 shows that if the
-dimensional source density satisfies and

for some , then

as . The positive part, namely, that

is established by constructing codes in, approximately, the
following manner: Given , one chooses a sufficiently large
support cube (large enough that overload distortion contributes
little), subdivides the cube into equally sized subcubes,
and places within each subcube a set of codevectors that are
optimal for the uniform distribution on that subcube, where

12We abuse notation slightly and let�k(N) denote the least distortion of
k-dimensional quantizers withN codevectors.

the number of codevectors in a subcube is carefully chosen
so that the point density in that subcube approximates the
optimal point density for the original source distribution. One
then shows that the distortion of this code, multiplied by ,
is approximately . The best codes are at least
this good and it follows that

One can easily see how this construction creates codes with
essentially optimal point density and cell shape. We will not
describe the converse.

Zador’s 1966 Bell Labs Memorandum [562] reproves these
two main results under weaker conditions. The distortion
measure is th power in the general sense, which includes
as special cases the narrow sense of theth power of the
Euclidean norm considered by Schutzenberger [462]. The
requirement on the source density is only that each of its
marginals has the property that it is bounded from above
by , for some and all of sufficiently large
magnitude. This is a pure tail condition, as opposed to the
finite moment condition of the thesis, which constrains both
the tail and the peak of the density. Note also that it no longer
requires that be finite.

As indicated earlier, Zador’s memorandum also derives the
asymptotic form of the operational distortion-rate function of
variable-rate quantization. In other words, it finishes what
his thesis and Schutzenberger [462] started, though he was
apparently unaware of the latter. Specifically, it shows that

as

where is some constant no larger than , assuming the
same conditions as the fixed-rate result, plus the additional
requirement that for any there is a bounded set
containing all points such that .

Gish and Pierce (1968) [204], who discovered that uniform
is the asymptotically best type of scalar quantizer for
variable-rate coding, presented both informal and rigorous
derivations—the latter being the first to appear in these
TRANSACTIONS. Specifically, they showed rigorously that for
uniform scalar quantization with infinitely many cells of width

, the distortion and the output entropy behave as
follows:

(51)

(52)

which makes rigorous the formula and (11), respec-
tively. For this result, they required the density to be con-
tinuous except at finitely many points, and to satisfy a tail
condition similar to Zador’s and another condition about
the behavior at points of discontinuity. The paper also out-
lined a rigorous proof of (32) in the scalar case, i.e., that

as . But as to the details it
offered only that: “The complete proof is surprisingly long
and will not be given here.” Though Gish and Pierce were the
first to informally derive (13), neither this paper nor any paper
to date has provided a rigorous derivation.
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Elias (1970) [143] also made a rigorous analysis of scalar
quantization, giving asymptotic bounds to the distortion of
scalar quantizers with a rather singularly defined measure of
distortion, namely, the th root of the average of theth
power of the cell widths. A companion paper [144] considers
similar bounds to the performance of vector quantizers with
an analogous average-cell-size distortion measure.

In 1973, Csisz̀ar [114] presented a rigorous generalization
of (52) to higher dimensional quantizers. Of most interest
here is the following special case of his principal result
([114, Theorem 1]): Consider a-dimensional source and a
sequence of -dimensional quantizers where
has a countably infinite number of cells, each with volume,
where the ’s and also the maximum of the cell diameters
tends to zero. Then under certain conditions, including the
condition that there be at least some quantizer with finite
output entropy, the output entropy satisfies

(53)

Clearly, this result applies to quantizers generated by lattices
and, more generally, tessellations. It also applies to quantizers
with finitely many cells for sources with compact support. But
it does not apply to quantizers with finitely many cells and
sources with infinite support, because it does not deal with the
overload region of such quantizers.

In 1977, Babkinet al. [580] obtained results indicating how
rapidly the distortion of fixed-rate lattice quantizers approach

as rate and dimension increase, for difference
distortion measures. In 1978, these same authors [581] studied
uniform scalar quantization with variable-rate coding, and
extended Koshelev’s results toth power distortion measures.

The next contribution is that of Bucklew and Gallagher
(1980) [63], who studied asymptotic properties of fixed-
rate uniform scalar quantization. With denoting the cell
width that minimizes distortion among cell uniform scalar
quantizers and denoting the resulting minimum mean-
squared error, they showed that for a source with a Riemann
integrable density

and

where is the length of the shortest interval
with probability one. When the support is finite, i.e.,and
are finite, the above implies as
and so decreases as . This makes the
formula rigorous in the finite case, at least when is
chosen optimally. However, when the support is infinite,
e.g., a Gaussian density, decreases at a rate slower than

, and the resulting signal-to-noise ratio versus rate curve
separates from any line of slope 6 dB/bit. Consequently, the
ratio of the operational distortion-rate functions of uniform and
nonuniform scalar quantizers increases without bound as the
rate increases; i.e., uniform quantization is asymptotically bad.
Moreover, they showed that does not always
converge to . Instead, , and

they exhibited densities where the inequality is strict. In such
cases, the formula is invalidated by the heavy tails of
the density. It was not until much later that the asymptotic
form of and were found, as will be described later.

Formal theory advanced further in papers by Bucklew and
Wise, Cambanis and Gerr, and Bucklew. The first of these
(1982) [64] demonstrated Zador’s fixed-rate result forth-
power distortion , assuming only that
for some . It also contained a generalization to random
vectors without probability densities, i.e., with distributions
that are not absolutely continuous or even continuous. The
paper also gave the first rigorous approach to the derivation
of Bennett’s integral for scalar quantization via companding.
However, as pointed out by Linder (1991) [320], there was
“a gap in the proof concerning the convergence of Riemann
sums with increasing support to a Riemann integral.” Linder
fixed this and presented a correct derivation with weaker
assumptions. Cambanis and Gerr (1983) [70] claimed a similar
result, but it had more restrictive conditions and suffered from
the same sort of problems as [64]. A subsequent paper by
Bucklew (1984) [58] derived a result for vector quantizers
that lies between Bennett’s integral and Zador’s formula.
Specifically, it showed that when a sequence of quantizers
is asymptotically optimal for one probability density ,
then its th-power distortion on a source with density
is asymptotically given by ,
where is the optimal point density for . On the
one hand, this is like Bennett’s integral in that , and
consequently , can be arbitrary. On the other hand, it is
like Zador’s result (or Gersho’s generalization of Bennett’s
integral [193]) in that, in essence, it is assumed that the
quantizers have optimal cell shapes.

In 1994, Linder and Zeger [326] rigorously derived the
asymptotic distortion of quantizers generated by tessellations
by showing that the quantizer formed by tessellating with
some basic cell shape scaled by a positive number has
average (narrow-sense)th-power distortion satisfying

They then combined the above with Csiszàr’s result (53)
to show that under fairly weak conditions (finite differential
entropy and finite output entropy for some ) the output
entropy and the distortion are asymptotically related
via

which is what Gersho derived informally [193].
The generalization of Bennett’s integral to fixed-rate vector

quantizers with rather arbitrary cell shapes was accomplished
by Na and Neuhoff (1995) [365], who presented both infor-
mal and rigorous derivations. In the rigorous derivations, it
was shown that if a sequence of quantizers , param-
eterized by the number of codevectors, has specific point
density and specific inertial profile converging in probabil-
ity to a model point density and a model inertial profile,
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respectively, then converges to Bennett’s inte-
gral , where distortion is th power

. A couple of additional conditions were also required,
including one that is, implicitly, a tail condition.

Though uniform scalar quantization with finitely many
levels is the oldest and most elementary form of quantization,
the asymptotic form of the optimal step size and resulting
mean-squared error has only recently been found for
Gaussian and other densities with infinite support. Specifically,
Hui and Neuhoff [253]–[255] have found that for a Gaussian
density with variance

and

This result was independently found by Eriksson and Agrell
[149]. Moreover, it was shown that overload distortion is
asymptotically negligible and that , which
is the first time this has been proved for a source with
infinite support. It follows from the above that the signal-
to-noise ratio increases as , which shows
concretely how uniform scalar quantization is asymptotically
bad. Hui and Neuhoff also considered non-Gaussian sources
and provided a fairly general characterization of the asymptotic
form of and . It turned out that the overload distortion
is asymptotically negligible when and only when the tail
parameter equals one, which is
the case for all generalized Gaussian densities. For such cases,
more accurate approximations to and can be given.
For densities with , the ratio of overload to granular
distortion is , and .
There are even densities with tails so heavy that and
the granular distortion becomes negligible in comparison to the
overload distortion. In a related result, the asymptotic form of
the optimal scaling factor for lattice quantizers has also been
found recently for an i.i.d. Gaussian source [359], [149].

We conclude this subsection by mentioning some gaps in
rigorous high resolution theory. One, of course, is a proof
or counterproof of Gersho’s conjecture in dimensions three
and higher. Another is the open question of whether the best
tessellation in three or more dimensions is a lattice. Both
of these are apparently difficult questions. There have been
no rigorous derivations of (11), or its extension to higher
dimensional tesselations, where the quantizers have finitely
many levels, and overload distortion must be dealt with.
Likewise, there have been no rigorous derivations of (13),
or its higher dimensional generalization, except in the case
where the point density is constant. Even assuming Gersho’s
conjecture is correct, there is no rigorous derivation of the
Zador–Gersho formulas (30) and (32) along the lines of the
informal derivations that start with Bennett’s integral. We also
mention that the tail conditions given in some of the rigorous
results (e.g., [58], [365]) are very difficult to check. Simpler
ones are needed. Finally, as discussed in Section II there are
no convincing (let alone rigorous) asymptotic analyses of the
operational distortion-rate function of DPCM.

I. Comparing High Resolution Theory and
Shannon Rate Distortion Theory

It is interesting to compare and contrast the two principal
theories of quantization, and we shall do so in a number of
different domains.

Applicability: Sources—Shannon rate-distortion theory ap-
plies, fundamentally, to infinite sequences of random variables,
i.e., to sources modeled as random processes. Its results
derive from the frequencies with which events repeat, as
expressed in a law of large numbers, such as the weak law
or an ergodic theorem. As such, it applies to sources that are
stationary in either the strict sense or some weaker sense, such
as asymptotic mean stationarity (cf. [218, p. 16]). Though
originally derived for ergodic sources, it has been extended
to nonergodic sources [221], [469], [126], [138], [479]. In
contrast, high resolution theory applies, fundamentally, to
finite-dimensional random vectors. However, for stationary
(or asymptotically stationary) sources, taking limits yields
results for random processes. For example, the operational
distortion-rate function was found to equal in
this way; see (33). Rate distortion theory also has one result
relevant to finite-dimensional random vectors, namely, that the
operational distortion-rate functions for fixed- and variable-
rate quantization, and , are (strictly) bounded
from below by the th-order Shannon distortion-rate function.

Both theories have been extended to continuous-time ran-
dom processes. However, the high-resolution results are some-
what sketchy [43], [330], [204]. Both can be applied to two-
or higher dimensional sources such as images or video. Both
have been developed the most for Gaussian sources in the
context of squared-error distortion, which is not surprising in
view of the tractability of squared error and Gaussianity.

Applicability: Distortion Measures—Shannon rate distortion
theory applies primarily to additive distortion measures; i.e.,
distortion measures of the form

(or a normalized version), though there are some results for
subadditive distortion measures [218], [340] and some for
distortion measures such as [323]. High
resolution theory has the most results forth-power difference
distortion measures, and as mentioned previously, some of its
results have recently been extended to nondifference distortion
measures such as [186], [316], [325].
In any event, both theories are the most fully developed for
the squared-error distortion measure, especially for Gaussian
sources. In addition, both theories require a finite moment
condition, specific to the distortion measure. For squared-
error distortion, it is simply that the variance of the source be
finite. More generally, it is that for some .
In addition, as discussed previously, rigorous high resolution
theory results require tail conditions on the source density, for
example, for some .

Complementarity—The two theories are complementary in
the sense that Shannon rate distortion theory prescribes the
best possible performance of quantizers with a given rate and
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asymptotically large dimension, while high resolution theory
prescribes the best possible performance of codes with a given
dimension and asymptotically large rate. That is, for fixed-rate
codes

for large and any (54)

for large and any (55)

and, similarly, for variable-rate codes

for large and any (56)

for large and any (57)

When both dimension and rate are large, they all give the
same result, i.e.,

Rates of Convergence—It is useful to know how large and
must be, respectively, for high resolution and rate distortion

theory formulas to be accurate. As a rule of thumb, high
resolution theory is fairly accurate for rates greater than or
equal to about . And it is sufficiently accurate at rates about
for it to be useful when comparing different sources and codes.
For example, Fig. 7 shows signal-to-noise ratios for fixed-
rate quantizers produced by conventional design algorithms
and predictions thereof based on the Zador–Gersho function

, for two Gaussian sources: i.i.d. and Markov with
correlation coefficient . It is apparent from data such as this
that the accuracy of the Zador–Gersho function approximation
to increases with dimension.

The convergence rate of to as tends to
infinity has also been studied [413], [548], [321], [576].
Roughly speaking these results show that for memoryless
sources, the convergence rate is between and

. Unfortunately, this theory does not enable one to
actually predict how large the dimension must be in order that

is within some specified percentage, e.g., 10%, of .
However, one may use high resolution theory to do this, by
comparing (or in the variable-rate case) to .
For example, for the i.i.d. Gaussian source Fig. 5 shows that

yields distortions within 1 and 0.2 dB of that predicted
by at dimensions and , respectively. For sources
with memory, the dimension needs to be larger, by roughly the
effective memory length. One may conclude that the Shannon
distortion-rate function approximation to is applicable
for moderate to large dimensions.

Quantitative Relationships—For squared-error distortion,
the Zador–Gersho function is precisely equal to the
well-known Shannon lower bound to the Shannon
distortion-rate function. It follows that when rate is not large,

is, at least, a lower bound to . Similarly, the
Shannon lower bound to the th-order Shannon
distortion-rate function equals , from which
it follows that may be thought of as the distortion
of a fictional quantizer having the distortion of an optimal
-dimensional variable-rate quantizer with first-order entropy

coding, except that its cells have the normalized moment of
inertia of a high-dimensional sphere instead of . It is well
known that approaches one as increases

(a)

(b)

Fig. 7. Signal-to-noise ratios for optimal VQ’s (dots) and predictions thereof
based on the Zador–Gersho formula (straight lines). (a) i.i.d. Gaussian. (b)
Gauss–Markov, correlation coefficient0:9.

[327], [267], [46], [322], which is entirely consistent with
the fact that approaches one as increases. The
relationships among the various distortion-rate functions are
summarized below. Inequalities marked with a “” become
tight as dimension increases, and those marked with a “”
become tight as increases.

Applicability: Quantizer Types—Rate distortion theory finds
the performance of the best quantizers of any type for station-
ary sources. It has nothing to say about suboptimal, structured
or dimension-constrained quantizers except, as mentioned ear-
lier, that quantizers of dimension have distortion bounded
from below by the th-order Shannon distortion-rate function.
In contrast, high resolution theory can be used to analyze and
optimize the performance of a number of families of structured
quantizers, such as transform, lattice, product, polar, two-stage,
and, most directly, dimension-constrained quantizers. Such
analyses are typically based on Bennett’s integral. Indeed,
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the ability to analyze structured or dimension-constrained
quantizers is the true forte of high resolution theory.

Performance versus Complexity:Assessing performance
versus complexity should be a major goal of quantization
theory. On the one hand, rate distortion theory specifies
the fundamental limits to performance without regard to
complexity. On the other hand, because high resolution theory
can analyze the performance of families of quantizers with
complexity-reducing structure, one can learn much from it
about how complexity relates to performance. In recent work,
Hui and Neuhoff [256] have combined high resolution theory
and Turing complexity theory to show that asymptotically
optimal quantization can be implemented with complexity
increasing at most polynomially with the rate.

Computability: First-order Shannon distortion-rate func-
tions can be computed analytically for squared error and
magnitude error and several source densites, such as Gaussian
and Laplacian, and for some discrete sources, cf. [46], [494],
[560], [217]. For other sources it can be computed with
Blahut’s algorithm [52]. And in the case of squared error,
it can be computed with simpler algorithms [168], [444].
For sources with memory, complete analytical formulas
for th-order distortion-rate functions are known only for
Gaussian sources. For other cases, the Blahut algorithm [52]
can be used to compute , though its computational
complexity becomes overwhelming unlessis small. Due to
the difficulty of computing it, many (mostly lower) bounds
to the Shannon distortion-rate function have been developed
which for reasonably general cases yield the distortion-rate
function exactly for a region of small distortion (cf. [465],
[327], [267], [239], [46], [212], [550], [559], [217]). An
important upper bound derives from the fact that with respect
to squared error, the Gaussian source has the largest Shannon
distortion-rate function (th-order or in the limit) of any source
with the same covariance function.

To compute a Zador–Gersho function, one needs to find
and either or in the fixed- and variable-rate

cases, respectively. Though is known only for ,
there are bounds for other values of. One lower bound is
the normalized moment of inertia of a sphere of the same
dimension

(58)

Another bound is given in [106]. One upper bound was
developed by Zador; others derive from the currently best
known tessellations (cf. [5] and [106]). The Zador factors
and can be computed straightforwardly for and, also,
for for i.i.d. sources. In some cases, simple closed-
form expressions can be found, e.g., for Gaussian, Laplacian,
gamma densities. In other cases, numerical integration can be
used. Upper bounds to are given in [294]. To the authors’
knowledge, for sources with memory, simple expressions for
the Zador factors have been found only for Gaussian sources;
they depend on the covariance matrix.

Underlying Principles: Rate distortion theory is a deep and
elegant theory based on the law of large numbers and the key
information-theoretic property that derives from it, namely, the

AEP. High resolution theory is a simpler, less elegant theory
based on geometric characterizations and integral approxima-
tions over fine partitions.

Siblings: Lossless source coding and channel coding are
sibling branches of information theory, also based on the law
of large numbers and the asymptotic equipartition property.
Siblings of high resolution theory include error probability
analyses in digital modulation and channel coding based on
minimum distance and a high signal-to-noise ratio assumption,
and the average power analyses for the additive Gaussian
channel based on the continuous approximation.

Code Design Philosophy:Neither theory is ordinarily con-
sidered to be constructive, yet each leads to its own design
philosophy. Rate distortion theory shows that, with high prob-
ability, a good high-dimensional quantizer can be constructed
by randomly choosing codevectors according to the output
distribution of the test channel that achieves the Shannon rate-
distortion function. As a construction technique, this leaves
much to be desired because the dimension of such codes is
large enough that the codes so constructed are completely
impractical. On the other hand, the AEP indicates that such
codevectors will be roughly uniformly distributed over a “typ-
ical” set, and this leads to the design philosophy that a good
code has its codevectors uniformly distributed throughout this
set. In the special case of squared-error distortion and an i.i.d.
Gaussian source with variance , the output distribution is
i.i.d. Gaussian with variance ; the typical set is a thin
shell near the surface of a sphere of radius ;
and a good code has its codevectors uniformly distributed
on this shell. Since the interior volume of such a (high-
dimensional) sphere is negligible, it is equally valid for the
codevectors to be uniformly distributed throughout the sphere.
For other sources, the codevectors will be uniformly dis-
tributed over some subset of the shell.

High resolution theory indicates that for large rate and
arbitrary dimension , the quantization cells should be as
spherical as possible—preferably shaped like, with nor-
malized moment of inertia . Moreover, the codevectors
should be distributed according to the optimal point density

. Thus high resolution theory yields a very clear design
philosophy. In the scalar case, one can use this philosophy
directly to construct a good quantizer, by designing a com-
pander whose nonlinearity has derivative , and
extracting the resulting reconstruction levels and thresholds
to obtain an approximately optimal point quantizer. This was
first mentioned in Panter–Dite [405] and rediscovered several
times. Unfortunately, at higher dimensions, companders cannot
implement an optimal point density without creating large
oblongitis [193], [56], [57]. So there is no direct way to
construct optimal vector quantizers with the high resolution
philosophy.

When dimension as well as rate is large, the two philoso-
phies merge because the output distribution that achieves
the Shannon distortion-rate function converges to the source
density itself, as does the optimal point density. However, for
small to moderate values of, specifies a better distribution
of points than the rate distortion philosophy of uniformly
distributing codevectors over the typical set. For example, in
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the i.i.d. Gaussian case it indicates that the point density should
be a Gaussian hill with somewhat larger variance than that of
the source density. Which design philosophy is more useful?
At low rates (say 1 bit per sample or less), one has no choice
but to look to rate distortion theory. But at moderate to high
rates, it appears that the high-resolution design philosophy is
the better choice. To see this consider an i.i.d. Gaussian source,
a target rate , and a -dimensional quantizer with points
uniformly distributed throughout a spherical support region.
This is the ideal code suggested by rate distortion theory.
One obtains a lower bound to its distortion by assuming that
source vectors outside the support region are quantized to the
closest point on the surface of the sphere, and by assuming that
the cells within the support region are-dimensional spheres.
In this case, at moderate to large rates (say rate ten), after
choosing the diameter of the support region to minimize this
lower bound, it has been found that the dimensionmust be
larger than in order that the resulting signal-to-noise ratio
be within 1 dB of that predicted by the Shannon distortion-
rate function [25]. Similar results were reported by Pepinet
al. [409]. On the other hand, as mentioned earlier, a quantizer
with dimension can achieve this same distortion. It is
clear then that the ability to come fairly close to with
moderately large dimension is not due to the rate distortion
theory design philosophy, the AEP, nor the use of spherical
codes. Rather, it is due to the fact that good codes with small to
moderate dimension have appropriately tapered point densities,
as suggested by high resolution theory.

Finally, it is interesting to note that high resolution the-
ory actually contains some analyses of the Shannon random
coding approach. For example, Zador’s thesis [561] gives an
upper bound on the distortion of a randomly generated vector
quantizer.

Nature of the Error Process:Both theories have something
to say about the distribution of quantization errors. Generally
speaking, what rate distortion theory has to say comes from
assuming that the error distribution caused by a quantizer
whose performance is close to is similar to that caused
by a test channel that comes close to achieving the Shannon
distortion-rate function. This is reasonable because Shannon’s
random coding argument shows that using such a test channel
to randomly generate high-dimensional codevectors leads, with
very high probability, to a code whose distortion is close to

. For example, one may use this sort of argument to
deduce that the quantization error of a good high-dimensional
quantizer is approximately white and Gaussian when the
source is memoryless, the distortion is squared error, and the
rate is large, cf. [404], which shows Gaussian-like histograms
for the quantization error of VQ’s with dimensionsto .
As another example, for a Gaussian source with memory and
squared-error distortion, rate distortion theory shows there is
a simple relation between the spectra of the source and the
spectra of the error produced by an optimal high-dimensional
quantizer, cf. [46].

High resolution theory also has a long tradition of analyzing
the error process, beginning with Clavieret al. [95], [100], and
Bennett [43], and focusing on the distribution of the error, its
spectrum, and its correlation with the input. Bennett showed

that in the high-resolution case, the power spectral density of
the quantizer error with uniform quantization is approximately
white (and uniformly distributed) provided the assumptions of
the high resolution theory are met and the joint density of
sample pairs is smooth. (See also [196, Sec. 5.6].) Bennett
also found exact expressions for the power spectral density
of a uniformly quantized Gaussian process. Sripad and Snyder
[477] and Claasen and Jongepier [97] derived conditions under
which the quantization error is white in terms of the joint
characteristic functions of pairs of samples, two-dimensional
analogs of Widrow’s [529] condition. Zador [562] found high-
resolution expressions for the characteristic function of the
error produced by randomly chosen vector quantizers. Lee and
Neuhoff [312], [379] found high-resolution expressions for the
density of the error produced by fairly general (deterministic)
scalar and vector quantizers in terms of their point density
and theirshape profile, which is a function that conveys more
cell shape information than the inertial profile. As a side
benefit, these expressions indicate that much can be deduced
about the point density and cell shapes of a quantizer from
a histogram of the lengths of the errors. Zamir and Feder
[564] showed that the error produced by an optimal lattice
quantizer with infinitely many small cells is asymptotically
white in the sense that its components are uncorrelated with
zero means and identical variances. Moreover, they showed
that it becomes Gaussian as the dimension increases. The
basic ideas are that as dimension increases good lattices have
nearly spherical cells and that a uniform distribution over a
high-dimensional sphere is approximately Gaussian, cf. [525].
Since optimal high-dimensional, high-rate VQ’s can also be
expected to have nearly spherical cells and since the AEP
implies that most cells will have the same size, we reach the
same conclusion as from rate distortion theory, namely, that
good high-rate high-dimensional codes cause the quantization
error to be approximately white and Gaussian.

Successive Approximation:Many vector quantizers oper-
ate in a successive approximation or progressive fashion,
whereby a low-rate coarse quantization is followed by a
sequence of finer and finer quantizations, which add to the
rate. Tree-structured, multistage and hierarchical quantizers, to
be discussed in the next section, are examples of such. Other
methods can be used to design progressive indexing into given
codebooks, as in Yamada and Tazaki (1991) [553] and Riskin
et al. (1994) [440].

Successive approximation is useful in situations where
the decoder needs to produce rough approximations of the
data from the first bits it receives and, subsequently, to
refine the approximation as more bits are received. Moreover,
successive approximation quantizers are often structured in a
way that makes them simpler than unstructured ones. Indeed,
the three examples just cited are known more for their good
performance with low complexity than for their progressive
nature. An important question is whether the performance of
a successive refinement quantizer will be better than one that
does quantization in one step. On the one hand, rate distortion
theory analysis [228], [291], [292], [557], [147], [437], [96]
has shown that there are situations where successive approx-
imation can be done without loss of optimality. On the other
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hand, high-resolution analyses of TSVQ [383] and two-stage
VQ [311] have quantified the loss of these particular codes,
and in the latter case shown ways of modifying the quantizer
to eliminate the loss. Thus both theories have something to
say about successive refinement.

V. QUANTIZATION TECHNIQUES

This section presents an overview of quantization techniques
(mainly vector) that have been introduced, beginning in the
1980’s, with the goal of attaining rate/distortion performance
better than that attainable by scalar-based techniques such
as direct scalar quantization, DPCM, and transform coding,
but without the inordinately large complexity of brute-force
vector quantization methods. Recall that if the dimension
of the source vector is fixed, say at, then the goal is
to attain performance close to the optimal performance as
expressed by in the fixed-rate case, or (usually

) in the general case where variable-rate codes are
permitted. However, if, as in the case of a stationary source, the
dimension can be chosen arbitrarily, then in both the fixed-
and variable-rate cases, the goal is to attain performance close
to . In this case, all quantizers with are suboptimal,
and quantizers with various dimensions and even memory
(which blurs the notion of dimension) can be considered.

We would have liked to make a carefully categorized,
ordered, and ranked presentation of the various methods.
However, the literature and variety of such techniques is
quite large; there are a number of competing ways in which
to categorize the techniques; complexity is itself a difficult
thing to quantify; there are several special cases (e.g., fixed
or variable rate, and fixed or choosable dimension); and there
has not been much theoretical or even quantitative comparison
among them. Consequently, much work is still needed in
sorting the wheat from the chaff, i.e., determining which
methods give the best performance versus complexity tradeoff
in which situations, and in gaining an understanding of why
certain complexity-reducing approaches are better than others.
Nevertheless, we have attempted to choose a reasonable set
of techniques and an ordering of them for discussion. Where
possible we will make comments about the efficacies of the
techniques. In all cases, we include references.

We begin with a brief discussion of complexity. Roughly
speaking, it has two aspects: arithmetic (or computational)
complexity, which is the number of arithmetic operations per
sample that must be performed when encoding or decoding,
and storage (or memory or space) complexity, which is the
amount of auxiliary storage (for example, of codebooks) that
is required for encoding or decoding. Rather than trying to
combine them, it makes sense to keep separate track, because
their associated costs vary with implementation venue, e.g.,
a PC, UNIX platform, generic DSP chip, specially designed
VLSI chip, etc. In some venues, storage is of such low
cost that one is tempted to ignore it. However, there are
techniques that benefit sufficiently from increased memory
that even though the per-unit cost is trivial, to obtain the
best performance–complexity tradeoff, memory usage should
be increased until the marginal gain-to-cost ratio of further
increases is small, at which point the total cost of memory

may be signficant. As a result, one might think of a quantizer
as being characterized by a four-tuple ; i.e.,
arithmetic complexity and storage complexity have been
added to the usual rate and distortion .

As a reminder, given a -dimensional fixed-rate VQ with
codebook containing codevectors, brute-forcefull-
search encodingfinds the closest codevector inby computing
the distortion between and each codevector. In other words,
it uses the optimal lossy encoder for the given codebook,
creating the Voronoi partition. In the case of squared error,
this requires computing approximately operations
per sample and storing approximately vector
components. For example, a codebook with rate 0.25 bits per
pixel (bpp) and vector dimension has
codevectors, an impractical number for, say, real-time video
coding. This exponential explosion of complexity and memory
can cause serious problems even for modest dimension and
rate, but it can in general make codes completely impractical
in either the high-resolution or high-dimension extremes. A
brute-force variable-rate scheme of the same rate will be even
more complex—typically involving a much greater number
of codevectors, a Lagrangian distortion computation, and an
entropy coding scheme as well. It is the high complexity
of such brute-force techniques that motivates the reduced
complexity techniques to be discussed later in this section.

Simple measures such as arithmetic complexity and storage
need a number of qualifications. One must decide whether
encoding and decoding complexities need to be counted sep-
arately or summed, or, indeed, whether only one of them is
important. For example, in record-once-play-many situations,
it is the decoder that must have low complexity. Having no
particular application in mind, we will focus on the sum
of encoder and decoder complexities. For some techniques
(perhaps most) it is possible to trade computations for storage
by the use of precomputed tables. In such cases a quantizer is
characterized, not by a singleand but by a curve of such.
In some cases, a given set of precomputed tables is the heart
of the method. Another issue is the cost of memory accesses.
Such operations are usually signficantly less expensive than
arithmetic operations. However, some methods do such a good
job of reducing arithmetic operations that the cost of memory
accesses becomes significant. Techniques that attain smaller
values of distortion need higher precision in their arithmetic
and storage, which though not usually accounted for in as-
sessments of complexity may sometimes be of significance.
For example, a recent study of VQ codebook storage has
shown that in routine cases one needs to store codevector
components with only about bits per component, where

is the rate of the quantizer [252]. Though this study did
not assess the required arithmetic precision, one would guess
that it need not be more than a little larger than that of the
storage; e.g., plus 5- or 6-bit arithmetic should suffice.
Finally, variable-rate coding raises additional issues such as
the costs associated with buffering, with storing and accessing
variable-length codewords, and with the decoder having to
parse binary sequences into variable-length codewords.

When assessing complexity of a quantization technique, it
is interesting to compare the complexity invested in the lossy
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encoder/decoder versus that in the lossless encoder/decoder.
(Recall that good performance can theoretically be attained
with either a simple lossy encoder, such as a uniform scalar
quantizer, and a sophisticated lossless encoder or, vice versa,
as in high-dimensional fixed-rate VQ.) A quantizer is con-
sidered to have low complexity only when both encoders
have low complexity. In the discussion that follows we focus
mainly on quantization techniques where the lossless encoder
is conceptually if not quantitatively simple. We wish, however,
to mention the indexing problem, which may be considered
to lie between the lossless and the lossy encoder. There
are certain fixed-rate techniques, such as lattice quantization,
pyramid VQ, and scalar-vector quantization, where it is fairly
easy to find the cell in which the source vector lies, but the
cells are associated with some set of indices that are not
simply the integers from to , where is the number of
cells, and converting the identity of the cell into a sequence
of bits is nontrivial. This is referred to as anindexing
problem.

Finally, we mention two additional issues. The first is
that there are some VQ techniques whose implementation
complexities are not prohibitive, but which have sufficiently
many codevectors that designing them is inordinately complex
or requires an inordinate amount of training data. A second
issue is that in some applications it is desirable that the output
of the encoder be progressively decodable in the sense that
a rough reproduction can be made from the first bits that it
receives, and improved reproductions are made as more bits
are received. Such quantizers are said to beprogressiveor
embedded. Now it is true that a progressive decoder can be
designed for any encoder (for example, it can compute the
expected value of the source vector given whatever bits it
has received so far). However, a “good” progressive code
is one for which the intermediate distortions achieved at the
intermediate rates are relatively good (though not usually as
good as those of quantizers designed for one specific rate) and
that rather than restarting from scratch every time the decoder
receives a new bit (or group of bits), it uses some simple
method to update the current reproduction. It is also desirable
in some applications for the encoding to be progressive, as
well. Though not designed with them in mind, it turns out
that a number of the reduced-complexity VQ approaches also
address these last two issues. That is, they are easier to design,
as well as progressive.

A. Fast Searches of Unstructured Codebooks

Many techniques have been developed for speeding the
full (minimum-distortion) search of an arbitrary codebook
containing -dimensional codevectors, for example, one
generated by a Lloyd algorithm. In contrast to codebooks to
be considered later these will be calledunstructured. As a
group these techniques use substantial amounts of additional
memory in order to significantly reduce arithmetic complexity.
A variety of such techniques are mentioned in [196, Sec.
12.16].

A number of fast-search techniques are similar in spirit
to the following: the Euclidean distances between all pairs
of codevectors are precomputed and stored in a table. Now,

given a source vector to quantize, some initial codevector
is chosen. Then all codevectors whose distance from is
greater than are eliminated from further consideration
because they cannot be closer than. Those not eliminated are
successively compared to until one that is closer than is
found, which then replaces, and the process continues. In this
way, the set of potential codevectors is gradually narrowed.
Techniques in this category, with different ways of narrowing
the search, may be found in [362], [517], [475], [476], [363],
[426], [249], [399], [273], [245], [229], [332], [307], [547],
[308], and [493].

A number of other fast-search techniques begin with a
“coarse” prequantization with some very low-complexity tech-
nique. It is called “coarse” because it typically has larger
cells than the Voronoi regions of the codebook that is
being searched. The coarse prequantization often involves
scalar quantization of some type or a tree-structuring of binary
quantizers, such as what are called- trees. Associated with
each coarse cell is abucketcontaining the indices of each
codevector that is the nearest codevector to some source vector
in the cell. These buckets are determined in advance and saved
as tables. Then to encode a source vector, one applies
the prequantization, finds the index of the prequantization
cell in which is contained, and performs a full search on
the corresponding bucket for the closest codevector to.
Techniques of this type may be found in [44], [176], [88],
[89], [334], [146], [532], [423], [415], [500], and [84]. In
some of these, the coarse prequantization is one-dimensional;
for example, the length of the source vector may be quantized,
and then the bucket of all codevectors having similar lengths
is searched for the closest codevector.

Another class of techniques is like the previous except that
the low-complexity prequantization has much smaller cells
than the Voronoi cells of , i.e., it is finer. In this case,
the buckets associated with most “fine” prequantization cells
contain just one codevector, i.e., the same codevector in
is the closest codevector to each point in the fine cell. The
indices of these codevectors, one for each fine cell, are stored
in a precomputed table. For each of those relatively few fine
cells that have buckets containing more than one codevector,
one member of the bucket is chosen and its index is placed
in the table as the entry for that fine cell. Quantization of
then proceeds by applying the fine prequantizer and then using
the index of the fine cell in which lies to address the table
containing codevectors from, which then outputs the index
of a codeword in . Due to the fact that not every bucket
contains only one codevector, such techniques, which may be
found in [86], [358], [357], [518], [75], and [219], do not do a
perfect full search. Some quantitative analysis of the increased
distortion is given in [356] for a case where the prequantization
is a lattice quantizer. Other fast-search methods include the
partial distortionmethod of [88], [39], [402] and the transform
subspace-domain approach of [78].

Consideration of methods based on prequantization leads
to the question of how fine the prequantization cells should
be. Our experience is that the best tradeoffs come when
the prequantization cells are finer rather than coarser, the
explanation being that if one has prequantized coarsely and
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now has to determine which codevector in a bucket is closest
to , it is more efficient to use some fast search method than
to do full search. Dividing the coarse cells into finer ones
is a way of doing just this. Another question that arises for
all fast search techniques is whether it is worth the effort
to perform a full search or whether one should instead stop
short of this, as in the methods with fine prequantization
cells. Our experience is that it is usually not worth the effort
to do a full search, because by suffering only a very small
increase in MSE one can achieve a significant reduction in
arithmetic complexity and storage. Moreover, in the case of
stationary sources where the dimension is subject to choice,
for a given amount of arithmetic complexity and storage, one
almost always gets better performance by doing a suboptimal
search of a higher dimensional codebook than a full search of
a lower dimensional one.

Fast search methods based on fine prequantization can be
improved by optimizing the codebook for the given prequan-
tizer. Each cell of the partition corresponding to induced
by prequantization followed by table lookup is the union
of some number of fine cells of the prequantizer. Thus the
question becomes: what is the best partition intocells,
each of which is the union of some number of fine cells.
The codevectors in should then be the centroids of these
cells. Such techniques have been exploited in [86] and [358].
One technique worth particular mention is calledhierarchical
table lookupVQ [86], [518], [75], [219]. In this case, the
prequantizer is itself an unstructured codebook that is searched
with a fine prequantizer that is in turn searched with an
even finer prequantizer, and so on. Specifically, the first
prequantizer uses a high-rate scalar quantizertimes. The
next level of prequantization applies a two-dimensional VQ to
each of pairs of scalar quantizer outputs. The next level
applies a four-dimensional VQ to each of pairs of outputs
from the two-dimensional quantizers, and so on. Hence the
method is hierarchical. Because each of the quantizers can be
implemented entirely with table lookup, this method eliminates
all arithmetic complexity except memory accesses. It has been
successfully used for video coding [518], [75].

B. Structured Quantizers

We now turn to quantizers with structured partitions or
reproduction codebooks, which in turn lend themselves to fast
searching techniques and, in some cases, to greatly reduced
storage. Many of these techniques are discussed in [196] and
[458].

Lattice Quantizers:Lattice quantization can be viewed as
a vector generalization of uniform scalar quantization. It
constrains the reproduction codebook to be a subset of a
regular lattice, where a lattice is the set of all vectors of the
form , where are integers and the are linearly
independent (usually nondegenerate, i.e., ). The resulting
Voronoi partition is a tessellation with all cells (except for
those overlapping the overload region) having the same shape,
size, and orientation. Lattice quantization was proposed by
Gersho [193] because of its near optimality for high-resolution
variable-rate quantization and, also, its near optimality for
high-resolution fixed-rate quantization of uniformly distributed

sources. (These assume that Gersho’s conjecture holds and
that the best lattice quantizer is approximately as good as the
best tessellation.) Especially important is the fact that their
highly structured nature has led to algorithms for implementing
their lossy encoders with very low arithmetic and storage
complexity [103]–[105], [459], [106], [199]. These find the
integers associated with the closest lattice point. Conway
and Sloane [104], [106] have reported the best known lattices
for several dimensions, as well as fast quantizing and decoding
algorithms. Some important-dimensional lattices are the root
lattices , , and ,
the Barnes–Wall lattice in dimension , and the Leech
lattice in 24 dimensions. These latter give the best
sphere packings and coverings in their respective dimensions.
Recently, Agrell and Eriksson [5] have found improved lattices
in dimensions and .

Though low complexity algorithms have been found for the
lossy encoder, there are other issues that affect the performance
and complexity of lattice quantizers. For variable-rate coding,
one must scale the lattice to obtain the desired distortion and
rate, and one must implement an algorithm for mapping the

’s to the variable-length binary codewords. The latter could
potentially add much complexity. For fixed-rate coding with
rate , the lattice must be scaled and a subset lattice points
must be identified as the codevectors. This induces a support
region. If the source has finite support, the lattice quantizer
will ordinarily be chosen to have the same support. If not, then
the scaling factor and lattice subset are usually chosen so that
the resulting quantizer support region has large probability. In
either case, a low complexity method is needed for assigning
binary sequences to the chosen codevectors; i.e., for indexing.
Conway and Sloane [105] found such a method for the
important case that the support has the shape of an enlarged
cell. For sources with infinite support, such as i.i.d. Gaussian,
there is also the difficult question of how to quantize a source
vector lying outside the support region. For example, one
might scale so that it lies on or just inside the boundary of
the support region, and then quantize the scaled vector in the
usual way. Unfortunately, this simple method does not always
find the closest codevector to. Indeed, it often increases
overload distortion substantially over that of the minimum-
distance quantization rule. To date, there is apparently no
low complexity method that does not substantially increase
overload distortion.

High resolution theory applies immediately to lattice VQ
when the entire lattice is considered to be the codebook. The
theory becomes more difficult if, as is usually the case, only
a bounded portion of the lattice is used as the codebook and
one must separately consider granular and overload distortion.
There are a variety of ways of considering the tradeoffs
involved, cf. [580], [151], [359], [149], [409]. In any case,
the essence of a lattice code is its uniform point density and
nicely shaped cells with low normalized moment of inertia.
For fixed-rate coding, they work well for uniform sources or
other sources with bounded support. But as discussed earlier,
for sources with unbounded support such as i.i.d. Gaussian,
they require very large dimensions to achieve performance
close to .
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Fig. 8. Shape-gain VQ.

Product Quantizers:A product quantizer uses a reproduc-
tion codebook that is the Cartesian product of lower dimen-
sional reproduction codebooks. For example, the application
of a scalar quantizer to successive samples
can be viewed as a product quantizer operating on the-
dimensional vector . The product
structure makes searching easier and, unlike the special case
of a sequence of scalar quantizers, the search need not be
comprised of independent searches. Products of vector
quantizers are also possible. Typically, the product quantizer
is applied, not to the original vector of samples, but to
some functions or features extracted from the vector. The
complexities of a product quantizer (arithmetic and storage,
encoding and decoding) are the sums of those of the compo-
nent quantizers. As such, they are ordinarily much less than
the complexities of an unstructured quantizer with the same
number of codevectors, whose complexities equal the product
of those of the components of a product quantizer.

A shape-gainvector quantizer [449], [450] is an example of
a product quantizer. It uses a product reproduction codebook
consisting of a gain codebook
of positive scalars and a shape codebook

of unit norm -dimensional vectors, and the
overall reproduction vector is defined by . It is easy
to see the minimum-squared-error reproduction codeword
for an input vector is found by the following encoding algo-
rithm: First choose the index that maximizes the correlation

, then for this chosen choose the index minimizing
. This sequential rule gives the minimum-squared-

error reproduction codeword without explicitly normalizing
the input vector (which would be computationally expensive).
The encoder and decoder are depicted in Fig. 8.

A potential advantage of such a system is that by separating
these two “features,” one is able to use a scalar quantizer
for the gain feature and a lower rate codebook for the shape
feature, which can then have a higher dimension, for the same
search complexity. A major issue arises here: given a total rate
constraint, how does one best divide the bits between the two
codebooks? This is an example of a rate-allocation problem

that arises in all product codebooks and about which more
will be said shortly.

It is important to notice that the use of a product quantizer
does not mean the use of independent quantizers for each
component. As with shape-gain VQ, the optimal lossy encoder
will in general not view only one coordinate at a time.
Separate and independent quantization of the components
provides a low-complexity but generally suboptimal encoder.
In the case of the shape-gain VQ, the optimal lossy encoder
is happily a simple sequential operation, where the gain
quantizer is scalar, but the selection of one of its quantization
levels depends on the result of another quantizer, the shape
quantizer. Similar ideas can be used for mean-removed VQ
[20], [21] and mean/gain/shape VQ [392]. The most general
formulation of product codes has been given by Chan and
Gersho [82]. It includes a number of schemes with dependent
quantization, even tree-structured and multistage quantization,
to be discussed later.

Fischer’spyramid VQ [164] is also a kind of shape-gain
VQ. In this case, the codevectors of the shape codebook
are constrained to lie on the surface of a-dimensional
pyramid, namely, the set of all vectors whose components
have magnitudes summing to one. Pyramid VQ’s are very
well suited to i.i.d. Laplacian sources. An efficient method
for indexing the shape codevectors is needed and a suitable
method is included in pyramid VQ.

Two-dimensional shape-gain product quantizers, usually
called polar quantizers, have been extensively developed
[182], [183], [407], [406], [61], [62], [530], [489], [490],
[483], [485], [488], [360]. Here, a two-dimensional source
vector is represented in polar coordinates and, in the basic
scheme, the codebook consists of the Cartesian product
of a nonuniform scalar codebook for the magnitude and
a uniform scalar codebook for the phase. Early versions
of polar quantization used independent quantization of the
magnitude and phase information, but later versions used the
better method described above, and some even allowed the
phase quantizers to have a resolution that depends on the
outcome of the magnitude quantizer. Such polar quantizers
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are called “unrestricted” [488], [530]. High-resolution analysis
can be used to study the rate-distortion performance of these
quantizers [61], [62], [483], [485], [488], [360]. Among other
things, such analyses find the optimal point density for the
magnitude quantizer and the optimal bit allocation between
magnitude and phase. Originally, methods were developed
specifically for polar quantizers. However, recently it has
been shown that Bennett’s integral can be applied to analyze
polar quantization in a straightforward way [380]. It turns
out that for an i.i.d. Gaussian source, optimized conventional
polar quantization gains about 0.41 dB over direct scalar
quantization, and optimized unrestricted polar quantization
gains another 0.73 dB. Indeed, the latter has, asymptotically,
square cells and the optimal two-dimensional point density,
and loses only 0.17 dB relative to optimal two-dimensional
vector quantization, but is still 3.11 dB from .

Product quantizers can be used for any set of features
deemed natural for decomposing a vector. Perhaps the most
famous example is one we have seen already and now revisit:
transform coding.

Transform Coding:Though the goal of this section is
mainly to discuss techniques beyond scalar quantization,
DPCM and transform coding, we discuss the latter here
because of its relationships to other techniques and because
we wish to discuss work on the bit-allocation problem.

Traditional transform coding can be viewed as a product
quantizer operating on the transform coefficients resulting from
a linear transform on the original vector. We have already
mentioned the traditional high-resolution fixed-rate analysis
and the more recent high-resolution entropy-constrained anal-
ysis for separate lossless coding of each quantized transform
coefficient. An asymptotic low-resolution analysis [338], [339]
has also been performed. In almost all actual implementations,
however, scalar quantizers are combined with a block lossless
code, where the lossless code is allowed to effectively operate
on an entire block of quantized coefficients at once, usually
by combining run-length coding with Huffman or arithmetic
coding. As a result, the usual high-resolution analyses are not
directly applicable.

Although high resolution theory shows that the
Karhunen–Lòeve transform is optimal for Gaussian sources,
and the asymptotic low-resolution analysis does likewise, the
dominant transform for many years has been the discrete
cosine transform (DCT) used in most current image and
video coding standards. The primary competition for future
standards comes from discrete wavelet transforms, which will
be considered shortly. One reason for the use of the DCT is
its lower complexity. An “unstructured” transform like the
Karhunen–Lòeve requires approximately operations per
sample, which is small compared to the arithmetic complexity
of unstructured VQ, but large compared to the approximately

operations per sample for a DCT. Another motivation
for the DCT is that in some sense it approximates the behavior
of the Karhunen–Lòeve transform for certain sources. And
a final motivation is that the frequency decomposition done
by the DCT mimics, to some extent, that done by the human
visual system and so one may quantize the DCT coefficients
taking perception into account. We will not delve into the large

literature of transforms, but will observe that bit allocation
becomes an important issue, and one can either use the
high-resolution approximations or a variety of nonasymptotic
allocation algorithms such as the “fixed-slope” or Pareto-
optimality considered in [526], [470], [94], [439], [438], and
[463]. The method involves operating all quantizers at points
on their operational distortion-rate curves of equal slopes. For
a survey of some of these methods, see [107] or [196, Ch.
10]. A combinatorial optimization method is given in [546].

As a final comment on traditional transform coding, the
code can be considered as being suboptimal as a-dimensional
quantizer because of the constrained structure (transform and
product code). It gains, however, in having a low complexity,
and transform codes remain among the most popular com-
pression systems because of their balance of performance and
complexity.

Subband/Wavelet/Pyramid Quantization:Subband codes,
wavelet codes, and pyramid codes are intimately related and all
are cousins of a transform code. The oldest of these methods
(so far as quantization is concerned) is the pyramid code of
Burt and Adelsen [66] (which is quite different from Fischer’s
pyramid VQ). The Burt and Adelsen pyramid is constructed
from an image first by forming a Gaussian pyramid by
successively lowpass filtering and downsampling, and then by
forming a Laplacian pyramid which replaces each layer of the
Gaussian pyramid by a residual image formed by subtracting
a prediction of that layer based on the lower resolution layers.
The resulting pyramid of images can then be quantized, e.g.,
by scalar quantizers. The approximation for any layer can be
reconstructed by using the inverse quantizers (reproduction
decoders) and upsampling and combining the reconstructed
layer and all lower resolution reconstructed layers. Note that
as one descends the pyramid, one easily combines the new
bits for that layer with the bits already used to produce a
higher resolution spatially and in amplitude. The pyramid
code can be viewed as one of the original multiresolution
codes. It can be viewed as a transform code because the entire
original structure can be viewed as a linear transform of the
original image, but observe that the number of pixels has been
roughly doubled.

Subband codes decompose an image into separate images
by using a bank of linear filters, hence once again performing
a linear transformation on the data prior to quantizing it.
Traditional subband coding used filters of equal or roughly
equal bandwidth. Wavelet codes can be viewed as subband
codes of logarithmically varying bandwidths instead of equal
bandwidths, where the filters used satisfy certain properties.
Since the introduction of subband codes in the late 1980’s and
wavelet codes in the early 1990’s, the field has blossomed and
produced several of the major contenders for the best speech
and image compression systems. The literature is beyond
the scope of this article to survey, and much is far more
concerned with the transforms, filters, or basis functions used
and the lossless coding used following quantization than with
the quantization itself. Hence we content ourselves with the
mention of a few highlights. The interested reader is referred to
the book by Vetterli and Kovăcevíc on wavelets and subband
coding [516].
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Subband coding was introduced in the context of speech
coding in 1976 by Crochiereet al. [113]. The extension
of subband filtering from 1-D to 2-D was made by Vet-
terli [515] and 2-D subband filtering was first applied to
image coding by Woodset al. [541], [527], [540]. Early
wavelet-coding techniques emphasized scalar or lattice vector
quantization [12], [13], [130], [463], [14], [30], [185], and
other vector quantization techniques have also been applied
to wavelet coefficients, including tree encoding [366], residual
vector quantization [295], and other methods [107]. A major
breakthrough in performance and complexity came with the
introduction of zerotrees [315], [466], [457], which provided
an extremely efficient embedded representation of scalar quan-
tized wavelet coefficients, calledembedded zerotree wavelet
(EZW) coding. As done by JPEG in a primitive way, the
zerotree approach led to a code which first sent bits about the
transform coefficients with the largest magnitude, and then
sent subsequent bits describing these significant coefficients
to greater accuracy as well as bits about originally less
significant coefficients that became significant as the accuracy
improved. The zerotree approach has been extended to vector
quantization (e.g., [109]), but the slight improvement comes
at a significant cost in added complexity. Rate-distortion ideas
have been used to optimize the rate-distortion tradeoffs using
wavelet packets by minimizing a Lagrangian distortion over
code trees and bit assignments [427]. Recently, competitive
schemes have demonstrated that separate scalar quantization
of individual subbands coupled with a sophisticated but low-
complexity lossless coding algorithm called stack-run coding
can provide performance nearly as good as EZW [504].

The best wavelet codes tend to use very smart lossless
codes, lossless codes which effectively code very large vectors.
While wavelet advocates may credit the decomposition itself
for the gains in compression, the theory suggests that rather
it is the fact that vector entropy coding for very large vectors
is feasible.

Scalar-Vector Quantization:Like permutation vector quan-
tization and Fischer’s pyramid vector quantizer, Laroia and
Farvardin’s [305]scalar-vector quantizationattempts to match
the performance of an optimal entropy-constrained scalar
quantizer with a low-complexity fixed-rate structured vector
quantizer. A derivative technique calledblock-constrained
quantization [24], [27], [23], [28] is simpler and easier to
describe. Here the reproduction codebook is a subset of the-
fold product of some scalar codebook. Variable-length binary
codewords are associated with the scalar levels, and given
some target rate , the -dimensional codebook contains only
those sequences of quantization levels for which the sum
of the lengths of the binary codewords associated with the
levels is at most . The minimum distortion codevector
can be found using dynamic programming. Alternatively, an
essentially optimal search can be performed with very low
complexity using a knapsack packing or Lagrangian approach.
The output of the encoder is the sequence of binary codewords
corresponding to the codevector that was found, plus some
padded bits if the total does not equal . The simplest
method requires approximately operations per
sample and storage for approximately numbers, where

is the number of scalar quantization levels. The original
scalar-vector method differs in that rational lengths rather than
binary codewords are assigned to the scalar quantizer levels,
dynamic programming is used to find the best codevector, and
the resulting codevectors are losslessly encoded with a kind
of lexicographic encoding. For i.i.d. Gaussian sources these
methods attain SNR within about 2 dB of with on the
order of , which is about 0.5 dB from the goal of 1.53
dB larger than . A high-resolution analysis is given in
[26] and [23]. The scalar-vector method extends to sources
with memory by combining it with transform coding using a
decorrelating or approximately decorrelating transform [305].

Tree-Structured Quantization:In its original and simplest
form, a -dimensional tree-structured vector quantizer (TSVQ)
[69] is a fixed-rate quantizer with, say, ratewhose encoding
is guided by a balanced (fixed-depth) binary tree of depth.
There is a codevector associated with each of its terminal
nodes (leaves), and a-dimensional testvector associated with
each of its internal nodes. Quantization of a source
vector proceeds in a tree-structured search by finding which
of the two nodes stemming from the root node has the closer
testvector to , then finding which of the two nodes stemming
from this node has the closer testvector, and so on, until a
terminal node and codevector are found. The binary encoding
of this codevector consists of the sequence of binary
decisions that lead to it. Decoding is done by table lookup
as in unstructured VQ. As in successive approximation scalar
quantization, TSVQ yields an embedded code with a naturally
progressive structure.

With this method, encoding requires storing the tree of
testvectors and codevectors, demanding approximately twice
the storage of an unstructured codebook. However, encoding
requires only distortion calculations, which is a tremen-
dous decrease over the required by full search of an
unstructured codebook. In the case of squared-error distortion,
instead of storing testvectors and computing the distortion
between and each of them, at each internal node one may
store the normal to the hyperplane bisecting the testvectors
at the two nodes stemming from it, and determine on which
side of the hyperplane lies by comparing an inner product
of with the normal to a threshold that is also stored. This
reduces the arithmetic complexity and storage roughly in half
to approximately operations per sample and vectors.
Further reductions in storage are possible, as described in
[252].

The usual (but not necessarily optimal)greedymethod for
designing a balanced TSVQ [69], [225] is first to design
the testvectors stemming from the root node using the Lloyd
algorithm on a training set. Then design the two testvectors
stemming from, say, the left one of these by running the Lloyd
algorithm on the training vectors that were mapped to the left
one, and so on.

In the scalar case, a tree can be found that implements any
quantizer, indeed, the optimal quantizer. So tree-structuring
loses nothing, though the above design algorithm does not
necessarily generate the best possible quantizers. In the multi-
dimensional case, one cannot expect that the greedy algorithm
will produce a TSVQ that is as good as the best unstructured
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VQ or even the best possible TSVQ. Nevertheless, it seems
to work pretty well. It has been observed that in the high-
resolution case, the cells of the resulting TSVQ’s are mostly
a mixture of cubes, cubes cut in half, the latter cut in half
again, and so on until smaller cubes are formed. And it has
been found for i.i.d. Gauss and Gauss–Markov sources that the
performances of TSVQ’s with moderate to high rates designed
by the greedy algorithm are fairly well predicted by Bennett’s
integral, assuming the point density is optimum and the cells
are an equal mixture of cubes, cubes cut in half, and so on. This
sort of analysis indicates that the primary weakness of TSVQ
is in the shapes of the cells that it produces. Specifically, its
loss relative to optimal -dimensional fixed-rate VQ ranges
from 0.7 dB for to 2.2 dB for very large dimensions.
Part of the loss is , the ratio of the normalized
moment of inertia of a cube to that of the best-dimensional
cell shape, which approaches 1.53 dB for large, and the
remainder, about 0.5 to 0.7 dB, is due to the oblongitis caused
by the cubes being cut into pieces [383]. A paper investigating
the nature of TSVQ cells is [569].

Our experience has been that when taking both performance
and complexity into account, TSVQ is a very competitive
VQ method. For example, we assert that for most of the fast
search methods, one can find a TSVQ (with quite possibly
a different dimension) that dominates it in the sense that

and are all at least as good. Indeed, many of the
fast-search approaches use a tree-structured prequantization.
However, in TSVQ the searching tree and codebook are
matched in size and character in a way that makes them work
well together. A notable exception is the hierarchical table
lookup VQ which attains a considerably smaller arithmetic
complexity than attainable with TSVQ, at the expense of
higher storage. The TSVQ will still be competitive in terms of
throughput, however, as the tree-structured search is amenable
to pipelining.

TSVQ’s can be generalized to unbalanced trees (with vari-
able depth as opposed to the fixed depth discussed above)
[342], [94], [439], [196] and with larger branching factors
than two or even variable branching factors [460]. However,
it should be recalled that the goodness of the original TSVQ
means that the gains of such are not likely to be substantial
except in the low-resolution case or if variable-rate coding is
used or if the source has some complex structure that the usual
greedy algorithm cannot exploit.

A tree-structured quantizer is analogous to a classification
or regression tree, and as such unbalanced TSVQ’s can be
designed by algorithms based on a gardening metaphor of
growing and pruning. The most well known is the CART
algorithm of Breiman, Friedman, Olshen, and Stone [53],
and the variation of CART for designing TSVQ’s bears their
initials: the BFOS algorithm [94], [439], [196]. In this method,
a balanced or unbalanced tree with more leaves than needed
is first grown and then pruned. One can grow a balanced tree
by splitting all nodes in each level of the tree, or by splitting
one node at a time, e.g., by splitting the node with the largest
contribution to the distortion [342] or in a greedy fashion to
maximize the decrease in distortion for the increase in rate
[439]. Once grown, the tree can be pruned by removing all

Fig. 9. Two-stage VQ.

descendants of any internal node, thereby making it a leaf. This
will increase average distortion, but will also decrease the rate.
Once again, one can select for pruning the node that offers
the best tradeoff in terms of the least increase in distortion
per decrease in bits. It can be shown that, for quite general
measures of distortion, pruning can be done in an optimal
fashion and the optimal subtrees of decreasing rate are nested
[94] (see also [355]). It seems likely that in the moderate-
to high-rate case, pruning removes leaves corresponding to
cells that are oblong such as cubes cut in half, leaving mainly
cubic cells. We also wish to emphasize that if variable-rate
quantization is desired, the pruning can be done so as to
optimize the tradeoff between distortion and leaf entropy.

There has been a flurry of recent work on the theory of tree-
growing algorithms for vector quantizers, which are a form of
recursive partitioning. See, for example, the work of Nobel and
Olshen [390], [388], [389]. For other work on tree growing and
pruning see [393], [439], [276], [22], and [355].

Multistage Vector Quantization:Multistage (or multistep,
or cascade, or residual) vector quantization was introduced by
Juang and Gray [274] as a form of tree-structured quantization
with much reduced arithmetic complexity and storage. Instead
of having a separate reproduction codebook for each branch
in the tree, a single codebook could be used for all branches
of a common length by coding the residual error accumulated
to that point instead of coding the input vector directly. In
other words, the quantization error (or residual) from the
previous stage is quantized in the usual way by the following
stage, and a reproduction is formed by summing the previous
reproduction and the newly quantized residual. An example
of a two-stage quantizer is depicted in Fig. 9. The rate of
the multistage quantizer is the sum of the rates of the stages,
and the distortion is simply that of the last stage. (It is easily
seen that the overall error is just that of the last stage.) A
multistage quantizer has adirect sumreproduction codebook in
the sense that it contains all codevectors formed by summing
codevectors from the reproduction codebooks used at each
stage. One may also view it as a kind of product code
in the sense that the reproduction codebook is determined
by the Cartesian product of the stage codebooks. And like
product quantization, its complexities (arithmetic and storage,
encoding and decoding) are the sum of those of the stage
quantizers plus a small amount for computing the residuals
at the encoder or the sums at the decoder. In contrast, a
conventional single-stage quantizer with the same rate and
dimension has complexities equal to the product of those of
the stage quantizers.

Since the total rate is the sum of the stage rates, a bit-
allocation problem arises. In two-stage quantization using
fixed-rate, unstructured,-dimensional VQ’s in both stages,
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it usually happens that choosing both stages to have the same
rate leads to the best performance versus complexity tradeoff.
In this case, the complexities are approximately the square root
of what they would be for a single-stage quantizer.

Though we restrict attention here to the case where all stages
are fixed-rate vector quantizers with the same dimension, there
is no reason why they need have the same dimension, have
fixed rate, or have any similarity whatsoever. In other words,
multistage quantization can be used (and often is) with very
different kinds of quantizers in its stages (different dimensions
and much different structures, e.g., DPCM or wavelet coding).
For example, structuring the stage quantizers leads to good
performance and further substantial reductions in complexity,
e.g., [243], [79].

Of course, the multistage structuring leads to a suboptimal
VQ for its given dimension. In particular, the direct-sum
form of the codebook is not usually optimal, and the greedy-
search algorithm described above, in which the residual from
one stage is quantized by the next, does not find the closest
codevector in the direct-sum codebook. Moreover, the usual
greedy design method, which uses a Lloyd algorithm to design
the first stage in the usual way and then to design the second
stage to minimize distortion when operating on the errors of
the first, and so on, does not, in general, design an optimal
multistage VQ, even for greedy search. However, two-stage
VQ’s designed in this way work fairly well.

A high-resolution analysis of two-stage VQ using Bennett’s
integral on the second stage can be found in [311] and [309].
In order to apply Bennett’s integral, it was necessary to find
the form of the probability density of the quantization error
produced by the first stage. This motivated the asymptotic
error-density analysis of vector quantization in [312] and
[379].

Multistage quantizers have been improved in a number of
ways. More sophisticated (than greedy) encoding algorithms
can take advantage of the direct sum nature of the codebook
to make optimal or nearly optimal searches, though with some
(and sometimes a great deal of) increased complexity. And
more sophisticated design algorithms (than the greedy one)
can also have benefits [32], [177], [81], [31], [33]. Variable-
rate multistage quantizers have been developed [243], [297],
[298], [441], [296].

Another way of improving multistage VQ is to adapt each
stage to the outcome of the previous. One such scheme,
introduced by Lee and Neuhoff [310], [309], was motivated by
the observation that if the first stage quantizer has high rate, say

, then by Gersho’s conjecture, the first stage cells all have
approximately the shape of , the tesselating polytope with
least normalized moment of inertia, and the source density
is approximately constant on them. This implies that the
conditional distribution of the residual given that the source
vector lies in theth cell differs from that for the th only by a
scaling and rotation, because cell differs from by just a
scaling and rotation. Therefore, if first-stage-dependent scaling
and rotation are done prior to second-stage quantization, the
conditional distribution of the residual will be the same for all
cells, and the second stage can be designed for this distribution,
rather than having to be a compromise, as is otherwise the

case in two-stage VQ. Moreover, since this distribution is
essentially uniform on a support region shaped like, the
second stage can itself be a uniform tesselation. The net effect
is a quantizer that inherits the optimal point density of the first
stage13 and the optimal cell shapes of the second. Therefore,
in the high-resolution case, thiscell-conditionedtwo-stage VQ
works essentially as well as an optimal (single-stage) VQ, but
with much less complexity.

Direct implementation of cell-conditioned two-stage VQ,
requires the storing of a scale factor and a rotation for each
first stage cell, which operate on the first stage residual before
quantization by the second stage. Their inverses are applied
subsequently. However, since the first stage cells are so nearly
spherical, the rotations gain only a small amount, typically
about 0.1 dB, and may be omitted. Moreover, since the best
known lattice tesselations are so close to the best known
tesselations, one may use lattice VQ as the second stage, which
further reduces complexity. Good schemes of this sort have
even been developed for low to moderate rates by Gibson
[270], [271] and Pan and Fischer [403], [404].

Cell-conditioned two-stage quantizers can be viewed as
having a piecewise-constant point density of the sort proposed
earlier by Kuhlmann and Bucklew [302] as a means of
circumventing the fact that optimal vector quantizers cannot
be implemented with companders. This approach was further
developed by Swaszek in [487].

Another scheme for adapting each stage to the previous is
called codebook sharing, as introduced by Chan and Gersho
[80], [82]. With this approach, each stage has a finite set of
reproduction codebooks, one of which is used to quantize
the residual, depending on the sequence of outcomes from
the previous stages. Thus each codebook is shared among
some subset of the possible sequences of outcomes from
the previous stages. This method lies between conventional
multistage VQ in which each stage has one codebook that
is shared among all sequences of outcomes from previous
stages, and TSVQ in which, in effect, a different codebook is
used for each sequence of outcomes from the previous stages.
Chan and Gersho introduced a Lloyd-style iterative design
algorithm for designing shared codebooks; they showed that
by controlling the number and rate of the codebooks one could
optimize multistage VQ with a constraint on storage; and they
used this method to good effect in audio coding [80]. In the
larger scheme of things, TSVQ, multistage VQ, and codebook
sharing all fit within the broad family of generalized product
codes that they introduced in [82].

Feedback Vector Quantization:Just as with scalar quantiz-
ers, a vector quantizer can be predictive; simply replace scalars
with vectors in the predictive quantization structure depicted in
Fig. 3 [235], [116], [85], [417]. Alternatively, the encoder and
decoder can share a finite set of states and a quantizer custom
designed for each state. Both encoder and decoder must be
able to track the state in the absence of channel errors, so that
the state must be determinable from knowledge of an initial
state combined with the binary codewords transmitted to the
decoder. The result is a finite-state version of a predictive

13Since the second stage uniformly refines the first stage cells, the overall
point density is approximately that of the first stage.
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Fig. 10. Finite-state vector quantizer.

quantizer, referred to as a finite-state vector quantizer and
depicted in Fig. 10. Although little theory has been developed
for finite-state quantizers [161], [178], [179], a variety of
design methods exist [174], [175], [136], [236], [15], [16],
[286], [196], Lloyd’s optimal decoder extends in a natural
way to finite-state vector quantizers, the optimal reproduction
decoder is a conditional expectation of the input vector given
the binary codewordand the state. The optimal lossy encoder
is not easily described, however, as the next state must be
chosen in a way that ensures good future behavior, and not
just in a greedy fashion that minimizes the current squared
error. If look-ahead is allowed, however, then a tree or trellis
search can be used to pick a long-term minimum distortion
path, as will be considered in the next subsection.

Both predictive and finite-state vector quantizers typically
use memory in the lossy encoder, but use a memoryless
lossless code independently applied to each successive binary
codeword. One can, of course, also make the lossless code
depend on the state, or be conditional on the previous binary
codeword. One can also use a memoryless VQ combined with
a conditional lossless code (conditioned on the previous binary
codeword) designed with a conditional entropy constraint [95],
[188]. A simple approach that works for TSVQ is to code the
binary path to the codevector for the present source vector
relative to the binary path to that of the previous source vector,

which is usually very similar. This is a kind of interblock
lossless coding [384], [410], [428].

Address-vector quantization, introduced by Nasrabadi and
Feng [371] (see also [160] and [373]), is another way to
introduce memory into the lossy encoder of a vector quantizer
with the goal of attaining higher dimensional performance with
lower dimensional complexity. With this approach, in addition
to the usual reproduction codebook, there is an address
codebook containing permissible sequences of indices of
codevectors in . The address codebook plays the same role
as the outer code in a concatenated channel code (or the trellis
in trellis-encoded quantization discussed below), namely, it
limits the allowable sequences of codewords from the inner
code, which in this case is . In this way, address-vector
quantization can exploit the property that certain sequences of
codevectors are much more probable than others; these will
be the ones contained in .

As with DPCM, the introduction of memory into the lossy
encoder seriously complicates the theory of such codes, which
likely explains why there is so little.

Tree/Trellis-Encoded Quantization:Channel coding has of-
ten inspired source coding or quantization structures. Channel
coding matured much earlier and the dual nature of channel
and source coding suggests that a good channel code can
be turned into a good source code by reversing the order
of encoder and decoder. This role reversal was natural for
the codes which eased search requirements by imposition of
a tree or trellis structure. Unlike the tree-structured vector
quantizers, these earlier systems imposed the tree structure
on the sequence of symbols instead of on a single vector
of symbols. For the channel coding case, the encoder was a
convolutional code, input symbols shifted into a shift register
as output symbols, formed by linear combinations (in some
field) of the shift-register contents, shifted out. Sequences of
output symbols produced in this fashion could be depicted with
a tree structure, where each node of the tree corresponded to
the state of the shift register (all but the final or oldest symbol)
and the branches connecting nodes were determined by the
most recent symbol to enter the shift register and were labeled
by the corresponding output, the output symbol resulting if that
branch is taken. The goal of a channel decoder is to take such a
sequence of tree branch labels that has been corrupted by noise,
and find a minimum-distance valid sequence of branch labels.
This could be accomplished by a tree-search algorithm such
as the Fano, stack, or -algorithm. Since the shift register
is finite, the tree becomes redundant and new nodes will
correspond to previously seen states so that the tree diagram
becomes a merged tree or trellis, which can be searched by
a dynamic programming algorithm, the Viterbi algorithm, cf.
[173]. In the early 1970’s, the algorithms for tree-decoding
channel codes were inverted to form tree-encoding algorithms
for sources by Jelinek, Anderson, and others [268], [269], [11],
[132], [123], [10]. Later, trellis channel-decoding algorithms
were modified to trellis-encoding algorithms for sources by
Viterbi and Omura [519]. While linear encoders sufficed for
channel coding, nonlinear decoders were required for the
source coding application, and a variety of design algorithms
were developed for designing the decoder to populate the
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trellis searched by the encoder [319], [531], [481], [18], [40].
Observe that the reproduction decoder of a finite-state VQ can
be used as the decoder in a trellis-encoding system, where
the finite-state encoder is replaced by a minimum-distortion
search of the decoder trellis implied by the finite-state VQ
decoder, which is an optimal encoding for a sequence of
inputs.

Tree- and trellis-encoded quantizers can both be considered
as a VQ with large blocklength and a reproduction codebook
constrained to be the possible outputs of a nonlinear filter or a
finite-state quantizer or vector quantizer of smaller dimension.
Both structures produce long codewords with a trellis structure,
i.e., successive reproduction symbols label the branches of
a trellis and the encoder is just a minimum-distortion trellis
search algorithm such as the Viterbi algorithm.

Trellis-Coded Quantization:Trellis-coded quantization,
both scalar and vector, improves upon traditional trellis-
encoded systems by labeling the trellis branches with entire
subcodebooks (or “subsets”) rather than with individual
reproduction levels [345], [344], [166], [167], [522], [343],
[478], [514]. The primary gain resulting is a reduction
in encoder complexity for a given level of performance.
As the original trellis encoding systems were motivated
by convolutional channel codes with Viterbi decoders,
trellis-coded quantization was motivated by Ungerboeck’s
enormously successful coded-modulation approach to channel
coding for narrowband channels [505], [506].

Recent combinations of TCQ to coding wavelet coefficients
[478] have yielded excellent performance in image coding
applications, winning the JPEG 2000 contest of 1997 and
thereby a position as a serious contender for the new standard.

Gaussian Quantizers:Shannon [465] showed that a Gauss-
ian i.i.d. source had the worst rate-distortion function of any
i.i.d. source with the same variance, thereby showing that the
Gaussian source was an extremum in a source coding sense. It
was long assumed and eventually proved by Sakrison in 1975
[456] that this provided a robust approach to quantization in
the sense there exist vector quantizers designed for the i.i.d.
Gaussian source with a given average distortion which will
provide no worse distortion when applied to any i.i.d. source
with the same variance. This provided an approach torobust
vector quantization, having a code that might not be optimal
for the actual source, but which would perform no worse than
it would on the Gaussian source for which it was designed.

Sakrison extended the extremal properties of the rate dis-
tortion functions to sources with memory [453]–[455] and
Lapidoth [306] (1997) showed that a code designed for a
Gaussian source would yield essentially the same performance
when applied to another process with the same covariance
structure.

These results are essentially Shannon theory and hence
should be viewed as primarily of interest for high-dimensional
quantizers.

In a different approach toward using a Gaussian quantizer
on an arbitrary source, Popat and Zeger (1992) took advantage
of the central limit theorem and the known structure of an
optimal scalar quantizer for a Gaussian random variable to
code a general process by first filtering it to produce an

approximately Gaussian density, scalar-quantizing the result,
and then inverse-filtering to recover the original [419].

C. Robust Quantization

The Gaussian quantizers were described as beingrobust in
a minimax average sense: a vector quantizer suitably designed
for a Gaussian source will yield no worse average distortion
for any source in the class of all sources with the same
second-order properties. An alternative formulation of robust
quantization is obtained if instead of dealing with average
distortion, as is done in most of this paper, one places a
maximum distortion requirement on quantizer design. Here a
quantizer is considered to be robust if it bounds the maximum
distortion for a class of sources. Morris and Vandelinde (1974)
[361] developed the theory of robust quantization and provide
conditions under which the uniform quantizer is optimum in
this minimax sense. This can be viewed as a variation on
epsilon entropy since the goal is to minimize the maximum
distortion. Further results along this line may be found in [37],
[275], [491]. Because these are minimax results aimed at scalar
quantization, these results apply to any rate or dimension.

D. Universal Quantization

The minimax approaches provide one means of designing
a fixed-rate quantizer for a source with unknown or partially
known statistics: a quantizer can be designed that will perform
no worse than a fixed value of distortion for all sources in some
collection. An alternative approach is to be more greedy and
try to design a code that yields nearly optimal performance
regardless of which source within some collection is actually
coded. This is the idea behind universal quantization.

Universal quantization or universal source coding had its
origins in an approach to universal lossless compression de-
veloped by Rice and Plaunt [435], [436] and dubbed the
“Rice machine.” Their idea was to have a lossless coder that
would work well for distinct sources by running multiple
lossless codes in parallel and choosing the one producing the
fewest bits for a period of time, sending a small amount of
overhead to inform the decoder which code the encoder was
using. The classic work on lossy universal source codes was
Ziv’s 1972 paper [577], which proved the existence of fixed-
rate universal lossy codes under certain assumptions on the
source statistics and the source and codebook alphabets. The
multiple codebook idea was also used in 1974 [221] to extend
the Shannon source coding theorem to nonergodic stationary
sources by using the ergodic decomposition to interpret a
nonergodic source as a universal coding problem for a family
of ergodic sources. The idea is easily described and provides
one means of constructing universal codes. Suppose that one
has a collection of -dimensional codebooks with
codevectors, each designed for a different
type of local behavior. For example, one might have different
codebooks in an image coder for edges, textures, and gradients.
The union codebook then contains all the codevectors
in all of the codes, for a total of codevectors. Thus
for example, if all of the subcodebooks have equal rate

, then the rate of the universal code is
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bits per symbol, which can be small if the dimensionis
moderately large. This does not mean that it is necessary to
use a large-dimensional VQ, since the VQ can be a product
VQ, e.g., for an image one could have by coding each
square of dimension using four applications of a
VQ of dimension . If one had, say, four different
codes, the resulting rate would be ,
which would be a small increase over the original rate if the
original rate is, say, .

A universal code is in theory more complicated than an
ordinary code, but in practice it can mean codes with smaller
dimension might be more efficient since separate codebooks
can be used for distinct short-term behavior.

Subsequently, a variety of notions of fixed-rate univer-
sal codes were considered and compared [382], and fixed-
distortion codes with variable rate were developed by Mack-
enthun and Pursley [340] and Kieffer [277], [279].

As with the early development of block source codes,
universal quantization during its early days in the 1970’s was
viewed as more of a method for developing the theory than as a
practical code-design algorithm. The Rice machine, however,
proved the practicality and importance of a simple multiple
codebook scheme for handling composite sources.

These works all assumed the encoder and decoder to possess
copies of the codebooks being used. Zeger, Bist, and Linder
[566] considered systems where the codebooks are designed
at the encoder, but must be also coded and transmitted to
the decoder, as is commonly done in codebook replenishment
[206].

A good review of the history of universal source coding
through the early 1990’s may be found in Kieffer (1993) [283].

Better performance tradeoffs can be achieved by allow-
ing both rate and distortion to vary, and in 1996, Chou
et al. [92] formulated the universal coding problem as an
entropy-constrained vector quantization problem for a family
of sources and provided existence proofs and Lloyd-style
design algorithms for the collection of codebooks subject
to a Lagrangian distortion measure, yielding a fixed rate-
distortion slope optimization rather than fixed distortion or
fixed rate. The clustering of codebooks was originally due to
Chou [90] in 1991. High-resolution quantization theory was
used to study rates of convergence with blocklength to the
optimal performance, yielding results consistent with earlier
convergence results developed by other means, e.g., Linder
et al. [321]. The fixed-slope universal quantizer approach
was further developed with other code structures and design
algorithms by Yanget al. [558].

A different approach which more closely resembles tradi-
tional adaptive and codebook replenishment was developed
by Zhang, Yang, Wei, and Liu [329], [575], [574]. Their
approach, dubbed “gold washing,” did not involve training,
but rather created and removed codevectors according to the
data received and an auxiliary random process in a way that
could be tracked by a decoder without side information.

E. Dithering

Dithered quantization was introduced by Roberts [442]
in 1962 as a means of randomizing the effects of uniform

quantization so as to minimize visual artifacts. It was further
developed for images by Limb (1969) [317] and for speech
by Jayant and Rabiner (1972) [266]. Intuitively, the goal was
to cause the reconstruction error to look more like signal-
independent additive white noise. It turns out that for one
type of dithering, this intuition is true. In a dithered quantizer,
instead of quantizing an input signal directly, one quantizes
a signal , where is a random process,
independent of the signal , called adither process. The
dither process is usually assumed to be i.i.d.. There are
two approaches to dithering. Roberts considered subtractive
dithering, where the final reconstruction is formed as

. An obvious problem is the need for the
decoder to possess a copy of the dither signal. Nonsubtractive
dithering forms the reproduction as .

The principal theoretical property of nonsubtractive dither-
ing was developed by Schuchman [461], who showed that the
quantizer error

is uniformly distributed on and is independent
of the original input signal if and only if the quantizer
does not overload and the characteristic function

satisfies . Schuchman’s
conditions are satisfied, for example, if the dither signal has
a uniform probability density function on . It
follows from the work of Jayant and Rabiner [266] and
Sripad and Snyder [477] (see also [216]) that Schuchman’s
condition implies that the sequence of quantization errors
is independent. The case of uniform dither remains by far the
most widely studied in the literature.

The subtractive dither result is nice mathematically because
it promises a well-behaved quantization noise as well as
quantization error. It is impractical in many applications,
however, for two reasons. First, the receiver will usually not
have a perfect analog link to the transmitter (or else the
original signal could be sent in analog form) and hence a
pseudorandom deterministic sequence must be used at both
transmitter and receiver as proposed by Roberts. In this
case, however, there will be no mathematical guarantee that
the quantization error and noise have the properties which
hold for genuinely random i.i.d. dither. Second, subtractive
dither of a signal that indeed resembles a sample function
of a memoryless random process is complicated to imple-
ment, requiring storage of the dither signal, high-precision
arithmetic, and perfect synchronization. As a result, it is of
interest to study the behavior of the quantization noise in a
simple nonsubtractive dithered quantizer. Unlike subtractive
dither, nonsubtractive dither is not capable of making the
reconstruction error independent of the input signal (although
claims to the contrary have been made in the literature). Proper
choice of dithering function can, however, make the condi-
tional moments of the reproduction error independent of the
input signal. This can be practically important. For example,
it can make the perceived quantization noise energy constant
as an input signal fades from high intensity to low intensity,
where otherwise it can (and does) exhibit strongly signal-
dependent behavior. The properties of nonsubtractive dither
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were originally developed in unpublished work by Wright
[542] in 1979 and Brinton [54] in 1984, and subsequently
extended and refined with a variety of proofs [513], [512],
[328], [227]. For any necessary and sufficient
conditions on the characteristic function are known
which ensure that theth moment of the quantization noise

conditional on does not depend
on . A sufficient condition is that the dither signal consists
of the sum of independent uniformly distributed random
variables on . Unfortunately, this conditional
independence of moments comes at the expense of a loss of
fidelity. For example, if then the quantizer noise power
(the mean-squared error) will be

This means that the power in the dither signal is directly added
to that of the quantizer error in order to form the overall
mean-squared error.

In addition to its role in whitening quantization noise and
making the noise or its moments independent of the input,
dithering has played a role in proofs of “universal quantiza-
tion” results in information theory. For example, Ziv [578]
showed that even without high resolution theory, uniform
scalar quantization combined with dithering and vector lossless
coding could yield performance within 0.75 bit/symbol of the
rate-distortion function. Extensions to lattice quantization and
variations of this result have been developed by Zamir and
Feder [565].

F. Quantization for Noisy Channels

The separation theorem of information theory [464], [180]
states that nearly optimal communication of an information
source over a noisy channel can be accomplished by separately
quantizing or source coding the source and channel coding or
error-control coding the resulting encoded source for reliable
transmission over a noisy channel. Moreover, these two coding
functions can be designed separately, without knowledge of
each other. The result is only for point-to-point communica-
tions, however, and it is a limiting result in the sense that large
blocklengths and hence large complexity must be permitted.
If one wishes to perform near the Shannon limit for moderate
delay or blocklengths, or in multiuser situations, it is necessary
to consider joint source and channel codes, codes which jointly
consider quantization and reliable communication. It may not
actually be necessary to combine the source and channel codes,
but simply to jointly design them. There are a variety of
code structures and design methods that have been considered
for this purpose, many of which involve issues of channel
coding which are well beyond the focus of this paper. Here
we mention only schemes which can be viewed as quantizers
which are modified for use on a noisy channel and not those
schemes which involve explicit channel codes. More general
discussions can be found, e.g., in [122].

One approach to designing quantizers for use on noisy
channels is to replace the distortion measure with respect to
which a quantizer is optimized by the expected distortion over
the noisy channel. This simple modification of the distortion

measure allows the channel statistics to be included in an
optimal quantizer design formulation. Recently, the method
has been referred to as “channel-optimized quantization,”
where the quantization might be scalar, vector, or trellis.

This approach was introduced in 1969 by Kurtenbach and
Wintz [304] for scalar quantizers. A Shannon source coding
theorem for trellis encoders using this distortion measure was
proved in 1981 [135] and a Lloyd-style design algorithm for
such encoders provided in 1987 [19]. A Lloyd algorithm for
vector quantizers using the modified distortion measure was
introduced in 1984 by Kumazawa, Kasahara, and Namekawa
[303] and further studied in [157], [152], and [153]. The
method has also been applied to tree-structured VQ [412]. It
can be combined with a maximum-likelihood detector to fur-
ther improve performance and permit progressive transmission
over a noisy channel [411], [523]. Simulated annealing has
also been used to design such quantizers [140], [152], [354].

Another approach to joint source and channel coding based
on a quantizer structure and not explicitly involving typical
channel-coding techniques is to design a scalar or vector
quantizer for the source without regard to the channel, but
then code the resulting indices in a way that ensures that
small (large) Hamming distance of the channel codewords
corresponds to small (large) distortion between the resulting
reproduction codewords, essentially forcing the topology on
the channel codewords to correspond to that of the resulting
reproduction codewords. The codes that do this are often
called index assignments. Several specific index assignment
methods were considered by Rydbeck and Sundberg [448].
DeMarca and Jayant in 1987 [121] introduced an iterative
search algorithm for designing index assignments for scalar
quantizers, which was extended to vector quantization by
Zeger and Gersho [568], who dubbed the approach “pseudo-
Gray” coding. Other index assignment algorithms include
[210], [543], [287]. For binary-symmetric channels and certain
special sources and quantizers, analytical results have been
obtained [555], [556], [250], [501], [112], [351], [42], [232],
[233], [352]. For example, it was shown by Crimminset al.
in 1969 [112] that the index assignment that minimizes mean-
squared error for a uniform scalar quantizer used on a binary-
symmetric channel is the natural binary assignment. However,
this result remained relatively unknown until rederived and
generalized in [351].

When source and channel codes are considered together,
a key issue is the determination of the quantization rate to
be used when the total of number of channel symbols per
source symbol is held fixed. For example, as quantization rate
is increased, the quantization noise decreases, but channel-
induced noise increases because the ability of the channel
code to protect the bits is reduced. Clearly, there is an
optimal choice of quantization rate. Another issue is the
determination of the rate at which overall distortion decreases
in an optimal system as the total number of channel uses per
source symbol increases. These issues have been addressed in
recent papers by Zeger and Manzella [570] and Hochwald and
Zeger [244], which use both exponential formulas produced by
high resolution quantization theory and exponential bounds to
channel coding error probability.
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There are a variety of other approaches to joint source and
channel coding, including the use of codes with a channel
encoder structure optimized for the source or with a special de-
coder matched to the source, using unequal error protection to
better protect more important (lower resolution) reproduction
indices, jointly optimized combinations of source and channel
codes, and combinations of channel-optimized quantizers with
source-optimized channel codes, but we leave these to the
literature as they involve a heavy dose of channel coding ideas.

G. Quantizing Noisy Sources

A parallel problem to quantizing for a noisy channel is
quantizing for a noisy source. The problem can be seen as
trying to compress a dirty source into a clean reproduction, or
as doing estimation of the original source based on a quantized
version of a noise-corrupted version. If the underlying statistics
are known or can be estimated by a training sequence, then
this can be treated as a quantization problem with a modified
distortion measure, where now the distortion between a noise-
corrupted observation of an unseen original and
a reconstruction based on the encoded and decodedis
given as the conditional expectation . The
usefulness of this modified distortion for source-coding noisy
sources was first seen by Dobrushin and Tsybakov (1962)
[134] and was used by Fine (1965) [162] and Sakrison (1968)
[452] to obtain information-theoretic bounds an quantization
and source coding for noisy sources. Berger (1971) [46]
explicitly used the modified distortion in his study of Shannon
source coding theorems for noise-corrupted sources.

In 1970, Wolf and Ziv [537] used the modified distortion
measure for a squared-error distortion to prove that the optimal
quantizer for the modified distortion could be decomposed
into the cascade of a minimum mean-squared error estimator
followed by an optimal quantizer for the estimated original
source. This result was subsequently extended to a more
general class of distortion measures include the input-weighted
quadratic distortion of Ephraim and Gray [145], where a
generalized Lloyd algorithm for design was presented.

Related results and approaches can be found in Witsen-
hausen’s (1980) [535] treatment of rate-distortion theory with
modified (or “indirect”) distortion measures, and in the Occam
filters of Natarajan (1995) [370].

H. Multiple Description Quantization

A topic closely related to quantization for noisy channels
is multiple description quantization. The problem is usually
formulated as a source-coding or quantization problem over
a network, but it is most easily described in terms of packet
communications. In the simplest case, suppose that two pack-
ets of information, each of rate, are transmitted to describe a
reproduction of a single random vector. The encoder might
receive one or the other packet or the two together and wishes
to provide the best reconstruction possible for the bit rate it
receives. This can be viewed as a network problem with one
receiver seeing only one channel, another receiver seeing the
second channel, and a third reciever seeing both channels, and
the goal is that each have an optimal reconstruction for the total

received bitrate. Clearly, one can do no better than having each
packet alone result in in a reproduction with distortion near the
Shannon distortion-rate function while simultaneously
having the two packets together yield a reproduction with
distortion near , but this optimistic performance is in
general not possible. This problem was first tackled in the
information theory community in 1980 by Wolf, Wyner, and
Ziv [536] and Ozarow [401] who developed achievable rate
regions and lower bounds to performance. The results were
extended by Ahlswede (1985) [6], El Gamal and Cover (1982)
[139], and Zhang and Berger (1987) [573].

In 1993, Vaishampayanet al. used a Lloyd algorithm to
actually design fixed-rate [508] and entropy-constrained [509]
scalar quantizers for the multiple description problem. High-
resolution quantization ideas were used to evaluate achievable
performance in 1998 by Vaishampayan and Batllo [510] and
Linder, Zamir, and Zeger [324]. An alternative approach to
multiple-description quantization using transform coding has
also been considered, e.g., in [38] and [211].

I. Other Applications

We have not treated many interesting variations and applica-
tions of quantization, several of which have been successfully
analyzed or designed using the tools described here. Examples
which we would have included had time, space, and patience
been more plentiful include mismatch results for quantizers
designed for one distribution and applied to another, quantizers
designed to provide inputs to classification, detection, or esti-
mation systems, quantizers in multiuser systems such as simple
networks, quantizers implicit in finite-precision arithmetic (the
modern form of roundoff error), and quantization in noise-
shaping analog-to-digital and digital-to-analog converters such
as -modulators. Doubtless we have failed to mention a few,
but this list suffices to demonstrate how rich the theoretical
and applied fields of quantization have become in their half
century of active development.

ACKNOWLEDGMENT

The authors gratefully acknowledge the many helpful com-
ments, corrections, and suggestions from colleagues, students,
and reviewers. Of particular assistance were A. Gersho, B.
Girod, N. Kashyap, T. Linder, N. Moayeri, P. Moo, Y.
Shtarkov, S. Verd́u, M. Vetterli, and K. Zeger.

REFERENCES

[1] E. Abaya and G. L. Wise, “Some notes on optimal quantization,” in
Proc. Int. Conf. Communications, June 1981, vol. 2, pp. 30.7.1–30.7.5.

[2] H. Abut, Vector Quantization(IEEE Reprint Collection). Piscataway,
NJ: IEEE Press, 1990.

[3] J. P. Adoul, C. Collin, and D. Dalle, “Block encoding and its ap-
plication to data compression of PCM speech,” inProc. Canadian
Communications and EHV Conf.(Montreal, Que., Canada, 1978), pp.
145–148.

[4] J.-P. Adoul, J.-L. Debray, and D. Dalle, “Spectral distance measure
applied to the optimum design of DPCM coders withL predictors,” in
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP)
(Denver, CO, 1980), pp. 512–515.

[5] E. Agrell and T. Eriksson, “Optimization of lattices for quantization,”
IEEE Trans. Inform. Theory, vol. 44, pp. 1814–1828, Sept. 1998. This
work also appears in “Lattice-based quantization, Part I” Dept. Inform.



2374 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

Theory, Chalmers Univ. Technol., Goteborg, Sweden, Rep. 17, Oct.
1996.

[6] R. Ahlswede, “The rate-distortion region for multiple descriptions
without excess rate,”IEEE Trans. Inform. Theory, vol. IT-31, pp.
721–726, Nov. 1985.

[7] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transform,”IEEE
Trans. Comput., vol. C-23, pp. 90–93, 1974.

[8] V. R. Algazi, “Useful approximation to optimum quantization,”IEEE
Trans. Commun., vol. COM-14, pp. 297–301, June 1966.

[9] M. R. Anderberg,Cluster Analysis for Applications.San Diego, CA:
Academic, 1973.

[10] J. B. Anderson and J. B. Bodie, “Tree encoding of speech,”IEEE Trans.
Inform. Theory, vol. IT-20, pp. 379–387, 1975.

[11] J. B. Anderson and F. Jelinek, “A 2-cycle algorithm for source coding
with a fidelity criterion,” IEEE Trans. Inform. Theory, vol. IT-19, pp.
77–92, Jan. 1973.

[12] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding
using vector quantization in the wavelet transform domain,” inProc.
IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP)
(Albuquerque, NM, Apr. 1990), pp. 2297–2300.

[13] M. Antonini, M. Barlaud, and P. Mathieu, “Image coding using lat-
tice vector quantization of wavelet coefficients,” inProc. IEEE Int.
Conf. Acoustics, Speech and Signal Processing (ICASSP)(Toronto, Ont.,
Canada, May 1991), vol. 4, pp. 2273–2276.

[14] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding
using wavelet transform,”IEEE Trans. Image Processing, vol. 1, pp.
205–220, Apr. 1992.

[15] R. Aravind and A. Gersho, “Low-rate image coding with finite-state
vector quantization,” inProc. Int. Conf. Acoustics, Speech and Signal
Processing (ICASSP), (Tokyo, Japan, 1986), pp. 137–140.

[16] , “Image compression based on vector quantization with finite
memory,” Opt. Eng., vol. 26, pp. 570–580, July 1987.

[17] D. S. Arnstein, “Quantization error in predictive coders,”IEEE Trans.
Commun., vol. COM-23, pp. 423–429, Apr. 1975.

[18] E. Ayan̆oglu and R. M. Gray, “The design of predictive trellis waveform
coders using the generalized Lloyd algorithm,”IEEE Trans. Commun.,
vol. COM-34, pp. 1073–1080, Nov. 1986.

[19] , “The design of joint source and channel trellis waveform
coders,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 855–865, Nov.
1987.

[20] R. L. Baker and R. M. Gray, “Image compression using nonadaptive
spatial vector quantization,” inConf. Rec. 16th Asilomar Conf. Circuits
Systems and Computers(Asilomar, CA, Nov. 1982), pp. 55–61.

[21] , “Differential vector quantization of achromatic imagery,” in
Proc. Int. Picture Coding Symp., Mar. 1983, pp. 105–106.

[22] M. Balakrishnan, W. A. Pearlman, and L. Lu, “Variable-rate tree-
structured vector quantizers,”IEEE Trans. Inform. Theory, vol. 41, pp.
917–930, July 1995.

[23] A. S. Balamesh, “Block-constrained methods of fixed-rate entropy
constrained quantization,” Ph.D. dissertation, Univ. Michigan, Ann
Arbor, Jan. 1993.

[24] A. S. Balamesh and D. L. Neuhoff, “New methods of fixed-rate entropy-
coded quantization,” inProc. 1992 Conf. Information Sciences and
Systems(Princeton, NJ, Mar. 1992), pp. 665–670.

[25] , Unpublished notes, 1992.
[26] , “Block-constrained quantization: Asymptotic analysis,”DI-

MACS Ser. Discr. Math. and Theoretical Comput. Sci., vol. 14, pp.
67–74, 1993.

[27] , “A new fixed-rate quantization scheme based on arithmetic
coding,” in Proc. IEEE Int. Symp. Information Theory(San Antonio,
TX, Jan. 1993), p. 435.

[28] , “Block-constrained methods of fixed-rate entropy-coded, scalar
quantization,”IEEE Trans. Inform. Theory, submitted for publication.

[29] G. B. Ball, “Data analysis in the social sciences: What about the de-
tails?,” in Proc. Fall Joint Computing Conf. Washington, DC: Spartan,
1965, pp. 533–559.
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