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Abstract—The history of the theory and practice of quan- Yo Y1 Y2 Y3 Y4
tization dates to 1948, although similar ideas had appeared 4 et 4
in the literature as long ago as 1898. The fundamental role
of quantization in modulation and analog-to-digital conversion
was first recognized during the early development of pulse- Fig. 1. A nonuniform quantizerzg = oo, a5 = co.

code modulation systems, especially in the 1948 paper of Oliver,

Pierce, and Shannon. Also in 1948, Bennett published the first example ifs; = (i—1/2, i+1/2] andy; = for all integers:.

high-r_eso_lution z_;\nalysis of que_mtization and an exact analysis of More generally, the cells might take the fosa = (a;_, a;]
guantization noise for Gaussian processes, and Shannon pub- , . \ :
lished the beginnings of rate distortion theory, which would Where thes;’s, which are calledhresholdsform an increasing
provide a theory for quantization as analog-to-digital conversion sequence. The width of a cef); is its lengtha; — a;_1. The
and as data compression. Beginning with these three papers of function ¢(z) is often called thequantization rule A simple
fity years ago, we trace the history of quantization from its quantizer with five reproduction levels is depicted in Fig. 1 as
?r:g't?}seé?;oggg trg'jn‘;egf?ﬁé %%%J\I,aer Séﬁ\éegrg:ﬁi;iunréd?é?;ﬁmg{fegf a collection of infcervals bordered by thresholds along with the
for quantization. levels for each interval.

A quantizer is said to baniformif, as in the roundoff case,
the levelsy; are equispaced, sa¥ apart, and the thresholds
a; are midway between adjacent levels. If an infinite number
of levels are allowed, then all cells; will have width equal

I. INTRODUCTION to A, the separation between levels. If only a finite number of
HE dictionary Random Housedefinition of quantization 1€vels are allowed, then all but two cells will have widk

Tis the division of a quantity into a discrete numbefnd the outermost cells will be semi-infinite. An example of a
of small parts, often assumed to be integral multiples gfiform quantizer with cell widthA andV = 8 levels is given
a common quantity. The oldest example of quantization i Fig. 2. Given a uniform quantizer with cell width, the
rounding off, which was first analyzed by Sheppard [468F9ion of the input space W|thu$_/2 of some quantizer level
for the application of estimating densities by histograms. Ar§ called thegranular regionor simply thesupportand that
real numberz can be rounded off to the nearest integer, s&ptside (where the quantizer error is unbounded) is called the
q(z), with a resulting quantization errer= g(z) — = so that Overloador saturationregion. More generally, the support or
g(z) = z + e. More generally, we can define a quantizer a@ranular region of a nonuniform quantizer is the region of the
consisting of a set of intervals cellsS = {S;; i € 7}, where Input space within a relatively small distance of some level,
the index sef is ordinarily a collection of consecutive integerénd the overload region is the complement of the granular
beginning with0 or 1, together with a set ofeproduction region. To be concrete, “small” might be defined as half the
valuesor pointsor levelsC = {y;; i € T}, so that the overall Width of the largest cell of finite width.
quantizerg is defined byg(z) = y; for = € S;, which can be ~_ The quality of a quantizer can be measured by the goodness

a ag az a4

Index Terms—High resolution theory, rate distortion theory,
source coding, quantization.

expressed concisely as of the resulting reproduction in comparison to the original.
One way of accomplishing this is to define a distortion

q(z) = Z yils, () (1) measured(x, ) that quantifies cost or distortion resulting

f from reproducingz asZ and to consider the average distor-

o ] ] ) tion as a measure of the quality of a system, with smaller
where the indicator functions(z) is 1 if = € S and 0 4yerage distortion meaning higher quality. The most common
otherwise. For this definition to make sense we assumethajjisiortion measure is the squared erddr, &) = |z — &2,
is a partition of the real line. That is, the cells are disjoint angl,: we shall encounter others later. In practice, the average
exhaustive. The general definition reduces to the rounding offj pe a sample average when the quantizer is applied to a
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Fig. 2. A uniform quantizer.

If the distortion is measured by squared ertb{g) becomes techniques, and the theory of their design and performance.
the mean squared error (MSE), a special case on which e example, for each type of technique we will be interested
shall mostly focus. in its operational distortion-rate function, which is defined
It is desirable to have the average distortion as small &5 be the least distortion of any quantizer of the given
possible, and in fact negligible average distortion is achievalilgpe with rate R or less. We will also be interested in the
by letting the cells become numerous and tiny. There isbe&st possible performance amoali quantizers. Both as a
cost in terms of the number of bits required to describe tipeeview and as an occasional benchmark for comparison, we
guantizer output to a decoder, however, and arbitrarily reliabigormally define the class of all quantizers as the class of
reproduction will not be possible for digital storage anduantizers that can 1) operate on scalars or vectors instead of
communication media with finite capacity. A simple methodnly on scalars (vector quantizers), 2) have fixed or variable
for quantifying the cost for communications or storage is t@te in the sense that the binary codeword describing the
assume that the quantizer “codes” an inpuinto a binary quantizer output can have length depending on the input,
representation or channel codeword of the quantizer indexand 3) be memoryless or have memory, for example, using
specifying which reproduction level should be used in thdifferent sets of reproduction levels, depending on the past.
reconstruction. If there ar& possible levels and all of the In addition, we restrict attention to quantizers that do not
binary representations or binary codewords have equal lengtitange with time. That is, when confronted with the same
(a temporary assumption), the binary vectors will negd N input and the same past history, a quantizer will produce
(or the next larger integeflog NV, if log N is not an integer) the same output regardless of the time. We occasionally use
components or bits. Thus one definition of tia¢e of the code the termlossy source coder simply codeas alternatives to
in bits per input sample is guantizer The rate is now defined as the average number of
bits per source symbol required to describe the corresponding
R(q) = log N. (3) reproduction symbol. We informally generalize the operational

A quantizer with fixed-length binary codewords is said to hayistortion-rate functiord(%2) providing the best performance
fixed ratebecause all quantizer levels are assumed to hafp Scalar quantizers, @(2), which is defined as the infimum
binary codewords of equal length. Later this restriction wiff the average distortion over all quantization techniques
be weakened. Note that all logarithms in this paper will haJith rate i or less. Thusé(R) can be viewed as the best
base2, unless explicitly specified otherwise. poss_lble p(_arformance over all quantizers with no constraints
In summary, the goal of quantization is to encode the def& dimension, structure, or complexity.

from a source, characterized by its probability density function, S€ction Il begins with a historical tour of the development
into as few bits as possible (i.e., with low rate) in such a wzﬂf the theory and practice of quantization over the past fifty

that a reproduction may be recovered from the bits with as hifa"s: & period encompassing almost the entire literature on
quality as possible (i.e., with small average distortion). Clearf§f!® Subject. Two complementary approaches dominate the

there is a tradeoff between the two primary performand¥sStory and present state of the theory, .and three of the key
measures: average distortion (or simgligtortion, as we will Papers appeared in 1948, two of them in Volume 27 (1948)
often abbreviate) and rate. This tradeoff may be quantified @the Bell Systems Technical Journdlikely the approach
the operational distortion-rate functiodi( &), which is defined Pest known to the readers of thes®ANSACTIONS is that

to be the least distortion of any scalar quantizer with tte ©f rate-distortion theory or source coding with a fidelity
or less. That is, criterion—Shannon’s information-theoretic approach to source

coding—which was first suggested in his 1948 paper [464]
6(Ry= inf  D(qg). (4) providing the foundations of information theory, but which

¢ Rk was not fully developed until his 1959 source coding paper

Alternatively, one can define the operatiomate-distortion [465]. The second approach is that of high resolution (or high-

functionr(D) as the least rate of any fixed-rate scalar quantizeate or asymptotic) quantization theory, which had its origins
with distortion D or less, which is the inverse é{R). in the 1948 paper on PCM by Oliver, Pierce, and Shannon
We have so far describestalar quantization with fixed-rate [394], the 1948 paper on quantization error spectra by Bennett

coding a technique whereby each data sample is independerd$], and the 1951 paper by Panter and Dite [405]. Much of

encoded into a fixed number of bits and decoded intothe history and state of the art of quantization derives from

reproduction. As we shall see, there are many alternative quémese seminal works.

tization techniques that permit a better tradeoff of distortion In contrast to these two asymptotic theories, there is also a
and rate; e.g., less distortion for the same rate, or vice versmall but important collection of results that are not asymptotic
The purpose of this paper is to review the development of suich nature. The oldest such results are the exact analyses
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for special nonasymptotic cases, such as Clavier, Pantir,Fixed-Rate Scalar Quantization:
and Grieg’'s 1947 analysis of the spectra of the quantizati®CM and the Origins of Quantization Theory

error for uniformly quantized sinusoidal signals [99], [100], gty guantization and source coding with a fidelity crite-
and Bennett's 1948 derivation of the power spectral dens%n have their origins in pulse-code modulation (PCM), a

of a uniformly quantized Gaussian random process MEChnique patented in 1938 by Reeves [432], who 25 years

The_ mos_t |mportant .n_onasymptotlc_results, however., are Ner wrote a historical perspective on and an appraisal of the
basic optimality conditions and iterative-descent algorithms fﬂﬂt re of PCM with Deloraine [120]. The predictions were

quantizer design, such as first developed by Steinhaus (1959 prisingly accurate as to the eventual ubiquity of digital

[480] and Lloyd (1957) [330], and later popularized by Max,ooch and video. The technique was first successfully imple-

(19060) [34?]} th ¢ tion is to introd in histori rlnented in hardware by Black, who reported the principles and
ur goal In the next section 1S 1o ntroduce in nis OrlcaImplementation in 1947 [51], as did another Bell Labs paper

context many of the key ideas of quantization that originat% Goodall [209]. PCM was subsequently analyzed in detail

in classical works and evolved over the past 50 years, alhd popularized by Oliver, Pierce, and Shannon in 1948 [394].

n th'e remaining sections tolsuryey selectively and.m MOEEM was the firstigital technique for conveying an analog
detail a variety of results which illustrate both the historical formation signal (principally telephone speech) over an

development and the state of the field. Section Il will presem ) 4
) . i . - “analog channel (typically, a wire or the atmosphere). In other
basic background material that will be needed in the remainder o : . . :
: . - . wprds, it is a modulation technique, i.e., an alternative to AM,
of the paper, including the general definition of a quantizer a : . .
) oS . . , and various other types of pulse modulation. It consists
the basic forms of optimality criteria and descent algorithms

Some such material has already been introduced and m81; hree main components: a sampler (including a prefilter), a

will be introduced in Section Il. However, for completenessquamizer (with a fixed-rate binary encodgr), andfi binary pulse
Section Il will be largely self-contained. Section IV review odulator. The sampler converts a continuous-time waveform

the development of quantization theories and compares fH{¢) into a sequence of sample = x(n/f,), wheref, is the

approaches. Finally, Section V describes a number of SpeCF%nplingf_Trequt_arr\]cy. T?fef sampler is ortiinr?rilf)_/l pre_ce:Sedl by a
quantization techniques. owpass filter with cutoff frequency, /2. If the filter is ideal,

In any review of a large subject such as quantization thef2e"n the Shannon-Nyquist or Shannon-Whittaker—Kotelnikov
e%;-leplmg theorem ensures that the lowpass filtered signal can,

is no space to discuss or even mention all work on the subjett.” - 5
Though we have made an effort to select the most importdfitPrinciple, be perfectly recovered by appropriately filtering

work, no doubt we have missed some important work due {38 Samples. Quantization of the samples renders this an ap-
bias, misunderstanding, or ignorance. For this we apologifsoXimation, with the MSE of the recovered waveform being,

both to the reader and to the researchers whose work we rR@proximately, the sum of the MSE of the quantiz&f) and
have neglected. thé high-frequency power removed by the lowpass filter. The

binary pulse modulator typically uses the bits produced by the
II. HISTORY guantizer to determine the amplitude, frequency, or phase of a

The history of quantization often takes on several para||gi|nusoidal parrier queform. In the evolutionary development
paths, which causes some problems in our clustering of topi€§.modulation techniques it was found that the performance
We follow roughly a chronological order within each and orde?f Pulse-amplitude modulation in the presence of noise could
the paths as best we can. Specifically, we will first track tHee improved if the samples were quantized to the nearest of
design and analysis of practical quantization techniques @nSet of NV levels before modulating the carrier (64 equally
three paths: fixed-rate scalar quantization, which leads directiyaced levels was typical). Though this introduces quantization
from the discussion of Section I, predictive and transfor@or, deciding which of theV levels had been transmitted
coding, which adds linear processing to scalar quantizationifhthe presence of noise could be done with such reliability
order to exploit source redundancy, and variable-rate quanti#at the overall MSE was substantially reduced. Reducing the
tion, which uses Shannon’s lossless source coding techniqiiggber of quantization level¥ made it even easier to decide
[464] to reduce rate. (Lossless codes were originally call&ich level had been transmitted, but came at the cost of a
noiselesy Next we follow early forward-looking work on considerable increase in the MSE of the quantizer. A solution
vector quantization, including the seminal work of Shannofas to fix N at a value giving acceptably small quantizer
and Zador, in which vector quantization appears more to MSE and to binary encode the levels, so that the receiver had
a paradigm for analyzing the fundamental limits of quantizénly to make binary decisions, something it can do with great
performance than a practical coding technique. A surprisitigliability. The resulting system, PCM, had the best resistance
amount of such vector quantization theory was developed ota-noise of all modulations of the time.
side the conventional communications and signal processingAs the digital era emerged, it was recognized that the
literature. Subsequently, we review briefly the developmergampling, quantizing, and encoding part of PCM performs
from the mid-1970’s to the mid-1980’s which mainly conceran analog-to-digital (A/D) conversion, with uses extending
the emergence of vector quantization as a practical techniqoaich beyond communication over analog channels. Even in
Finally, we sketch briefly developments from the mid-1980#e communications field, it was recognized that the task of
to the present. Except where stated otherwise, we presuamalog-to-digital conversion (and source coding) should be
squared error as the distortion measure. factored out of binary modulation as a separate task. Thus
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PCM is now generally considered to just consist of samplingniform quantizer. Bennett showed that in this case
guantizing, and encoding; i.e., it no longer includes the binary A2 f(z)
pulse modulation. D(q) —/ 5 A (5)
Although quantization in the information theory literature 12.) g*(x)
is generally considered as a form of data compression, \Wﬁereg(x) = dG(z)/dz, A is the cellwidth of the uniform
use for modulation or A/D conversion was originally viewe@uantizer, and the integral is taken over the granular range of
as data expansion or, more accurately, bandwidth expansigis input. (The constant/12 in the above assumes thét
For example, a speech waveform occupying roughly 4 kH#aps to the unit intervdDb, 1].) Since, as Bennett pointed out,
would have a Nyquist rate of 8 kHz. Sampling at the Nyquiginy nonuniform quantizer can be implemented as a compander,
rate and quantizing at 8 bits per sample and then modulatifgs result, often referred to as “Bennett’s integral,” provides
the resulting binary pulses using amplitude- or frequency-shifh asymptotic approximation for any quantizer. It is useful to
keying would yield a signal occupying roughly 64 kHz, gump ahead and point out thatcan be interpreted, as Lloyd
16-fold increase in bandwidth! Mathematically this constitutegould explicitly point out in 1957 [330], as a constant times

compression in the sense that a continuous waveform requiridgquantizer point-density function(z),” that is, a function
an infinite number of bits is reduced to a finite number of bitgyith the property that for any regiod

but for practical purposes PCM is not well interpreted as a
compression scheme. number of quantizer levels i ~ N/ A(x)dz.  (6)

In an early contribution to the theory of quantization, 5
Clavier, Panter, and Grieg (1947) [99], [100] applied Rice’since integrating\(x) over a region gives the fraction of
characteristic function or transform method [434] to providguantizer reproduction levels in the region, it is evident that
exact expressions for the quantization error and its moments:) is normalized so tha}QR A(z)dz = 1. It will also prove
resulting from uniform quantization for certain specific inputsyseful to consider the unnormalized quantizer point density
including constants and sinusoids. The complicated sumS/qrx), which when integrated ove# gives the total number of
Bessel functions resembled the early analyses of anoth@fels withinS rather than the fraction. In the current situation
nonlinear modulation technique, FM, and left little hope fOA(:L') = N\(z), but the unnormalized density will generalize
general closed-form solutions for interesting signals. to the case wher&V is infinite.

The first general contributions to quantization theory came Rewriting Bennett’s integral in terms of the point-density
in 1948 with the papers of Oliver, Pierce, and Shannon [39nction yields its more common form
and Bennett [43]. As part of their analysis of PCM for 11 (@)
communications, they developed the oft-quoted result that for D(q) = — = S da. (7)
large rate or resolution, a uniform quantizer with cell width 12 N A%(z)
A yields average distortiod(g) = A?/12. If the quantizer The idea of a quantizer point-density function will generalize
has N levels and rate® = log N, and the source has inputto vectors, while the compander approach will not in the sense

range (orsuppor) of width A4, so thatA = A/N is the natural that not all vector quantizers can be represented as companders
choice, then the\? /12 approximation yields the familiar form [192].

R

for the signal-to-noise ratio (SNR) of Bennett also demonstrated that, under assumptions of high
resolution and smooth densities, the quantization error behaved
10 log; var (X) = = ¢+ 20R logy, 2 much like random “noise™ it had small correlation with the
Ef(q(X) — X)?] signal and had approximately a flat (“white”) spectrum. This
~c¢+6R dB led to an “additive-noise” model of quantizer error, since with

these properties the formutg X) = X + [¢(X) — X] could

showing that for large rate, the SNR of uniform quantizatiobe interpreted as representing the quantizer output as the sum
increases 6 dB for each one-bit increase of rate, which is ofteha signal and white noise. This model was later popularized
referred to as the “6-dB-per-bit rule.” Tha? /12 formula is by Widrow [528], [529], but the viewpoint avoids the fact
considered aigh-resolutionformula; indeed, the first suchthat the “noise” is in fact dependent on the signal and the
formula, in that it applies to the situation where the cellapproximations are valid only under certain conditions. Signal-
and average distortion are small, and the rate is large, so timatependent quantization noise has generally been found to
the reproduction produced by the quantizer is quite accurabe. perceptually desirable. This was the motivation for ran-
The A?/12 result also appeared many years earlier (albeit @omizing the action of quantization by the addition of a
somewhat disguised form) in Sheppard’s 1898 treatment [468ither signal, a method introduced by Roberts [442] as a

Bennett also developed several other fundamental resutisans of making quantized images look better by replacing
in quantization theory. He generalized the high-resolutiche artifacts resulting from deterministic errors by random
approximation for uniform quantization to provide an approxioise. We shall return to dithering in Section V, where it
imation to D(q) for companders, systems that preceded waill be seen that suitable dithering can indeed make exact
uniform quantizer by a monotonic smooth nonlinearity callethe Bennett approximations of uniform distribution and signal
a “compressor,” sa¥/, and used the inverse nonlinearity wheindependence of the overall quantizer noise. Bennett also used
reconstructing the signal. Thus the output reproductigiven a variation of Rice’s method to derive an exact computation
an inputz was given byz = G~!(¢(G(z)), whereq is a of the spectrum of quantizer noise when a Gaussian process
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is uniformly quantized, providing one of the very few exacBennett's integral, the optimal compressor function, and the
computations of quantization error spectra. Panter-Dite formula.

In 1951 Panter and Dite [405] developed a high-resolution Also in 1957, Lloyd [330] made an important study of
formula for the distortion of a fixed-rate scalar quantizer usinguantization with three main contributions. First, he found
approximations similar to Bennett's, but without reference toecessary and sufficient conditions for a fixed-rate quantizer to
Bennett. They then used variational techniques to minimibe locally optimal; i.e., conditions that if satisfied implied that
their formula and found the following formula for the operasmall perturbations to the levels or thresholds would increase
tional distortion-rate function of fixed-rate scalar quantizationtistortion. Any optimal quantizer (one with smallest distortion)

for large values ofR will necessarily satisfy these conditions, and so they are often
. 3 called theoptimality conditionsor the necessary conditions
§(R) = i(/ fl/3($) da:) 9—2R 8) Simply stated, _I_ond's optimality condition§ are th_qt for a
12 fixed-rate quantizer to be optimal, the quantizer partition must

o . be optimal for the set of reproduction levels, and the set of
which is now called the Panter and Dite formtilAs part of reproduction levels must be optimal for the partition. Lloyd

their derivation, they demonstrated that an optimal quantizgived these conditions straightforwardly from first principles,

resulted in roughly equal contributions to total average digjithout recourse to variational concepts such as derivatives.

tortion from each quantization cell, a result later called theyr the case of mean-squared error, the first condition implies

“partial ,dis_tortion theorem.” Though they did not rederivgy minimum distance or nearest neighbor quantization rule,
Benneit's integral, they had in effect derived the optimalqssing the closest available reproduction level to the source

compressor function for a compander, or, equivalently, th&mple being quantized, and the second condition implies that
optimal quantizer point density the reproduction level corresponding to a given cell is the

£ /3(33) conditional expectation otentroid of the source value given
M) = ———. (9) that it lies in the specified cell; i.e., it is the minimum mean-
/f1/3(a:’) dz’! squared error estimate of the source sample. For some sources

there are multiple locally optimal quantizers, not all of which

Indeed, substituting this point density into Bennett's integr@fe globally optimal. o N
and using the fact thak = log NV yields (8). As an example, Second, based on his optimality conditions, Lloyd devel-

if the input density is Gaussian with varianed, then oped an iterative descent algorithm for designing quantizers for
a given source distribution: begin with an initial collection of

§(R) = 1 63022 2R (10) reproduction levels; optimize the partition for these levels by
12 using a minimum distortion mapping, which gives a partition

of the real line into intervals; then optimize the set of levels for

implies that the signal-to-noise ratio increases according to ﬁ%‘& pgrtltlon by replacing th_e Ol.d Ievel; by the c_entr0|ds of the
6-dB-per-bit rule. Virtually all other high resolution formulasPartition cell_s. The alternatlon_ls continued until convergence
to be given later will also obey this rule. However, the constz;hq a local, i not global, optimum. Lloyd referred to this

that adds t@ R will vary with the source and quantizer bein esign algorithm as.“Me.thod " He_ also .developed a M?”.‘F’d
considered. | based on the optimality properties. First choose an initial

The Panter-Dite formula fos(R) can also be derived smallest reproduction level. This determines the cell threshold

directly from Bennett’s integral using variational methods, ig the right, which in turn implies the next larger reproduction

did Lloyd (1957) [330], Smith (1957) [474]. and, h lat evel, and so on. This approach alternately produces a level
'd Lloyd ( ) [330], Smith ( ) [474], and, muc aeﬁgnd a threshold. Once the last level has been chosen, the

The fact that for large rate§ R) decreases witlR as2~2%

without apparent knowledge of earlier work, Roe (1964) [44

It can also be derived without using variational methods initial level can then be rechosen to reduce distortion and

application of Hlder’s inequality to Bennett's integral [222],t e algorithm continues. Lloyd provided design examples

with the additional benefit of demonstrating that the claimefﬁr uniform, Gaussian, and Lapla_lcian ra_ndom v_ariables a_nd
minimum is indeed global. Though not known at the time, ﬁhoweql tha_t the results were consistent W|tl_1 'Fhe hlgh_resolunon
turns out that for a Gaussian source with independent and id@RProximations. Although Method Il would initially gain more
tically distributed (i.i.d.) samples, the operational distortiorROPularity when rediscovered in 1960 by Max [349], it is
rate function given above is+y/3/2 = 2.72 times larger Method | that _easny (_axtends to vector quantizers and many
than8(R), the least distortion achievable by any quantizaticifP€S Of quantizers with structural constraints. _
technique with ratek or less. (It was not until Shannon’s 1959 Third, motivated by the work of Panter and Dite but
paper [465] thab(R) was known.) Equivalently, the induceg@PParently unaware of that of Bennett or Smith, Lloyd re-
signal-to-noise ratio is 4.35 dB less than the best possible, d5ived Bennett's integral and the Panter-Dite formula based
for a fixed distortionD the rate is 0.72 bits/sample larger tha®" the concept of point-density function. _Th'_s was a crltlcally,
that achievable by the best quantizers. important step for subsequent generalizations of Bennett's
In 1957, Smith [474] re-examined companding and pcnntegral to vector quantizers. He also showed directly that

Among other things, he gave somewnhat cleaner derivations'df Situations where the global optimum is the only local
optimum, quantizers that satisfy the optimality conditions

1They also indicated that it had been derived earlier by P. R. Aigrain. have, asymptotically, the optimal point density given by (9).
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Unfortunately, Lloyd’s work was not published in an[119] used variational techniques to consider optimal group-
archival journal at the time. Instead, it was presented iaig of Gaussian data with respect to average squared error.
the 1957 Institute of Mathematical Statistics (IMS) meetingukaszewicz and H. Steinhaus [336] (1955) developed what
and appeared in print only as a Bell Laboratories Technicak now consider to be the Lloyd optimality conditions using
Memorandum. As a result, its results were not widely knowvariational techniques in a study of optimum go/no-go gauge
in the engineering literature for many years, and marsets (as acknowledged by Lloyd). Cox in 1957 [111] also
were independently rediscovered. All of the independederived similar conditions. Some additional early work, which
rediscoveries, however, used variational derivations, rathean now be seen as relating to vector quantization, will be
than Lloyd’s simple derivations. The latter were essential foeviewed later [480], [159], [561].
later extensions to vector quantizers and to the development of o .
many quantizer optimization procedures. To our knowledg%; Scalar Quantization with Memory
the first mention of Lloyd’s work in the IEEE literature came in It was recognized early that common sources such as
1964 with Fleischer’s [170] derivation of a sufficient conditiorspeech and images had considerable “redundancy” that scalar
(namely, that the log of the source density be concave) in ordgrantization could not exploit. The term “redundancy” was
that the optimal quantizer be the only locally optimal quantizeepommonly used in the early days and is still popular in some
and consequently, that Lloyd's Method | yields a globallpf the quantization literature. Strictly speaking, it refers to
optimal quantizer. (The condition is satisfied for commothe statistical correlation or dependence between the samples
densities such as Gaussian and Laplacian.) Zador [561] lefdsuch sources and is usually referred to raemoryin
referred to Lloyd a year earlier in his Ph.D. dissertation, e information theory literature. As our current emphasis is
be discussed later. historical, we follow the traditional language. While not dis-

Later in the same year in another Bell Telephone Laboratpting the performance of scalar quantizers, such redundancy
ries Technical Memorandum, Goldstein [207] used variationeduld be exploited to attain substantially better rate-distortion
methods to derive conditions for global optimality of a scalgrerformance. The early approaches toward this end combined
quantizer in terms of second-order partial derivatives witinear processing with scalar quantization, thereby preserving
respect to the quantizer levels and thresholds. He also providlee simplicity of scalar quantization while using intuition-

a simple counterintuitive example of a symmetric density fdrased arguments and insights to improve performance by
which the optimal quantizer was asymmetric. incorporating memory into the overall code. The two most

In 1959, Shtein [471] added terms representing overlo&mportant approaches of this variety were predictive coding
distortion to theA? /12 formula and to Bennett's integral andand transform coding. A shared intuition was that a prepro-
used them to optimize uniform and nonuniform quantizersessing operation intended to make scalar quantization more
Unaware of prior work, except for Bennett's, he rederived thefficient should “remove the redundancy” in the data. Indeed,
optimal compressor characteristic and the Panter—Dite formuta.this day there is a common belief that data compression

In 1960, Max [349] published a variational proof of thds equivalent to redundancy removal and that data without
Lloyd optimality properties forth-power distortion measures,redundancy cannot be further compressed. As will be discussed
rediscovered Lloyd’s Method I, and numerically investigatethiter, this belief is contradicted both by Shannon’s work,
the design of fixed-rate quantizers for a variety of inpwhich demonstrated strictly improved performance using vec-
densities. tor quantizers even for memoryless sources, and by the early

Also in 1960, Widrow [529] derived an exact formula for thevork of Fejes Toth (1959) [159]. Nevertheless, removing
characteristic function of a uniformly quantized signal wheredundancy leads to much improved codes.
the quantizer has an infinite number of levels. His results Predictive quantization appears to originate in the 1946
showed that under the condition that the characteristic functidalta modulation patent of Derjavitch, Deloraine, and Van
of the input signal be zero when its argument is greatbfierlo [129], but the most commonly cited early references are
than /A, the moments of the quantized random variabl@utler's patent [117] 2605361 on “Differential quantization
are the same as the moments of the signal plus an additdtfecommunication signals” and on DeJager’s Philips technical
signal-independent random variable uniformly distributed aeport on delta modulation [128]. Cutler stated in his patent
(—=A/2, A/2]. This has often been misinterpreted as sayirtpat it “is the object of the present invention to improve the
that the quantized random variable can be approximated eiciency of communication systems by taking advantage of
being the input plus signal-independent uniform noise, @rrelation in the signals of these systems” and Derjawitich
clearly false statement since the quantizer egrfgk) — X  al. also cited the reduction of redundancy as the key to the re-
is a deterministic function of the signal. The “bandlimitedtuction of quantization noise. In 1950, Elias [141] provided an
property of the characteristic function implies from Fourieinformation-theoretic development of the benefits of predictive
transform theory that the probability density function mustoding, but the work was not published until 1955 [142]. Other
have infinite support since a signal and its transform canredrly references include [395], [300], [237], [511], and [572].
both be perfectly bandlimited. In particular, [511] claims Bennett-style asymptotics for high-

We conclude this subsection by mentioning early wonesolution quantization error, but as will be discussed later,
that appeared in the mathematical and statistical literatigech approximations have yet to be rigorously derived.
and which, in hindsight, can be viewed as related to scalarFrom the point of view of least squares estimation theory, if
guantization. Specifically, in 1950-1951 Dalenatsal. [118], one were to optimally predict a data sequence based on its past
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called aprediction gain [350], [396], [482], [397], [265].
Analyses of this form usually claim that under high-resolution
conditions the distribution of the prediction error approaches
that of the error when predictions are based on past source
samples rather than past reproductions. However, it is not clear
that the accuracy of this approximation increases sufficiently
rapidly with finer resolution to ensure that the difference
between the operational distortion-rate functions of the two
types of prediction errors is small relative to their values,
which are themselves decreasing as the resolution becomes
. finer. Indeed, it is still an open question whether this type
Binary | in o €n +® % of analysi§, which typically uses Bennett and Panter-Dite
Decoder \]/i ’| n formulas, is asymptotically correct. Nevertheless, the results
X

in Binary
Encoder

P

Encoder

of such high resolution approximations are widely accepted
and often compare well with experimental results [156], [265].
Assuming that they give the correct answer, then for large
Decoder rates and a stationary, Gaussian source with memory, the
Fig. 3. Predictive quantizer encoder/decoder. distortion of an optimized DPCM quantizer is less than that
of a scalar quantizer by the factof? /02, whereo? is the
. . variance of the source antf is the one-step prediction error;
in the sense of minimizing the mean-squared error, then e '1he smallest MSE of any prediction of one sample based
resulting error or residual or innovations sequence would pg previous samples. It turns out that this exce®d®) by the
uncorrelated and it would have the minimum possible variancg,me factor by which the distortion of optimal fixed-rate scalar
To permit reconstruction in a coded system, however, Q@ aniization exceedsR) for a memoryless Gaussian source.
prediction must be based on past reconstructed samples ﬁ'éﬂce, it appears that DPCM does a good job of exploiting

not true samples. This is accomplished by placing a quantizgfy,rce memory given that it is based on scalar quantization,
inside a prediction loop and using the same predictor to decag€east under the high-resolution assumption.

the signal. A simple predictive quantizer or differential pL_JIse- Because it has not been rigorously shown that one may
coded modulator (DPCM) is depicted in Fig. 3. If the predictogpply Bennett's integral or the Panter—Dite formula directly
is simply the last sample and the quantizer has only one i, the prediction error, the analysis of such feedback quan-
the system becomes a delta-modulator. Predictive quantizgsgtion systems has proved to be notoriously difficult, with
are considered to hawamemoryin that the quantization of a yagits limited to proofs of stability [191], [281], [284], i.e.,
sample depends on previous samples, via the feedback log@ymptotic stationarity, to analyses of distortion via Hermite
Predictive quantizers have been extensively developed, Bm nomial expansions for Gaussian processes [124], [473],
example there are many adaptive versions, and are widely uﬂe% [346], [241], [262], [156], [189], [190], [367]-[369],
in speech and video coding, where a number of standards pr¢3), to analyses of distortion when the source is a Wiener
based on them. In speech coding they form the basis of ITgrocess [163], [346], [240], and to exact solutions of the
G.721, 722, 723, and 726, and in video coding they form th@nlinear difference equations describing the system and hence
basis of the interframe coding schemes standardized in faedescriptions of the output sequences and their moments,
MPEG and H.26X series. Comprehensive discussions mayih€luding power spectral densities, for constant and sinusoidal
found in books [265], [374], [196], [424], [50], and [458], assignals and finite sums of sinusoids using Rice’s method,
well as survey papers [264] and [198]. results which extend the work of Panter, Clavier, and Grieg
Though decorrelation was an early motivation for predictivie) quantizers inside a feedback loop [260], [71], [215], [216],
quantization, the most common view at present is that tfie2]. Conditions for use in code design resembling the Lloyd
primary role of the predictor is to reduce the variance @fptimality conditions have been studied for feedback quanti-
the variable to be scalar-quantized. This view stems from thation [161], [203], [41], but the conditions are not optimality
facts that a) it is the prediction errors rather than the sourgenditions in the Lloyd sense, i.e., they are not necessary
samples that are quantized, b) the overall quantization erg@nditions for a quantizer within a feedback loop to yield the
precisely equals that of the scalar quantizer operating on tinimum average distortion subject to a rate constraint. We
prediction errors, c) the operational distortion-rate functiofill return to this issue when we consider finite-state vector
6(R) for scalar quantization is proportional to variance (morguantizers. There has also been work on the optimality of
precisely, a scaling of the random variable being quantizedrtain causal coding structures somewhat akin to predictive or
by a factor a results in a scaling of§(R) by a?), and feedback quantization [331], [414], [148], [534], [178], [381],
d) the density of the prediction error is usually sufficiently521].
similar in form to that of the source that its operational Transform codingis the second approach to exploiting
distortion-rate function is smaller than that of the originaledundancy by using scalar guantization with linear prepro-
source by, approximately, the ratio of the variance of theessing. Here, the source samples are collected into a vector of,
source to that of the prediction error, a quantity that is oftesay, dimensiork that is multiplied by an orthogonal matrix (an

n r
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X Y Vv X variances of the components of the source vector Apd
is its &k x k covariance matrix. Note that this reduction in
- distortion becomes larger for sources with more memory (more
X1 — q1 —'Xl

correlation) because the covariance matrices of such sources
have smaller determinants. Whénis large, it turns out that

the distortion of optimized transform coding with a given
rate exceeds(R) by the same factor by which the distortion

T Tt of optimal fixed-rate scalar quantization exce&d®) for a
memoryless Gaussian source. Hence, like DPCM, transform
coding does a good job of exploiting source memory given
that it is a system based on scalar quantization.

X 2 —* q2 —"X2

Xk —* Qi _’Xk

C. Variable-Rate Quantization

Fig. 4. Transform code. Shannon’s lossless source coding theory (1948) [464] made
it clear that assigning equal numbers of bits to all quantization

orthogonal transform) and the resulting transform coefficieng€!ls is wasteful if.the cells have unequal propabilitigs. Instead,
are scalar quantized, usually with a different quantizer fdf€ number of bits produced by the quantizer will, on the
each coefficient. The operation is depicted in Fig. 4. Thi/érage, be reduced if shorter binary codewords are assigned
style of code was introduced in 1956 by Kramer and Mathew@ higher probability cells. Of course, this means that longer
[299] and analyzed and popularized in 19621963 by Huaﬁadewords w!II need to be aSS|gned_to the less probak_JIe cells,
and Schultheiss [247], [248]. Kramer and Mathews simpRHt Shannon’s theory shows that, in general, there is a net
assumed that the goal of the transform was to decorrelate #i- This leads directly tvariable-rate quantizationwhich
symbols, but Huang and Schultheiss proved that decorrelatrr‘%S the partltlon into cells and codebook of levels as bgfore,
does indeed lead to optimal transform code design, at leas now has binary _codewords of varying lengths assigned
the case of Gaussian sources and high resolution. Transf Pmthe cells (alterne_ltlvely, the Ievels.). Ordmarlly,. the se.t-of
coding has been extensively developed for coding imag ipary codewords is chosen to satisfy the prefix condition

and video, where the discrete cosine transform (DCT) [.,at no ”.‘ember IS a p_reﬁx of ?"”Other membe_r, n order to
[429] is most commonly used because of its computation' sure unique decodability. As will be made precise in the next
ection, one may view a variable-rate quantizer as consisting

simplicity and its good performance. Indeed, DCT coding 1 . . .
the basic approach dominating current image and video codl%]c 2 partition, a codebook, and a lossless binary code, i.e., an

standards, including H.261, H.263, JPEG, and MPEG. Thef‘%*’gﬁ'g”me.”t of binary codewords. .
or variable-rate quantizers the rate is no longer defined as

code_s _combm_e “”'fO”T‘ _scalar quantization of the transf_or{rqe logarithm of the codebook size. Rather, the instantaneous
coefficients with an efficient lossless coding of the quantizer

- . . ) . . rate for a given input is the number of binary symbols in
indices, as will be considered in the next section as a variablg- ", . .

: ) ) . . e binary codeword (the length of the binary codeword)
rate quantizer. For discussions of transform coding for images

and the rate is the average length of the binary codewords,
see [533], [422], [375], [265], [98], [374], [261], [424], [196], 00 the average is taken over the probability distribution

szssl{lgogl’e[go]td[:;ss] ’sir;d.nMr?reh_r?g:Fttlyét?gség:jmnCo[gl;]gjf the source samples. The operational distortion-rate function
widely u N high-fidelity audi N9 (R) using this definition is the smallest average distortion

[2?_?].I'k dicti i the t ¢ di ver all (variable-rate) quantizers having rdteor less. Since
n'ike predictive quantizers, the transtorm coding approagil, 1,6 weakened the constraint by expanding the allowed

lent itself quite well to the Bennett high-resolution appProXse; of quantizers, this operational distortion-rate function will

imations,l the classical analysis being that of H“af‘g. arg dinarily be smaller than the fixed-rate optimum.
Schultheiss [247], [248] of the performance of optimized y ¢an's algorithm [251] provides a systematic method
transform codes for. fixed-rate scalar quantizers for anSS@fldesigning binary codes with the smallest possible average
sources, a result which demonstrated that the Karhunemfd_olength for a given set of probabilities, such as those of the

decorrelating transform was optimum for this application fQta)s codes designed in this way are typically called Huffman

the given assumptions. If the transform is the Karhunemveo (e Unfortunately, there is no known expression for the

transform, then the coefficients will be uncorrelated (and henﬁ%ulting minimum average length in terms of the probabilities.

independent if the input vector is also Gaussian). The semifglyever, Shannon’s lossless source coding theorem implies
work of Huang and Schultheiss showed that high-resolutigRy; given a source and a quantizer partition, one can always
approximation theory could provide analytical descriptions f,4 an assignment of binary codewords (indeed, a prefix set)
optimal performance and design algorithms for optimizing;i, average length not more thaf(¢(X)) + 1, and that no

codes of a given structure. In particular, they showed thghiquely decodable set of binary codewords can have average
under the high-resolution assumptions with Gaussian sourc@gyih less thari (¢(X)), where

the average distortion of the best transform code with a
given rate is less than that of optimal scalar quantization by H(¢(X))=- Z P log P
the factor (det K)/* /o2, whereo? is the average of the i
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is the Shannorentropy of the quantizer output and®;, = The possibility of applying variable-length coding to quan-
Pr(X € 5;) is the probability that the source sampielies tization may well have occurred to any number of people
in the ith cell S;. Shannon also provided a simple way ofvho were familiar with both quantization and Shannon’s 1948
attaining performance within the upper bound: if the quantizeaper. The earliest references to such that we have found are
index is ¢, then assign it a binary codeword with lengthn the 1952 papers by Kretzmer [300] and Oliver [395]. In
[—log P;] (the Kraft inequality ensures that this is alway4960, Max [349] had such in mind when he computed the
possible by simply choosing paths in a binary tree). Moreovemtropy of nonuniform and uniform quantizers that had been
tighter bounds have been developed. For example, Gallagesigned to minimize distortion for a given number of levels.
[181] has shown that the entropy can be at nfdst,+0.0861 For a Gaussian source, his results showed that variable-length
smaller than the average length of the Huffman code, whending would yield rate reductions of about 0.5 bit/sample.
P,ax, the largest of theP;’s, is less thanl /2. See [73] for High-resolution analysis of variable-rate quantization devel-
discussion of this and other bounds. Sirég,, is ordinarily oped in a handful of papers from 1958 to 1968. However, since
much smaller thari/2, this shows thaf (¢q( X)) is generally these papers were widely scattered or unpublished, it was not
a fairly accurate estimate of the average rate, especially in tgil 1968 that the situation was well understood in the IEEE
high-resolution case. community.

Since there is no simple formula determining the rate of the The first high-resolution analysis was that of Schutzenberger
Huffman code, but entropy provides a useful estimate, it is re@-958) [462] who showed that the distortion of optimized
sonable to simplify the variable-length quantizer design prolgariable-rate quantization (both scalar and vector) decreases
lem a little by redefining the instantaneous rate of a variableith rate as2=2f, just as with fixed-rate quantization. But
rate quantizer as log P; for theith quantizer level and hencehe did not find the multiplicative factors, nor did he describe
to define the average rate d8(q(X)), the entropy of its the nature of the partitions and codebooks that are best for
output. As mentioned above, this underestimates the true ragésiable-rate quantization.
by a small amount that in no case exceeds one. We could agaiin 1959, Renyi [433] showed that a uniform scalar quantizer
define an operational distortion-rate function as the minimuwith infinitely many levels and small cell widths has output
average distortion over all variable-rate quantizers with outpentropy given approximately by
entropy H(¢(X)) < R. Since the quantizer output entropy is
a lower bE)u(nd))to actual rate, this operational distortion-rate H(q(X)) = h(X) ~log A (11)
function may be optimistic; i.e., it falls below(R) defined |\ hare
using average length as rate. A quantizer designed to provide
the smallest average distortion subject to an entropy constraint hMX)=— / f(z) log f(z)dx
is called anentropy-constrained scalar quantizer

Variable-rate quantization is also calledariable-length s the differential entropyof the source variablé .
quantizationor quantization with entropy codingWe will |, 1963, Koshelev [579] discovered the very interesting fact
not, except where critical, take pains to distinguish entropyyat in the high-resolution case, the mean-squared error of
constrained quantizers and entropy-coded quantizers. And ¥fform scalar quantization exceeds that of the least distortion
will usually blur the distinction between average length angihievable by any quantization scheme whatsoever§{.&),
entropy as measures of the rate of such quantizers uniggga factor of onlyre/6 = 1.42. Equivalently, the induced
again, it is important in some particular discussion. This i§gnal-to-noise ratio is only 1.53 dB less than the best possible,
much the same sort of blurring as usiigs IV instead of o for a fixed distortionD, the rate is only 0.255 bit/sample
[log N] as the measure of rate in fixed-rate quantization. |arger than that achievable by the best quantizers. (For the

It is important to note that the number of quantizatiogaussian source, it gains 2.82 dB or 0.47 bit/sample over
cells or levels does not play a primary role in variable-raige pest fixed-rate scalar quantizer.) It is also of interest to
quantization because, for example, there can be many leviglte that this was the first paper to compare the performance
in places where the source density is small with little effect g 4 specific quantization scheme &R). Unfortunately,
either distortion or rate. Indeed, the number of levels can R&shelev’s paper was published in a journal that was not
infinite, which has the advantage of eliminating the overloagigely circulated.
region and resulting overload distortion. In an unpublished 1966 Bell Telephone Laboratories Tech-

A potential drawback of variable-rate quantization is thgical Memo [562], Zador also studied variable-rate (as well
necessity of dealing with the variable numbers of bits that 4s fixed-rate) quantization. As his focus was on vector quan-
produces. For example, if the bits are to be communicatggation, his work will be described later. Here we only point
through a fixed-rate digital channel, one will have to usgyt that for variable-rate scalar quantization with large rate,
buffering and to take buffer overflows and underflows into agis results showed that the operational distortion-rate function

count. Another drawback is the potential for error propagatiqle , the least distortion of such codes with a given rate) is
when bits are received by the decoder in error.

The most basic and simple example of a variable-rate §(R) = iQQh(X)Q_QR. (12)
qguantizer, and one which plays a fundamental role as a 12
benchmark for comparison, is a uniform scalar quantizer witthough he was not aware of it, this turns out to be the formula
a variable-length binary lossless code. found by Koshelev, therby demonstrating that in the high-
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resolution case, uniform is the best type of scalar quantizgmantization can do better, and a series of papers explored
when variable-rate coding is applied. algorithms for designing them. In 1969, Wood [539] pro-
Finally, in 1967 and 1968 two papers appeared in the IEBked a numerical descent algorithm for designing an entropy-
literature (in fact in these RANSACTIONS) on variable-rate constrained scalar quantizer, and showed, as predicted by Gish
guantization, without reference to any of the aforementioneed Pierce, that the performance was only slightly superior to
work. The first, by Goblick and Holsinger [205], showed by uniform scalar quantizer followed by a lossless code.
numerical evaluation that uniform scalar quantization with In a 1972 paper dealing with a vector quantization technique
variable-rate coding attains performance within about 1t6 be discussed later, Berger [47] described Lloyd-like condi-
dB (or 0.25 bhit/sample) of the best possible for an i.i.dions for optimality of an entropy-constrained scalar quantizer
Gaussian source. The second, by Gish and Pierce [204}, squared-error distortion. He formulated the optimization as
demonstrated analytically what the first paper had foursh unconstrained Lagrangian minimization and developed an
empirically. Specifically, it derived (11), and more generallyiterative algorithm for the design of entropy-constrained scalar
the fact that a high-resolution nonuniform scalar quantizer hgeantizers. He showed that Gish and Pierce’s demonstration
output entropy of approximate optimality of uniform scalar quantization for
variable-rate quantization holds approximately even when the
~ ) rate is not large and holds exactly for exponential densities,
H{g(X)) _]L(X)+/f(x) log Afw) da (13) provided the levels are placed at the centroids. In 1976,
Netravali and Saigal introduced a fixed-point algorithm with
where A(z) is the unnormalized point density of the quanthe same goal of minimizing average distortion for a scalar
tizer. They then used these approximations along with Begantizer with an entropy constraint [376]. Yet another ap-
nett’s integral to rederive (12) and to show that in the highyroach was taken by Noll and Zelinski (1978) [391]. Berger
resolution case, uniform scalar quantizers achieve the OpPefined his approach to entropy_constrained quantizer design
ational distortion-rate function of variable-rate quantizationy [48].
Next, by comparing to what is called tiannon lower bound  variable-rate quantization was also extended to DPCM and
to 6(R), they showed that for i.i.d. sources, the latter is onliyansform coding, where high-resolution analysis shows that
1.53 dB (0.255 bit/sample) from the best possible performanggyains the same relative to fixed-rate quantization as it does
6(R) of any gquantization system whatsoever, which is wh@fhen applied to direct scalar quantizing [154], [398]. We note,
Koshelev [579] found earlier. Their results showed that sugfowever, that the variable-rate quantization analysis for DPCM
good performance was attainable for any source distributigfiiffers from the same flaws as the fixed-rate quantization
not just the Gaussian case checked by Goblick and Holsinggfalysis for DPCM.
They also generalized the results from squared-error distortiorNumerous extensions of the Bennett-style asymptotic ap-
to nondecreasing functions of magnitude error. proximations and the approximation ef D) or §(R) and
Less well known is their proof of the fact that in thethe characterizations of properties of optimal high-resolution
high resolution case, the entropy @&f successive outputs quantization for both fixed- and variable-rate quantization
of a uniformly scalar quantized stationary source, e.g., wifdr squared error and other error moments appeared during
memory, is the 1960's, e.g., [497], [498], [55], [467], [8]. An excellent
summary of the early work is contained in a 1970 paper by
H(g(X1), -+, q(Xi)) 2 M(Xy, -+, Xi) —log A, (14) Elias [143].
We close this section with an important practical observa-
They used this, and the generalization of (13) to vectors, fion. The current JPEG and related standards can be viewed as
show that when rate ankl are large, uniform scalar quanti-a combination of transform coding and variable-length quan-
zation with variable-length coding df successive quantizertization. It is worth pointing out how the standard resembles
outputs block entropy codingachieves performance that isand differs from the models considered thus far. As previously
1.53 dB (0.255 bit/'sample) frond(R), even for sources stated, the transform coefficients are separately quantized by
with memory. (They accomplished this by comparing tpossibly different uniform quantizers, the bin lengths of the
Shannon lower bounds.) This important result was not widedjuantizers being determined by a customizable quantization
appreciated until rediscovered by Ziv (1985) [578], who als@ble. This typically produces a quantized transformed image
showed that a similar result holds for small rates. Note thaith many zeros. The lossless, variable-length code then
although uniform scalar quantizers are quite simple, the loseans the image in a zig-zag (or Peano) fashion, producing
less code capable of approaching fhik-order entropy of the a sequence of runlengths of the zeros and indices correspond-
quantized source can be quite complicated. In addition, Gigly to nonzero values, which are then Huffman-coded (or
and Pierce observed that when coding vectors, performari#hmetic-coded). This procedure has the effect of coding only
could be improved by using quantizer cells other than the cuthee transform coefficients with the largest magnitude, which
implicitly used by uniform scalar quantizers and noted that tteze the ones most important for reconstruction. The early
hexagonal cell was superior in two dimensions, as originaltyansform coders typically coded the first, s&y,coefficients,
demonstrated by Fejes Toth [159] and Newman [385]. and ignored the rest. In essence, the method adopted for the
Though uniform quantization is asymptotically best fostandards selectively coded the most important coefficients,
entropy-constrained quantization, at lower rates nonuniforie., those having the largest magnitude, rather than simply
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the lowest frequency coefficients. The runlength coding stepTo elaborate on Shannon’s theory, we note that one can
can in hindsight be viewed as a simple way of locating thenmediately extend the quantizer notation of (1), the distor-
most significant coefficients, which in turn are described th®mn and rate definitions of (2) and (3), and the operational
most accurately. This implicit “significance” map was an earlglistortion-rate functions to define the smallest distortipf??)
version of an idea that would later be essential to wavelpbssible for ak-dimensional fixed-rate vector quantizer that
coders. achieves rateR or less. (The distortion between twk-
dimensional vectors is defined to be the numerical average
of the distortions between their respective components. The
rate is1/k times the (average) number of bits to describe a
As described in the three previous subsections, the 194Q.%imensional source vector.) We will make the dimension
through the early 1970’s produced a steady stream of advangg§jicit in the notation when we are allowing it to vary and
in the design and analysis of practical quantization tecBmit it when not. Furthermore, as with Shannon’s channel
niques, principally scalar, predictive, transform, and variablgyging and lossless source coding theories, one can consider
rate quantization, with quantizer performance improving age pest possible performance over codesabfdimensions
these decades progressed. On the other hand, at roughlyf&uming the data can be blocked into vectors of arbitrary

same time there was a parallel series of developments that WEER) and define an operational distortion-rate function
more concerned with the fundamental limits of quantization

than with practical quantization issues. We speak primarily 8(R) = inf 6c(R). (15)

of the remarkable work of Shannon and the very important *

work of Zador, though there were other important contributoighe operational rate-distortion functiong(D) and7(D) are

as well. This work dealt with what is now calledector defined similarly. For finite dimensioh, the functioné,(R)
quantization(VQ) (or blockor multidimensional quantizatin will depend on the definition of rate, i.e., whether it is the log
which is just like scalar quantization except that all comp®f the reproduction size, the average binary codeword length,
nents of a vector, of say successive source samples, arer the quantizer output entropy. It turns out, however, that
quantized simultaneously. As such they are characterized b§(&) is not affected by this choice. That is, it is the same for
k-dimensional partition, &-dimensional codebook (containingall definitions of rate.

D. The Beginnings of Vector Quantization

k-dimensionapoints reproduction codewordsr codevectors For an i.i.d. source{X,}, the Shannon distortion-rate
and an assignment of binary codewords to the cells of thenction D(R) is defined as the minimum average distortion
partition (equivalently, to the codevectors). E[d(X,Y)] over all conditional distributions ot” given X

An immediate advantage of vector quantization is that for which the mutual information/(X; Y") is at mostR,
provides a model of a general quantization scheme operatingere we emphasize thaf andY” are scalar variables here.
on vectors without any structural constraints. It clearly includés his principal result, the coding theorem for source coding
transform coding as a special case and can also be consideviéld a fidelity criterion, Shannon showed that for eveRy
to include predictive quantization operating locally withirf(R) = D(R). Thatis, no VQ of any dimensioh with rate R
the vector. This lack of structural constraints makes theuld yield smaller average distortion th&r{R), and that for
general model more amenable to analysis and optimizati@ome dimension—possibly very large—there exists a VQ with
In these early decades, vector quantization served primarigte no greater tha® and distortion very nearhD(R). As
as a paradigm for exploring fundamental performance limitan illustrative example, the Shannon distortion-rate function
it was not yet evident whether it would become a practicaf an i.i.d. Gaussian source with varianeé is
coding technique.

Shannon’s Source Coding Theorin his classic 1948 pa-

PEr, Shannpn [464,'] sketched. the idea of the rate of a SOU(Gfere 02 is the variance of the source. Equivalently, the
as the minimum bit rate required to reconstruct the source

d f d by a fidelity criterignannon rate-distortion function iB(D) = 1 log(s?/D),
Some degree of accuracy as measured by a fdelity cntenign 5, ;2 - gjnce it is also known that this represents

D(R) = 022728 (16)

f distort d block q led ¢ , it is these formulas that we used previously when
of distortion, an OCk source codes, now called vec %mparing the performance of scalar quantizers to that of the

guantizers. In this later paper, Shannon showed that Wh&g'st guantization schemes. For example, comparing (10) and

coding at some rateR, the least distortion achievable by(16) one sees why we made earlier the statement that the
vector quantizers of any kind is equal to a functibi{ R), '

b " lled theh distorti te functiofhat operational distortion-rate function of scalar quantization is
subsequently calle annon aistortion-rate tunctiomnat ... /3 /9 times larger tha@(R). Notice that (16) shows that for
is determined by the statistics of the source and the meas

; oy & source the—2# exponential rate of decay of distortion
of distortion: with rate, demonstrated by high resolution arguments for high
rates, extends to all rates. This is not usually the case for
2Actually, Shannon described the solution to the equivalent problem oether sources.

minimizing rate subject to a distortion constraint and found that the answer wasShannon’s approach was subsequentl eneralized to
given by a functionR(D), subsequently called thBhannon rate-distortion PP q y 9

function which is the inverse aD( R). Accordingly, the theory is often called sources with memory, cf. [180], [45], [46], [218], [549],
rate-distortion theory cf. [46]. [127], [126], [282], [283], [138], and [479]. The general
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definitions of distortion-rate and rate-distortion functionaverage distortion, in this case measured by squared error. The
resemble those for operational distortion-rate and ratist peformed a similar minimization of mutual information,
distortion functions in that they are infima dfth-order but with the requirement that maximum distortion between
functions. For example, thkth-order distortion-rate function the input and reproduction did not exceed a specified level
Dy (R) of a stationary random proceqsX,,} is defined as ¢. Kolmogorov referred to both functions as theentropy”

an infimum of the average distortioB[d(X, Y)] over all H_(X) of a random objeci\, but the name has subsequently
conditional probability distributions of = (Y1, Y2, ---, ¥x) been considered to apply to the maximum distortion being
given X = (X;, Xo, ---, Xj) for which average mutual constrained to be less thaprather than the Shannon function,
information (1/k)I(X, Y') < R. The distortion-rate function |ater called the rate-distortion function, which constrained the
for the process is then given bi(R) = infy Di(R). For average distortion. Note that the maximum distortion with
i.id. sourcesD(R) = D;(R), where Di(R) is what we respect to a distortion measurt can be incorporated in

previously calledD(R) for i.i.d. sources. (The rate-distortionthe average distortion formulation if one considers a new
functions R, (D) and R(D) are defined similarly.) A source gistortion measure defined by

coding theorem then shows under appropriate conditions that,
for sources with memory§(R) = D(R) for all ratesR. In . 0, if d(z, y) <e¢
other words, Shannon’s distortion-rate function represents an ple, &) = {Oo’ otherwise.
asymptotically achievable, but never beatable, lower bound to
the performance of any VQ of any dimension. Tpesitive As with Shannon’s rate-distortion function, this was an
coding theorendemonstrating that the Shannon distortion-rateformation-theoretic definition. As with quantization, there
function is in fact achievable if one allows codes of arbitrarilgre corresponding operational definitions. The operational ep-
large dimension and complexity is difficult to prove, but thgilon entropy {-entropy) of a random variabl&X can be
existence of good codes rests on the law of large numbedgfined as the smallest entropy of a quantized output such
suggesting that large dimensions might indeed be required fhat the reproduction is no further from the input thargat
good codes, with consequently large demands on complexigast with probability1):
memory, and delay.

Shannon’s results, like those of Panter and Dite, Zador, H(X) = inf H(q(X)). (18)
and Gish and Pierce provide benchmarks for comparison for @ sup, d(@, q(@))<e

uantizers. However, Shannon’s results provide an interestipng. . . . _— .
q P 'ﬂ%s is effectively a variable-rate definition since lossless

contrast with these early results on quantizer performance. . : . .
- - . coding would be required to achieve a bit rate near the entropy.
Specifically, the early quantization theory had derived thE

limits of scalar quantizer performance based on the assumﬂt—ematively’ one could define the operational epsilon entropy
z?,glog N, where N, is the smallest number of reproduction

tion of high resolution and showed that these bounds we q tors f hich all input th probabilivwithi
achievable by a suitable choice of quantizer. Shannon, on figevectors lor which aflinputs are (with probabilitywithin

other hand, had fixed a finite, nonasymptotic rate, but hg@_facodevector. This qga_mtity is clearly i_nfinite if the random
considered asymptotic limits as the dimensiof a vector objectX doe-s.r?ot have finite support-. AS In the Shannon‘case,
quantizer was allowed to become arbitrarily large. The form@! these definitions can be made fedimensional vectors(*
asymptotics, high resolution for fixed dimension, are generaﬁ’ypd the limiting behavior can be studied. Results regarding the
viewed as quantization theory, while the latter, fixed-rate af§

17)

nvergence of such limits and the equality of the information-

high dimension, are generally considered to be source codffi§oretic and operational notions of epsilon entropy can be
theory or information theory. Prior to 1960, quantizatiof?Und, €.g., in [421],[420], [278], and [59]. Much of the theory
had been viewed primarily as PCM, a form of analog-td$ conperned with approximating ep.S|Ion entropy fqr smaalll
digital conversion or digital modulation, while Shannon’s EPsilon entropy extends to function approximation theory
source coding theory was generally viewed as a mathemati®4ih 2 slight change by removing the notion of probability.
approach to data compression. The first to explicitly applyere the epsilon entropy becomes the log of the smallest
Shannon’s source coding theory to the problem of ana|og_@umber of balls of radius required to cover a compact metric
digital conversion combined with digital transmission appe&Pace (e.g., a function space—see, e.g., [520] and [420] for a
to be Goblick and Holsinger [205] in 1967, and the firséliscussion of various notions of epsilon entropy).
to make explicit comparisons of quantizer performance toWe mention epsilon entropy because of its close mathe-
Shannon’s rate-distortion function was Koshelev [579] ifatical connection to rate-distortion theory. Our emphasis,
1963. however, is on codes that minimize average, not maximum,
A distinct variation on the Shannon approach was irlistortion.
troduced to the English literature in 1956 by Kolmogorov The Earliest Vector Quantization WorkOutside of Shan-
[288], who described several results by Russian informatitv@n’s sketch of rate-distortion theory in 1948, the earliest
theorists inspired by Shannon’s 1948 treatment of coding witrork with a definite vector quantization flavor appeared in the
respect to a fidelity criterion. Kolmogorov considered twmathematical and statistical literature. Most important was the
notions of the rate with respect to a fidelity criterion: Higemarkable work of Steinhaus in 1956 [480], who considered
second notion was the same as Shannon’s, where a mutgroblem equivalent to a three-dimensional generalization of
information was minimized subject to a constraint on thecalar quantization with a squared-error distortion measure.
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Suppose that a mass density(x) is defined on Euclidean wherel, is a term that is independent of the sourgés) is

space. For any finitev, let S = {S;; ¢ = 1, ---, N} be a the k-dimensional source density, and

partition of Euclidean space int®y disjoint bodies (cells) and

let ¢ = {y;; i = 1,---, N} be a collection ofN vectors, B/ (D) (k+2)/k
one associated with each cell of the partition. What partition 1 llres 2y = </f (x)d$>

S and collection of vector€ minimizes
is the term that depends on the source. This generalized the
N Panter-Dite formula to the vector case. While the formula for
Z/ m(z)||z — yil|* de 81 (R) obviously matches the Shannon distortion-rate function
i=175 D(R) when both dimension and rate are large (because in this
case both are approximations &g(R) = §(R)), Zador’s for-
the sum of the moments of inertia of the cells about th@ula has the advantage of being applicable for any dimension
associated vectors? This pl’oblem is forma”y equivale%twh”e the Shannon theory is app|icab|e 0n|y for |a|’@e
to a fixed-rate three-dimensional vector quantizer with @n the other hand, Shannon theory is applicable for any rate
squared-error distortion measure and a probability density while high resolution theory is applicable only for large
m(z)/ [ m(z') dz'. Steinhaus derived what we now considefates. Thus the two theories are complementary. Zador also
to be the Lloyd optimality conditions (centroid and nearesixplicitly extended Lloyd's optimality properties to vectors
neighbor mapping) from fundamental principles (withoufith distortion measures that were integer powers of the
variational techniques), proved the existence of a solutiopyclidean norm, thereby also generalizing Steinhaus’ results
and described the iterative descent algorithm for findingtg dimensions higher than three, but he did not specifically
good partition and vector collection. His derivation appliegonsider descent design algorithms. Unfortunately, the results
immediately to any finite-dimensional space and hencgs zador's thesis were not published until 1982 [563] and
like Lloyd's, extends immediately to vector quantization ofyere little known outside of Bell Laboratories until Gersho'’s
any dimension. Steinhaus was aware of the problems WiH‘iportant paper of 1979 [193], to be described later.
local optima, but stated that “generally” there would be a zador's dissertation also dealt with the analysis of variable-
unique solution. No mention is made of “quantization,” bufate vector quantization, but the asymptotic formula given
this appears to be the first paper to both state the vectggre is not the correct one. Rather it was left to his subsequent
guantization problem and to provide necessary conditions {@fpublished 1966 memo [562] to derive the correct formula.
a solution, which yield a design algorithm. (Curiously, his 1982 paper [563] reports the formula from
In 1959, Fejes Toth described the specific application gie thesis rather than the memo.) Again using high-resolution
Steinhaus’ problem in two dimensions to a source with a Urfyethods, he showed that for large rates, the operational

form density on a bounded support region and to quantizatigitortion-rate function of variable-rate vector quantization has
with an asymptotically large number of points [159]. Using afhe form

earlier inequality of his [158], he showed that the optimal two-
dimensional quantizer under these assumptions tessellated the §u(R) = ¢ 220 (X)9—2R (20)
support region with hexagons. This was the first evaluation of

the performance of a genuinely multidimensional quantizer.jfhere cr is a term that is independent of the source and
was rederived in a 1964 Bell Laboratories Technical Memorap; — (1/k)h(X,, - --, X3) is the dimension-normalized dif-

dum by Newman [385]; its first appearance in English. It madgrential entropy of the source. This completed what he and
a particularly important point: even in the simple case of tW8chutzenberger had begun.
independent uniform random variables, with no redundancy|, the mid-1960'’s, the optimality properties described by
to remove, the performance achievable by quantizing vect@®gsinhaus, Lloyd, and Zador and the design algorithm of
using a hexagonal-lattice encoding partition is strictly bett&teinhaus and Lloyd were rediscovered in the statistical clus-
than that achievable by uniform scalar quantization, WhiGgying literature. Similar algorithms were introduced in 1965
can be viewed as a two-dimensional quantizer with a SAUE Forgey [172], Ball and Hall [29], [230], Jancey [263],
encoding lattice. _ o and in 1969 by MacQueen [341] (thé-means” algorithm).
The first high-resolution approximations for vector quantithese algorithms were developed for statistical clustering
zation were published by Schutzenberger in 1958 [462], whgypjications, the selection of a finite collection of templates
found upper and lower bounds to the least distortionkof that well represent a large collection of data in the MSE
dimensional variable-rate vector quantizers, both of the forgénse' i.e., a fixed-rate VQ with an MSE distortion measure in
K27*%. Unfortunately, the upper and lower bounds diverggyantization terminology, cf. Anderberg [9], Diday and Simon
as k increases. [133], or Hartigan [238]. MacQueen used an incremental
/In 1963, Zador [561] made a very large advance by usifigcorporation of successive samples of a training set to design
high-resolution methods to show that for large rates, thRe codes, each vector being first mapped into a minimum-
operational distortion-rate function of fixed-rate quantizatiofistortion reproduction level representing a cluster, and then
has the form the level for that cluster being replaced by an adjusted centroid.
Forgey and Jancey used simultaneous updates of all centroids,
61(R) =2 bl flla 2y 2728 (19) as did Steinhaus and Lloyd.
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Unfortunately, many of these early results did not prop@ncoding algorithms for permutation codes, and Berger [47]
gate among the diverse groups working on similar problenshowed that for large dimensions, the operational distortion-
Zador's extensions of Lloyd’s results were little known outsideate function of permutation codes is approximately equal to
of Bell Laboratories. The work of Steinhaus has been virtualthat of optimal variable-rate scalar quantizers. While they
unknown in the quantization community until recently. Thelo not attain performance beyond that of scalar quantiza-
work in the clustering community on what were effectivelyion, permutation codes have the advantage of avoiding the
vector quantizer design algorithms in the context of statisticaliffering and error propagation problems of variable-rate
clustering was little known at the time in the quantizatioguantization.
community, and it was not generally appreciated that Lloyd’s Notwithstanding the skepticism of some about the feasibility
algorithm was in fact a clustering algorithm. Part of the lackf brute-force unstructured vector quantization, serious studies
of interest through the 1950’s was likely due to the fact thaf such began to appear in the mid-1970’s, when several
there had not yet appeared any strong motivation to considiedependent results were reported describing applications of
the guantization of vectors instead of scalars. This motivatigiustering algorithms, usually-means, to problems of vector
came as a result of Shannon’s landmark 1959 paper on sowjoantization. In 1974-1975, Chaffee [76] and Chaffee and
coding with a fidelity criterion. Omura [77] used clustering ideas to design a vector quan-

tizer for very low rate speech vocoding. In 1977, Hilbert
used clustering algorithms for joint image compression and
E. Implementable Vector Quantizers image classification [242]. These papers appear to be the first

As mentioned before, it was not evident from the earliegpplications of direct vector quantization for speech and image
studies that vector quantization could be a practical techniq@@ding applications. Also in 1977, Chen used an algorithm
The only obvious encoding procedure is brute-force neargsuivalent to a two-dimensional Lloyd algorithm to design
neighbor encoding: compare the source vector to be quantizé@-dimensional vector quantizers [87].
with all reproduction vectors in the codebook. Since a (fixed- In 1978 and 1979, a vector extension of Lloyd's Method
rate) VQ with dimensiort and rateR has2*® codevectors, the | was applied to linear predictive coded (LPC) speech pa-
number of computations required to do this grows exponefameters by Buzo and others [220],[67], [68], [223] with a
tially with the dimension-rate produgtR, and gets quickly out weighted quadratic distortion measure on parameter vectors
of hand. For example, if = 10 and R = 2, there are roughly closely related to the Itakura—Saito spectral distortion measure
one million codevectors. Moreover, these codevectors nd@®8], [259], [257]. Also in 1978, Adoul, Collin, and Dalle
to be stored, which also consumes costly resources. Final§} used clustering ideas to design two-dimensional vector
the proof of Shannon’s source coding theorem relies on thgantizers for speech coding. Caprio, Westin, and Esposito
dimension becoming large, suggesting that large dimension1978 [74] and Menez, Boeri, and Esteban in 1979 [353]
might be needed to attain good performance. As a poiso considered clustering algorithms for the design of vector
of reference, we note that in the development of chanrgiantizers with squared error and magnitude error distortion
codes, for which Shannon’s theory had also suggested largeasures.
dimension, it was common circa 1970 to consider channelThe most important paper on quantization during the 1970’s
codes with dimensions on the order of 100 or more. Thusvitas without a doubt Gersho’s paper on “Asymptotically
no doubt appeared to many that similarly large dimensiongptimal block quantization” [193]. The paper popularized high
might be needed for effective quantization. Clearly, a bruteesolution theory and the potential performance gains of vector
force implementation of VQ with such dimensions would bguantization, provided new, simplified variations and proofs
out of the question. On the other hand, the channel codesobfZador’s results and vector extensions of Gish and Pierce’s
this era with large dimension and good performance, e.g., BGesults with squared-error distortion, and introduced lattice
codes, were highlgtructuredso that encoding and decodingvector quantization as a means of achieving the asymptotically
need not be done by brute force. optimal quantizer point density for entropy-constrained vector

From the above discussion, it should not be surprisirguantization for a random vector with bounded support. The
that the first VQ intended as a practical technique hadsé@mple derivations combined the vector quantizer point-density
reproduction codebook that was highly structured in order &pproximations with the use of diler's and Jensen’s in-
reduce the complexity of encoding and decoding. Specificalggualities, generalizing a scalar quantizer technique introduced
we speak of the fixed-rate vector quantizer introduced in 1965 1977 [222]. One step of the development rested on a
by Dunn [137] for multidimensional i.i.d. Gaussian vectorsstill unproved conjecture regarding the asymptotically optimal
He argued that his code was effectively a permutation codaantizer cell shapes and Zador’s constants, a conjecture which
as earlier used by Slepian [472] for channel coding, in thaince has borne Gersho’s name and which will be considered at
the reproduction codebook contains only codevectors that amme length in Section IV. Portions of this work were extended
permutations of each other. This leads to a quantizer with nondecreasing functions of norms in [554].
reduced (but still fairly large) complexity. Dunn compared Gersho's work stimulated renewed interest in the theory
numerical computations of the performance of this schemaad design of direct vector quantizers and demonstrated that,
to the Shannon rate-distortion function. As mentioned earli@ontrary to the common impression that very large dimensions
this was the first such comparison. In 1972, Berger, Jelinekere required, significant gains could be achieved over scalar
and Wolf [49], and Berger [47] introduced lower complexityquantization by quantizing vectors of modest dimension and,
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as a result, such codes might be competitive with predictivmiqueness of local optima [503], results on the asymptotic be-
and transform codes in some applications. havior of Lloyd’s algorithm with training-sequence size based
In 1980, Linde, Buzo, and Gray explicitly extended Lloyd'sn the theory ofk-means consistency by Pollard [418], two
algorithm to vector quantizer design [318]. As we have seeseminal papers on lattice quantization by Conway and Sloane
the clustering approach to vector quantizer design originatgd3], [104], rigorous developments of the Bennett theory
years earlier, but the Lindet al. paper introduced it as afor vector quantizers andth-power distortion measures by
direct extension to the original Lloyd optimal PCM desigBucklew and Wise [64], Kieffer's demonstration of stochastic
algorithm, extended it to more general distortion measures thetability for a general class of feedback gquantizers including
had been previously considered (including an input-weightéloke historic class of predictive quantizers and delta modulators
quadratic distortion useful in speech coding), and succeededlnng with adaptive generalizations [281], Kieffer's study of
popularizing the algorithm to the point that it is often referrethe convergence rate of Lloyd’'s algorithm [280], and the
to as the “LBG algorithm.” A “splitting” method for designing demonstration by Garey, Johnson, and Witsenhausen that the
the quantizer from scratch was developed, wherein one fitdoyd—Max optimization was NP-hard [187].
designs a quantizer with two wordg-fheans), then doubles Toward the middle of the 1980’s, several tutorial articles
the codebook size by adding a new codevector near eaxthvector quantization appeared, which greatly increased the
existing codevector, then runs Lloyd’s algorithm again, and secessibility of the subject [195], [214], [342], [372].
on. The numerical examples of quantizer design complemented
Gersho’s high-resolution results much as Lloyd’s had comple-
mented Panter and Dite: it was shown that even with modést The Mid-1980’s to the Present

dimensions and modest rates, significant gains over scalain the middle to late 1980’s, a wide variety of vector
quantization could be achieved by direct vector quantizatiguantizer design algorithms were developed and tested for
of modest complexity. Later in the same year, Buetoal. speech, images, video, and other signal sources. Some of
[69] developed a tree-structured vector quantizer (TSVQ) feie quantizer design algorithms developed as alternatives to
ten-dimensional LPC vectors that greatly reduced the encod@syd’s algorithm include simulated annealing [140], [507],
complexity from exponential growth with codebook size t¢169], [289], deterministic annealing [445]-[447], pairwise
linear growth by searching a sequence of small codeboaksarest neighbor [146] (which had its origins in earlier cluster-
instead of a single large codebook. The result was an 800-bitig/g techniques [524]), stochastic relaxation [567], [571], self-
LPC speech coder with intelligible quality comparable to thajrganizing feature maps [290], [544], [545], and other neural
of scalar-quantized LPC speech coders of four times the ratets [495], [301], [492], [337], [65]. A variety of quantization
(See also [538].) In the same year, Adoul, Debray, and Datechniques were introduced by constraining the structure of
[4] also used a spectral distance measure to optimize predictrs vector quantization to better balance complexity with
for DPCM and the first thorough study of vector quantizatioperformance and these methods were applied to real signals
for image compression was published by Yamada, Fujita, a(ebpecially speech and images) as well as to random sources,
Tazaki [551]. which permitted comparison to the theoretical high-resolution
In hindsight, the surprising effectiveness of low-dimensionaind Shannon bounds. The literature begins to grow too large to
VQ, e.g.,,k = 2 to 10, can be explained by the fact thafcite all works of possible interest, but several of the techniques
in Shannon’s theory large dimension is needed to attawill be considered in Section V. Here, we only mention
performance arbitrarily close to the ideal. In channel codirgpveral examples with references and leave further discussion
at rates less than capacity, ideal performance means zgrcSection V.
error probability, and large dimension is needed for codes toAs will be discussed in some depth in Section V, fast
approach this. However, when quantizing at a given fate search algorithms were developed for unstructured reproduc-
ideal performance means distortion equali{@). Since this tion codebooks, and even faster searches for reproduction
is not zero, there is really no point to making the differenceodebooks constrained to have a simple structure, for example
between actual and ideal performance arbitrarily small. Fr be a subset of points of a regular lattice as in a lattice
example, it might be enough to come within 5% to 20%ector quantizer. Additional structure can be imposed for faster
(0.2 to 0.8 dB) of§(R), which does not require terribly largesearches with virtually no loss of performance, as in Fisher's
dimension. We will return to this in Section IV with estimategpyramid VQ [164], which takes advantage of the asymptotic
of the required dimension. equipartition property to choose a structured support region
There followed an active period for all facets of quantizatiofor the quantizer. Tree-structured VQ uses a tree-structured
theory and design. Many of these results developed early in tie@roduction codebook with a matched tree-structured search
decade were fortuitously grouped in the March 1982 special Elgorithm. A tree-structured VQ with far less memory is
sue on Quantization of thes&ANSACTIONS which published provided by a multistage or residual VQ. A variety of product
the Bell Laboratories Technical Memos of Lloyd, Newmaryector quantizers use a Cartesian product reproduction code-
and Zador along with Berger's extension of the optimalitbook, which often can be rapidly searched. Examples include
properties of entropy-constrained scalar quantizatiomtbe polar vector quantizers, mean-removed vector quantizers, and
power distortion measures and his extensive comparisonsbfape-gain vector quantizers. Trellis encoders and trellis-coded
minimum-entropy quantizers and fixed-rate permutation codggantizers use a Viterbi algorithm encoder matched to a
[48], generalizations by Trushkin of Fleischer’'s conditions fareproduction codebook with a trellis structure. Hierarchical
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table-lookup vector quantizers provide fixed-rate vector quaand communication systems incorporating quantizers. As the
tizers with minimal computational complexity. Many of thearrival of the present is a good place to close our historical tour,
early quantization techniques, results, and applications canrbany results of the current decade will be sketched through
found in original form in Swaszek’s 1985 reprint collection orthe remaining sections. It is difficult to resist pointing out,
quantization [484] and Abut's 1990 IEEE Reprint Collectiomowever, that in 1990 Lloyd’s algorithm was rediscovered in
on Vector Quantization [2]. the statistical literature under the name of “principal points,”
We close this section with a brief discussion of two specifiwhich are distinguished from tradition&tmeans by the as-
works which deal with optimizing variable-rate scalar quantizumption of an absolutely continuous distribution instead of an
ers without additional structure, the problem that leads to tleenpirical distribution [171], [496], a formulation included in
general formulation of optimal quantization in the next sectiothe VQ formulation for a general distribution. Unfortunately,
In 1984 Farvardin and Modestino [155] extended Berger's [4#}jese works reflect no awareness of the rich quantization
necessary conditions for optimality of an entropy-constrainditerature.
scalar quantizer to more general distortion measures andvost quantizers today are indeed uniform and scalar, but
described two design algorithms: the first is similar to Bergerage combined with prediction or transforms. In many niche
iterative algorithm, but the second was a fixed-point algorithapplications, however, the true vector quantizers, including
which can be considered as a natural extension of Lloydaitices and other constrained code structures, exhibit ad-
Method | from fixed-rate to variable-rate vector quantizarantages, including the coding of speech residuals in code
tion. In 1989, Chouet al. [93] developed a generalizedexcited linear predictive (CELP) speech coding systems and
Lloyd algorithm for entropy-constrained vector quantizatioWXTreme/Microsoft streaming video in WebTheater. Vector
that generalized Berger's [47], [48] Lagrangian formulatioquantization, unlike scalar quantization, is usually applied to
for scalar quantization and Farvardin and Modestino’s fixedigital signals, e.g., signals that have already been “finely”
point design algorithm [155] to vectors. Optimality propertieguantized by an A/D converter. In this case, quantization
for minimizing a Lagrangian distortiod(q) + AR(q) were (vector or scalar) truly represents compression since it reduces
derived, where rate could be either average length or entropfye number of bits required to describe a signal and it reduces
Lloyd's optimal decoder remained unchanged and the losslégs bandwidth required to transmit the signal description if an
code is easily seen to be an optimal lossless code for #alog link is used.
encoded vectors, but this formulation shows that the optimalModern video coding schemes often incorporate the La-
encoder must simultaneously consider both the distortion agingian distortion viewpoint for accomplishing rate control,
rate resulting from the encoder. In other words, quantizendile using predictive quantization in a general sense through
with variable rate should use an encoder that minimizesnzotion compensation and uniform quantizers with optimized
sum of squared error and weighted bit rate, and not only tlessless coding of transform coefficients for the intraframe
squared error. Another approach to entropy-constrained scaading (cf. [201], [202]).
guantization is described in [285].
This is a good place to again mention Gish and Pierce’s
result that if the rate is high, optimal entropy-constrained IIl. QUANTIZATION BASICS:
scalar or vector quantization can provide no more than roughly =~ ENCODING, RATE, DISTORTION, AND OPTIMALITY
1/4-bit improvement over uniform scalar quantization with This section presents, in a self-contained manner, the basics
block entropy coding. Berger [47] showed that permutatiosf memoryless quantization, that is, vector quantizers which
codes achieved roughly the same performance with a fixed-rajgerate independently on successive vectors. For brevity, we
vector quantizer. Ziv [578] showed in 1985 that if subtractivemit the “memoryless” qualifier for most of the rest of this
dithering is allowed, dithered uniform quantization followedection. A key characteristic of any quantizer isdisension
by block lossless encoding will be at most 0.754 bit worsk, a positive integer. Its input is &-dimensional vector
than the optimal entropy-constrained vector quantizer with the= (xz;, ---, zz) from some alphabeti C R*. (Abstract
same block size, even if the rate is not high. (Subtractiedphabets are also of interest in rate-distortion theory, but
dithering, as will be discussed later, adds a random dithértually all alphabets encountered in quantization are real-
signal to the input and removes it from the decompressediued vector spaces, in which case the alphabet is often
output.) As previously discussed, these results do not eliminatgled the support of the source distribution.) It = 1
the usefulness of fixed-rate quantizers, because they maytle quantizer isscalar, otherwise, it isvector In any case,
simpler and avoid the difficulties associated with variabléhe quantizer consists of three componentslessy encoder
rate codes. These results do suggest, however, that unifetmA — Z, where the index sef is an arbitrary countable
guantization and lossless coding is always a candidate andet, usually taken as a collection of consecutive integers, a
benchmark for performance comparison. It is not known if theproduction decoder3: Z — A, where A ¢ ®* is the
operational distortion-rate function of variable-rate quantizaeproduction alphabetand alossless encodey: Z — 7, an
tion with dithering is better than that without dithering. invertible mapping (at least with probability into a collection
The present decade has seen continuing activity in dé- of variable-length binary vectors that satisfies the prefix
veloping high resolution theory and design algorithms for eondition. Alternatively, a lossy encoder is specified by a
variety of gquantization structures, and in applying many @fartitionS = {S;; ¢ € Z} of A, whereS; = {z: a(z) = i}; a
the principles of the theory to optimizing signal processingeproduction decoder is specified b{raproduction) codebook



GRAY AND NEUHOFF: QUANTIZATION 2341

C = {p(i); ¢ € I} of points codevectorsor reproduction on the canonical case where the data naturally forms a one-
codewords and the lossless encodercan be described by dimensional, scalar-valued sequence, and successiuples
its binary codebook” = {v(¢); ¢ € Z} containingbinary of adjacent samples are extracted for quantization. We will
or channel codewordsThe quantization ruleis the function also assume that the random process is stationary, unless a
g(z) = pla(x)) or, equivalently,q(x) = (i) whenever specific exception is made. Stationary models can easily be
z € 5. defined to include processes that exhibit distinct local and
A k-dimensional quantizer is used by applying its lossy arglobal stationarity properties (such as speech and images) by
lossless encoders, followed by the corresponding decoddhe use of models such as composite, hidden Markov, and
to a sequence of-dimensional input vectordz,; n» = mixture sources. In the random vector domain, there is no first-
1,2, ---} extracted from the data being encoded. There @der stationarity assumption; e.g., the individual components
not a unique way to do such vector extraction; and the desigithin each vector need not be identically distributed. In
and performance of the quantizer usually depend significandither domain we presume that the quantizer operates on a
on the specific method that is used. For data that naturaiiydimensional random vectoX = (X, ---, X}), usually
forms a sequence;, s, - -- of scalar-valued samples, e.g.assumed to be absolutely continuous so that it is described by a
speech, vector extraction is almost always done by parsing ghrebability density function (pdf)f(z). Densities are usually
data into successivk-tuples of adjacent samples, i.e,, = assumed to have finite variance in order to avoid technical
(T(—1)r41, * > Tnx). AS an example of other possibilities,difficulties.
one could also extract the firét even samples, followed by Memoryless quantizers, as described here, are also referred
the first £ odd samples, the next even samples, and soto as “vanilla” vector quantizers or block-source codes. The
on. This subsampling could be useful for a multiresolutioalternative is a quantizer withemory Memory can be incor-
reconstruction, as in interpolative vector quantization [234porated in a variety of ways; it can be used separately for the
[194]. For other types of data there may be no canonidalssy encoder (for example, different mappings can be used,
extraction method. For example, in stereo speech ithe conditional on the past) or for the lossless encoder (the index
dimensional vectors might consist just of left samples, or juptoduced by a quantizer can be coded conditionally based on
of right samples, or half from each, érfrom the left followed previous indices). We shall return to vector quantizers with
by & from the right, etc. Another example is grayscale imagememory in Section V, but our primary emphasis will remain
where thek-dimensional vectors might come from parsing then memoryless quantizers. We will occasionally use the term
image into rectangulai-by-n blocks of pixels, wherenn = codeas a generic substitute fgquantizer
k, or into other tiling polytopes, such as hexagons and otherThe instantaneous rate of the quantizer applied to a particu-
shapes aimed at taking advantage of the eye’s insensitividy input is the normalized length(z) = (1/k)I(vy(w(x))) of
to noise along diagonals in comparison with along horizonttide channel codeword, the number of bits per source symbol
and vertical lines [226]. Or the vectors might come from sontbat must be sent to describe the reproduction. An important
less regular parsing. If the image has color, with each pixgbecial case is when all binary codewords have the same length
value represented by some three-dimensional vector, thenr, in which case the quantizer is referred tofiagd-lengthor
dimensional vectors can be extracted in even more ways. Afixed-rate
if the data is a sequence of color of images, e.g., digital video,To measure the quality of the reproduction, we assume the
the extraction possibilities increase immensgly. existence of a nonnegative distortion meastife, &) which
There are two generic domains in which (memorylesgksigns a distortion or cost to the reproduction of inputy
guantization theory, both analysis and design, can proceedzlnldeally, one would like a distortion measure that is easy
the first, which we call theandom vector domainthe input to compute, useful in analysis, and perceptually meaningful
data, i.e., source, to be quantized is described by a fixed valnghe sense that small (large) distortion means good (poor)
of k, an alphabeti C R*, and a probability distribution oA; perceived quality. No single distortion measure accomplishes
and the quantizer must iedimensional. This is the case wherall three goals, but the common squared-error distortion
the specific vector dimension and contents are not allowed to X
vary, e.g., when ten-dimensional speech parameter vectors Of, .\ _ .. a12 _ /0. ot/ sy a2
line spectral pairs or reflection coefficients are coded together. (@, &) = lle = 3" = (@ - &)z - %) = Z i = i
In the second, which we call threandom process domaitthe
input data is characterized as a discrete parameter randdisfies the first two. Although much maligned for lack of
process, i.e., a countable collection (usually infinite) of raferceptual meaningfulness, it often is a useful indicator of
dom variables; and different ways of extracting vectors froerceptual quality and, perhaps more importantly, it can be
its Component variables may be considered and Comparggneralized to a class of distortion measures that have prOVed
including different choices of the dimensidn As indicated useful in perceptual coding, the input-weighted quadratic dis-
above, there are in general many ways to do this. Howevigttion measures of the form
for concreteness apd because it provides the opportunity tp d(z, &) = (x — &)W (z — &) 1)
make some key points, whenever the random process domain

is of interest in this and the next section, we focus exclusivelyhere W, is a positive-definite matrix that depends on the

3For example, the video community has had a longstanding debate betwmm’ cf. [258]’ [259]' [257]’ [224]' [387]' [386]' _[15011 [186]’
progressive versus interlaced scanning—two different extraction methods.[316], [323], [325]. Most of the theory and design techniques

=1
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considered here extend to such measures, as will be discudsagrangian distortion. All of these formalizations of optimal
later. We also assume thdfx, #) = 0 if and only if z = #, performance have their uses, and all are essentially equivalent:
an assumption that involves no genuine loss of generality ate distortion-rate and rate-distortion functions are duals and
allows us to consider a lossless code as a code for whiebery distortion-rate pair on the convex hull of these curves
d(z, Bla(x))) = 0 for all inputs z. corresponds to the Lagrangian for some value.oNote that
There exists a considerable literature for various othdrone constrains the problem to fixed-rate codes, then the
distortion measures, including, and other norms of dif- Lagrangian approach reduces to the distortion-rate approach
ferences and convex or nondecreasing functions of norsiace R(«, v) no longer depends on the code apdan be
of differences. These have rarely found application in reabnsidered as just a binary indexing Bf
systems, however, so our emphasis will be on the MSEFormal definitions of quantizer optimality easily yield opti-
with comments on generalizations to input-weighted quadratitality conditions as direct vector extensions and variations

distortion measures. on Lloyd’s conditions. The conditions all have a common
The overall performance of a quantizer applied to a sourflavor: if two components of the codgx, v, 3) are fixed,
is characterized by the normalized rate then the third component must have a specific form for the
1 code to be optimal. The resulting optimality properties are
R(a, v) = E[r(X)] :EE[l(fy(oe(X)))] summarized below. The proofs are simple and require no
1 calculus of variations or differentiation. Proofs may be found,
1 2106 [ fwds eg.in (34] and [196]
‘ 7 e For a fixed lossy encodet, regardless of the lossless
and the normalized average distortion encoder~, the optimal reproduction decodgris given

b
Dl ) = 3 BLACX, Ha(X))] S |
1 8 = arg;nln Eld(X, y)|o(X) = 1]
=7 d(x, yi) () dw.

k zz: /Sf the output minimizing the conditional expectation of the
distortion between the output and the input given that the
encoder produced indek These vectors are called the
Lloyd centroids. Note that the optimal decoder output for
a given encoder outputis simply the optimal estimate
of the input vectorX given «(X) = ¢ in the sense
of minimizing the conditional average distortion. If the
distortion is squared-error, the reproduction decoder is
simply the conditional expectation ok given it was
encoded into:

Every quantizef«, v, ) is thus described by a rate-distortion
pair (R(«, v), D(«, 3)). The goal of compression system
design is to optimize the rate-distortion tradeoff. Fixed-rate
guantizers constrain this optimization by not allowing a code
to assign fewer bits to inputs that might benefit from such, but
they provide simpler codes that avoid the necessity of buffering
in order to match variable-rate codewords to a possibly fixed-
rate digital channel.

The optimal rate-distortion tradeoff for a fixed dimension
k can be formalized in several ways: by optimizing distortion centroid(S;) = E[X|X € S,].
for a constrained rate, by optimizing rate for a constrained
distortion, or by an unconstrained optimization using a La-
grange approach. These approaches lead, respectively, to the

If the distortion measure is the input-weighted squared
error of (21), then [318], [224]

operational distortion-rate function centroid(S;) = E[Wx|X € S| ' E[Wx X|X € S)].
§(R) = inf D(«a, B) * For afixed lossy encoder, regardless of the reproduction
(2, 8): Rle, v)<R decoders, the optimal lossless encoder is the opti-
the operational rate-distortion function mal lossless code for the discrete sourgeX), e.g., a
_ Huffman code for the lossy encoded source.
(D)= (o, ’3):lgf(‘a“g)§D e, ) * For a fixed reproduction decodgt lossless codg, and

, , . . . Lagrangian parametex, the optimal lossy encoder is a
and the operational Lagrangian or weighted distortion-rate inimum-distortion (nearest neighbor) encoder for the

function modified Lagrangian distortion measure
HA) = k) Dle £+ Mo 7) () = argmin (d(z, 4(5)) + N((0)).

whereA is a nonnegative number. A small valueofeads to ¢ the code is constrained to be fixed-rate, then the second

a Iow-dlstort|pn, h_|gh—r:_;\te squt|.on and a large value leads H?operty is irrelevant and the third property reduces to the
a low-rate, high-distortion solution. Note that familiar minimum distortion encoding with respectdpas in
D(a, B) + AR(a, v) = E[d(X, B(a(X)) + N (y(a(X)))] the original_ formule}t?on pf Lloyd (and implicit i_n Sh_a_nnon).
(The resulting partition is often called ¥oronoi partition.)
so that the bracketed term can be considered to be a modifiedhe general variable-rate case, the minimum distance (with
or Lagrangian distortion, and tha{ \) is the smallest averagerespect to the distortion measu encoder is suboptimal;
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the optimal rule takes into account both distortion and code-+ Efg;(X)(g;(X) — X;)] = 0, for all ¢, j so that each
word length. Thus simply cascading a minimum MSE vector component of the quantizer output is orthogonal to each
guantizer with a lossless code is suboptimal. Instead, in the component of the quantizer error. This is an example of
general case, instantaneous rate should be considered in anthe well-known fact that the minimum mean-squared error
optimal encoding, as the goal is to trade off distortion and rate estimate of an unknown¥, given an observationy(.X),
in an optimal fashion. In all of these cases, the encoder can causes the estimate to be orthogonal to the error. In view
be viewed as a mechanism for controlling the output of the of the previous property, this implies that the quantizer
decoder so as to minimize the total Lagrangian distortion. error is uncorrelated with the quantizer output rather than,
The optimality conditions imply a descent algorithm for  as is often assumed, with the quantizer input.
code design: Given some, begin with an initial code « E[||¢(X) — X[|?] = E[|X|]*] — E[||¢(X)]||*], which
(a, B,7). Optimize the encoder: for the other two com- implies that the energy (or variance) of the quantized
ponents, then optimize the reproduction decodefor the signal must be less than that in the original signal.
remaining components, then optimize the lossless coder E[X4¢(X) - X)] = —E[||¢(X) — X||?], which shows
for the remaining components. L& denote the overall that the quantizer error isot uncorrelated with the input.

transformation resulting from these three operations. One |, tact the correlation is minus the mean-squared error.
such iteration ofI" must decrease or leave unchanged the '

average Lagrangian distortion. Iterate until convergence or thdt is instructive to consider the extreme points of the rate-
improvement falls beneath some threshold. This algorithm @éstortion tradeoff, when the distortion is zero (ar= 0)

an extension and variation on the algorithm for optimal scal@fd the rate i) (when A = oc). First suppose thah =
quantizer design introduced for fixed-rate scalar quantizatin In this case, the rate does not affect the Lagrangian
by Lloyd [330]. The algorithm is a fixed-point a|gorithmdistortion at all, but MSE counts. If the source is discrete,
since if it converges to a code, the code must be a fixtleen one can optimize this case by forcing zero distortion,
point with respect tol’. This generalized Lloyd algorithm that is, using a lossless code. In this case, Shannon’s lossless
applies to any distribution, including parametric models arfgPding theorem implies that for rate measured by average
empirical distributions formed from training sets of real datd?Stantaneous codelength

There is no obvious means of choosing the “beit’so

the design algorithm might sweep through several values to H(X) <7(0) <H(X) +1

provide a choice of rate-distortion pairs. We also mentio& if rate is measured by entropy, then simply0) —

that Lloyd-style iterative algorithmg have been used to desgp(X), the entropy of the vector. In terms of the Lagrangian
many structured f(_ers of quant_lzauon. For example, when tﬂ?rmulation,L(O) — 0. Conversely, suppose that— oo, In
codes are constrained to have fixed rate, the algorithm becomgs case distortion costs a negligible amount and rate costs
k-means clus_termg, flnd|_ng a fixed number_ of representaliyd enormous amount, so here the optimal is attained by using
points that yield the minimum average distortion when Zgr rate and simply tolerating whatever distortion one must

minimum distortion mapping is assumed. _ suffer. The distortion for a zero-rate code is minimized by the
As mentioned in Section I, a variety of other clusteringeniroid of the unconditional distribution

algorithms exist that can be used to design vector quantizers
(or solve any other clustering problems). Although each has D(0) = min E[d(X, y)]
found its adherents, none has convincingly yielded significant Y

benefits over the Lloyd algorithm and its variations in termghich is simply the mearf[X] in the MSE case. Here the
of trading off rate and distortion, although some have provgGgrangian formulation becomds{~0) = min, E[d(X, v)].
much faster (and others much slower). Some algorithms sughth of these extreme points are global optima, albeit the
as simulated and deterministic annealing have been fougstond is useless in practice.
experimentally to do a better job of avoiding local optima sq far, we have focused on the random vector domain and
and finding globally optimal distortion-rate pairs than hagonsidered optimality for quantizers of a fixed dimension. In
the basic Lloyd algorithm, but repeated applications of th&actice, however, and in source coding theory, the dimension
Lloyd algorithm with different initial conditions has alsoi may be a parameter of choice, and it is of interest to consider
proved effective in avoiding local optima. We focus on th@ow the optima depend on it. Accordingly, we now focus on
Lloyd algorithm because of its simplicity, its proven merit athe random process domain, assuming that the source is a one-
designing codes, and because of the wealth of results regardifigensional, scalar-valued, stationary random process. In this
its convergence properties [451], [418], [108], [91], [101]situation, the various operational optima explicitly note the
[321], [335], [131], [36]. dimension, e.g.6x(R) denotes the operational distortion-rate
The centroid property of optimal reproduction decoders hagnction for dimensionk and rateR and, similarly, (D)
interesting implications in the special case of a squared-eregid L, (1) denote the operational rate-distortion and Lagrange
distortion measure, where it follows easily [137], [60], [193]functions. Moreover, the overall optimal performance for all

[184], [196] that guantizers of rate less than or equalRas defined by
. E[q(X)] = FE[X], so _that the quantizer output can be §(R) = inf 61(R). (22)
considered as an unbiased estimator of the input. k
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Similar definitions hold for the rate-versus-distortion and theean-squared error of a uniform scalar quantizer with step size
Lagrangian viewpoints. A [43], [394], [468], which we now derive. Consider d-

Using stationarity, it can be shown (cf. [562], [577], [221]]evel uniform quantizey; whose levels arg, -- -, yn, with
[217, Lemma 11.2.3]) that the operational distortion-rate fung; = »;—1 + A. When this quantizer is applied to a continuous
tion is subadditivein the sense that for any positive integersandom variableX with probability densityf(x), when A

k andl is small, and when overload distortion can be ignored, the
i ! mean-squared error (MSE) distortion may be approximated as

2

which shows the generally decreasing trend of dheR)’s as D) = E(X — (X))

k increases. It is not known whether or réat; ; (R) is always N /yi+A/2
i=1"Y

~

less than or equal té,(R). However, it can be shown that =

subadditivity implies (cf. [180, p. 112]) i—A/2

N yi+A/2 5
S(R) = lim 8x(R). (24) =3 f(w) / (x—yi) dx
k—eo i=1 Yyi—A/2
Hence high-dimensional quantizers can do as well as any _A2 ol A
quantizer. Note that (23) and (24) both hold for the special 12 Z F(wi)
=1

cases of fixed-rate quantizers as well as for variable-rate
A2 yn+A/2

quantizers. ~ 2 f(z) dw
It is important to point out that for squared error and 12 Jy—ay2

most other distortion measures, thef” in (22) is not a A2

“min.” Specifically, §(R) represents performance that cannot = 12"

be achieved exactly, except in degenerate situations such as

when R = 0 or the source distribution is discrete rather thamhe first approximation in the above derives from ignoring
continuous. Of course, by the infimum definitiond¢fz), there overload distortion. If the source density is entirely contained
are always quantizers with performance arbitrarily close in the granular region of the quantizer, then this approxima-
it. We conclude that no quantizers arely optimal. Thus it tion is not needed. The second approximation derives from
is essential to understand that whenever the word “optimalbserving that the density may be approximated as a constant
is used in the random process domain, italsvaysin the on a small interval. Usually, as in the mean value theorem
context of some specific constraint or class of quantizers, susfhintegration, one assumes the density is continuous, but as
as eight-dimensional fixed-rate VQ or entropy-constrainethy measurable function is approximately continuous, when
uniform scalar quantization or pyramid coding with dimensioi is sufficiently small this approximation is valid even for
20, to name a few at random. Indeed, though desirabliscontinuous densities. The third approximation derives from
“optimality” loses a bit of its lustre when one considers theecognizing that by the definition of a Riemann integral,
fact that an optimal code in one class might not work as weEf;l f(y)A is approximately equal to the integral ¢f.

as a suboptimal code in another. It should now be eviddrially, the last approximation derives from again ignoring
that the importance of the Lloyd-style optimality principleshe overload region. As mentioned in earlier sections, there are
lies ultimately in their ability to guide the optimization ofsituations, such as variable-rate quantization, where an infinite

guantizers within specific constraints or classes. number of levels are permitted. In such cases, if the support
of the uniform scalar quantizer contains that of the source
IV. HIGH RESOLUTION QUANTIZATION THEORY density, then there will be no overload distortion to ignore,

This section presents an overview of high resolution theoand again we havé = A2/12,
and compares its results to those of Shannon rate-distortiorit is important to mention the sense in whi¢his approx-
theory. For simplicity, we will adopt squared error as thamated by A?/12. After all, when A is small, bothD and
distortion measure until late in the section, where extensiond /12 will be small, so it is not saying much to assert that their
to other distortion measures are discussed. There have bdifierence is small. Rather, as discussed later in the context
two styles of high resolution theory developments: informabf the rigorous framework for high resolution theory, it can
where simple approximations are made, and rigorous, whdx@ shown that under ordinary conditions, the ratialbfand
limiting formulas are rigorously derived. Here, we proceed?/12 tends tol asA decreases. Though we will not generally
with the informal style until later when the results of thenention it, all future high-resolution approximations discussed
rigorous approach are summarized. We will also presume tihethis paper will also hold in this ratio-tending-to-one sense.
“random vector domain” of fixed dimension, as described in Each of the assumptions and simple approximations made in
the previous section, until stated otherwise. deriving A2 /12 reoccurs in some guise in the derivation of all
subsequent high-resolution formulas, such as for nonuniform,
vector, and variable-rate quantizers. Thus they might be said

As mentioned earlier, the first and most elementary restdt be principal suppositions. Indeed, the small cell type of
in high resolution theory is the\? /12 approximation to the supposition is what gives the theory its “high resolution” name.

A. Asymptotic Distortion
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In uniform quantization, all cells have the same size armmbdevectory; to the MSE of ak-dimensional vector quantizer
shape and the levels are in the center of each cell (except

1
for the outermost cells which are ignored). Thus the cell size D;(q) = E/ |l — vil|* f(z) dz (25)
A is the key performance determining gross characteristic. In Si y
more advanced, e.g., vector, quantization, cells may differ in = [y )M(Si, yi) vol (S5;) (26)

size and shape, and the codevectors need not be in the cent%rs . . . .
L where M (S;, y;) is the normalized moment of inertia of the

of the cells. Consequently, other gross characterizations A% ¢ about the ointy;, defined b
needed. These are tipgint densityand theinertial profile. ¢ PO, y

The point density of a vector quantizer is the direct ex- (S, i) = 1 1 / z — vi||2 dz
tension of the point density introduced in Section Il. That ©IT k vol (S)1H2/k o o '
'S, It Is a nonnegative, usuglly smooth_ functiaiz) that,_ Normalizing by volume makes/ independent of the size of
when integrated over a region, determines the apprommThe

fraction of codevectors contained in that region. In fixed-rafe . cell. Normalizing by dimension yields a kind of invariance
gion. 0 dimension, namely, that/ (S; x S;, (v, w:)) = M(S;, w).

coding, the point density is usually normalized by the numbe\r/e often writeM(S;) wheny; is clear from the context. The

of codevectors so that its total integral is one. In Va”abl%'ormalized moment of inertia, and the resulting contribution

rate coding, where the number of codevectors is not a kfyi(q), is smaller for sphere-like cells with codevectors in the

pherforr_nar:jce-d_ete_rmwngljl p?r;\meter an(lj_ mg\y :ven be 'nf_'g'&ﬁnter than for cells that are oblong, have sharply pointed ver-
t_ & point en5|_ty IS usually [eft unnormalized. AS We COnSIdglag or have displaced codevectors. In the latter cases, there
fixed-rate coding first, we will presume is normalized, a6 more points farther from; that contribute substantially

until stated otherwise. There is clearly an inverse relationshi{p normalized moment of inertia, especially when dimension
between the point density and the volume of cells, namely, large.

Alz) = (N vol ()7, where, as beforeV is the number of |y gome quantizers, such as uniform scalar and lattice
codevectors or cells anfl, denotes the cell containing quantizers, all cells (with the exception of the outermost cells)

As with any density that describes a discrete set of poinigaye the same shape and the same placement of codevectors
there is no unique way to define it for a specific quantizefithin cells. In other quantizers, however, cell shape or
Rather, the point density is intended as a high-level groggdevector placement varies with position. In such cases,
characterization, or a model or target to which a quantizgris yseful to characterize the variation of cell normalized
aspires. It describes the codevectors, in much the way th@ment of inertia by a nonnegative, usually smooth function
a probability density describes a set of data points—it dogs(:), called theinertial profile. That is,m(z) = M(S;, )
not say exactly where they are located, but roughly charaghen x € S;. As with point densities, we do not define
terizes their distribution. Quantizers with different numberg,(z) to be equal toM(S,, ¢(z)), because we want it to
of codevectors can be compared on the basis of their po# a high-level gross characterization or model to which a
density, and there is an ideal point density to which quantizeyeantizer aspires. Instead, we fet,(z) = M(S,, ¢(z)) be
aspire—they cannot achieve it exactly, but may approximatelled thespecific inertial profileof the quantizerg. This is
it. Nevertheless, there are times when a concrete definitionabhiecewise-constant function that captures the fine details of
the point density of a specific quantizer is needed. In suckll normalized moment of inertia.
cases, the following is often used: tlspecific point density  Returning toD;(q) expressed in (26), the effect of cell size
of a quantizerg is A\,(z) = (N vol(S,))~*. This piecewise- is obviously in the ternvol (.S;). Using the inverse relationship
constant function captures all the (fine) detail in the quantizeb®tween point density and cell volume yields
partition, in contrast to the usual notion of a point density as a 1 M(Si, y;)
gross characterization. As an example of its use, we mention Di(q) Nk fws) )\2/,:" =
that for fixed-rate quantization, the ideal point density:) (v:)
is usually a smooth function, closely related to the soureehich shows how point density locally influences distortion.
density, and one may say that a quantizer has point densitymming the above over all cells and recognizing the sum as
approximatelyA(x) if A (x) = A(z) for all z in some set with an approximation to an integral yields the following approxi-
high probability (relative to the source density). When a scalaration to the distortion of a vector quantizer:
quantizer is implemented as a compandé€x;) is proportional 1
to the derivative of the compressor function applied to the D(q) N2 /mf(x) dx. (27
input. Though the notion of point density would no doubt have
been recognizable to the earliest contributors such as Benngtt; scalar quantizer: = 1) with points in the middle of the
Panter, and Dite, as mentioned earlier, it was not explicitells, m(z) = 1/12 and the above reduces to
introduced until Lloyd’s work [330]. 11 1

In nonuniform scalar quantization and vector quantization, D(q) 5 W2 / @) flz)dx (28)
there is the additional issue of codevector placement within
cells and, in the latter case, of cell shape. The effect which is what Bennett [43] found for companders, as restated
point placement and cell shape is exhibited in the followinigp terms of point densities by Lloyd [330]. Both (28) and the
approximation to the contribution of a small cefl with more general formula (27) are call&ennett’s integral The

(1

vol (57)

m(x)

(R

(1
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extension of Bennett's integral to vector quantizers was firsbngruent to some basic tessellafitgdimensional cell shape
made by Gersho (1979) [193] for quantizers with congrueft}. In this case, the optimum inertial profile is a constant and
cells for which the concept of inertial profile was not neede@ennett’s integral can be minimized by variational techniques
and then to vector quantizers with varying cell shapes (and Holder’s inequality [193], [222], resulting in the optimal
codevector placements) by Na and Neuhoff (1995) [365]. point density
Bennett's integral (27) can be expected to be a good
approximation under the following conditions: i) Most cells are Ni(x) =
small enough thaf(z) can be approximated as being constant /fk/<k+2)(x/) dz’
over the cell. (There can be some large cells wiférg is very
small.) Ordinarily, this requiredV to be large. ii) The specific and the following approximation to the operational distortion-
point density of the quantizer approximately equals) on rate function: for largeR
a high probability set of:’s. iii) The specific inertial profile
approximately equals:(z) on a high probability set of's. iv) 6u(R) = MyBro?27* = Zi(R) (30)
Adjacent cells have similar volumes. The last condition rules _ S .
out quantizers such as a scalar one whose cells have alterna\fYﬁﬁlre M" - M_(T"‘)’ \.Nh'Ch Is the I_east normalized moment
lengths such as\, %A, %A, A, %& %& A, ---. The point of ihertia of k-dimensional tessellating polytopes, and
density of such a quantizer igz) = 3/(2AN), because there 1 (k+2)/k
are three points in an interval of widtbA. Assuming, for B = —2</ fk/(k+2)($)d$>
simplicity, that the source density is uniform ¢ 1], it is 7
easy to computeD) = (5/96)A2, whereas Bennett's integralis the term depending on the source distribution. Dividing by
equals(1/27)A2. One may obtain the correct distortion byvariance makeg. invariant to a scaling of the source. We
separately applying Bennett’s integral to the union of intervatgill refer to M, 8x, and Z,(R) as, respectively, Gersho’s
of length A and to the union of intervals of Iengt@A. The constant (in dimensio®), Zador’s factor (fork-dimensional,
problem is that Bennett's integral is not linear in the poirfixed-rate quantization), and the Zador-Gersho function (for
density. So for it to be accurate, cell size must change slowkydimensional, fixed-rate quantization). (Zador’s role will be
or only occasionally. Since Bennett's integral is linear in thdescribed later.) Whet = 1, Z;(R) reduces to the Pan-
inertial profile, it is not necessary to assume that adjacent calis—Dite formula (8).
have similar shapes, although one would normally expect thisFrom the form ofA}(x) one may straightforwardly deduce
to be the case in situations where Bennett's integral is applig¢dat cells are smaller and have higher probability whéfe)
Examples of the use of the vector extension of Bennetis larger, and that all cells contribute roughly the same to the
integral will be given later. distortion; i.e.,D;(q) in (26) is approximately the same for alll
Approximating the source density as a constant over eaghwhich is the “partial distortion theorem” first deduced for
quantization cell, which is a key step in the derivations of (2&calar quantization by Panter and Dite.
and (28), is like assuming that the effect of quantization is to A number of properties of\f;, and 35 are known; here,
add noise that is uniformly distributed. However, the range ®fe mention just a few. Gersho’s constav}, is known only
noise values must match the size and shape of the cell. Alod £ = 1 and 2, wherej}, is, respectively, an interval and
so when the cells are not all of the same size and shape, sactegular hexagon. It is not known whether thé,'s are
guantization noise is obviously correlated with the veckbr monotonically nonincreasing for alt, but it can be shown
being quantized. On the other hand, for uniform scalar atitht they form a subadditive sequence, which is a property
lattice vector quantizers, the error afd are approximately strong enough to imply that the infimum ovérequals the
uncorrelated. A more general result, mentioned in Section Ilimit as & tends to infinity. Though it has long been presumed,
is that the correlation between the input and the quantizationly recently has it been directly shown that thg's tend to
error is approximately equal to the MSE of the quantizer whelf27e as k increases (Zamir and Feder [564]), which is the
the codevectors are approximately centroids. limit of the normalized moment of inertia of-dimensional
spheres a% tends to infinity. Previously, the assertion that
the M;’'s tend to1/2r¢ depended on Gersho’s conjecture.
B. Performance of the Be&tDimensional, Zador’s factor3;, tends to be smaller for source densities that
Fixed-Rate Quantizers are more “compact” (lighter tails and more uniform) and have

Having Bennett's integral for distortion, one can hope to finore dependence among the source variables.
a formula foréy (R), the operational distortion-rate function for Fortunately, high resolution theory need not rely solely
k-dimensional, fixed-rate vector quantization, by choosing ti#& Gersho’s conjecture, because Zador's dissertation [561]
key characteristics, point density and inertial profile, to minand subsequent m(Qach21£562] showed that for large daie)
mize (27). Unfortunately, it is not known how to find the bedtas the formb,5,o=27=", whereb, is independent of the
inertial proflle. lnd_eed'_|t IS th even known what functions 4A cell T “tessellates” if there exists a partition 8F* whose cells are,
are allowable as inertial profiles. However, Gersho (1978ptirely, translations and rotations @f. The Voronoi cell of any lattice
[193] made the now widely accepted conjecture that whégssellates, but not all tessellations are generated by lattices. Gersho also
te is | t cells of fadi . | . ith conjectured thal;, would beadmissiblen the sense that the Voronoi partition
rate 1s ar_g?' most cells o .|mens'0na quantizer W|t' ratefor the centroids of the tessellation would coincide with the tessellation. But
R and minimum or nearly minimum MSE are approximatelyhis is not essential.

fk/(k+2)(x)

(29)
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source distribution. Thus Gersho’s conjecture is really justagpproximations, originally due to Gish and Pierce [204], to the
conjecture abouby,. entropy of the output of a quantizer. Two such approximations,

In deriving the key result, Zador first showed that for avhich can be derived using approximations much like those
random vector that is uniformly distributed on the unit cubeysed to derive Bennett's integral, were stated earlier for scalar
§(R) has the formb,2—2% when R is large, which effectively quantizers in (11) and (13). However, the approximation
definesb,. (In this casefxo? = 1.) He then used this to (13), which says that for quantizers with mostly small cells
prove the general result by showing that no quantizer with higii(g) = h(X)+E[log A(X)], whereA(z) is the unnormalized
rate could do better than one whose partition is hierarchicalppint density, holds equally well for vector quantizers, when
constructed by partitioningt* into small equally sized cubesX is interpreted as a vector rather than a scalar variable. As
and then subdividing each with the partition of the quantizenentioned before, unnormalized point density is used because
that is best for a uniform distribution on that cube, wher@ith variable-rate quantization, the number of codevectors is
the number of cells within each cube depends on the sourwt a primary characteristic and may even be infinite. For
density in that cube. In other words, the local structure of @&xample, one can always add levels in a way that has negligible
asymptotically optimal quantizer can be that of the optimutmpact on the distortion and entropy.
guantizer for a uniform distribution. We could now proceed to use Bennett's integral and the

In this light, Gersho's conjecture is true if and only if. agntropy approximation to find the operational distortion-rate
high rates. one may obtain an asymptotically optimal quantiZinction for variable-rate k-dimensional, memoryless VQ.
for a uniform distribution by tessellating with;,. The latter However, we wish to consider a somewhat more general case.
statement has been proven for= 1 (cf. [106, p. 59]) and Just as Gish and Pierce found something quite interesting by
for k = 2 by Fejes Toth (1959) [159]; see also [385]. Foexamining the best possible performance of scalar quantization
k = 3, it is known that the best lattice tessellation is thwith block entropy coding, we will now consider the oper-
body-centered cubic lattice, which is generated by a truncat@igonal distortion-rate function for vector quantization with
octahedron [35]. It has not been proven that this is the bé#eck entropy coding. Specifically, we seék ;. (R), which is
tessellation, though one would suspect that it is. In summaggfined to be the infimum of the distortions of any quantizer
Gersho’s conjecture is known to be true only foe= 1 and2. with rate R or less, whose lossy encoder fisdimensional
Might it be false fork > 3? If it is, it might be that the best and memoryless, and whose lossless encoder simultaneously
quantizers for a uniform source haveeriodictessellation in codes a block ofL successive quantization indices with a
which two or more cell shapes alternate in a periodic fashiovgriable-length prefix code. In effect, the overall code is a
like the hexagons and pentagons on the surface of a sodeérdimensional, memoryless VQ. However, we will refer
ball. If the cells in one period of the tessellation have th® it as ak-dimensional (memoryless) quantizer witth-
same volumes, then one may apply Bennett’s integral, afefer variable-length coding (akth-order entropy coding).
(30) holds withAM;, replaced by the average of the normalizedVhen L = 1, the code becomes a conventional memoryless,
moment of inertia of the cells in one period. However, if th¥ariable-rate vector quantizer. It is convenient to let= 0
cells have unequal volumes, then as in the example given whiennote fixed-length coding, so th@t o(£2) means the same
discussing Condition iv) of Bennett's integral, the MSE wilBs éx(R) of the previous section. By finding high-resolution
be the average of distortions computed by using Bennet@gproximations td,. r(12) for all values ofk > 1 andL > 0,
integral separately on the union of cells of each type, andwg Will be able to compare the advantages of increasing the
macrolevel definition of\/;, will be needed. It might also be dimensionk of the quantizer to those of increasing the order
that the structure of optimal quantizers is aperiodic. Howevey, Of the entropy coder.
it seems likely to us that, asymptotically, one could always To find 6, () we assume that the source produces a
find a quantizer with a periodic structure that is essentially &gduence(X, ---, X ;) of identical, but not necessarily
good as any aperiodic one. independentk-dimensional random vectors, each with density

It is an open question in dimensions three and above whettéw)- A straightforward generalization of (13) shows that
the best tessellation is a lattice. In most dimensions, the be8gger high-resolution conditions, the rate is given by
known tessellation is a lattice. However, tessellations that are 1
better than the best known lattices have recently been found? = ;— h(X1, -, Xpr) + z /f(x) log A(z)dz. (31)
for dimensions seven and nine by Agrell and Eriksson [149].

From now on, we shall proceed assuming Gersho's conjégn the other hand, the distortion of such a code may be
ture is correct, with the knowledge that if this is not the casapproximated using Bennett's integral (27), witlz)/N?/*
then analyses based dd;, will be wrong (for k > 3) by the substituted for the normalized point densityz). Then, as
factor My, /by, which will be larger thanl (but probably not with fixed-rate vector quantization, one would like to find
much larger), and which in any case will converge to one ds (&) by choosing the inertial profilen and the point
k — oo, as discussed later. densityA to minimize Bennett's integral subject to a constraint
on the rate that the right-hand side of (31) be at nf@st

Once again, though it is not known how to find the best
inertial profile, Gersho’s conjecture suggests that when rate

Extensions of high resolution theory to variable-rate quars large, the cells of the best rate-constrained quantizers are,
tization can also be based on Bennett's integral, as well m®stly, congruent td3. Hence, from now on we shall assume

C. Performance of the BegtDimensional,
Variable-Rate Quantizers
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that the inertial profile of the best variable-rate quantizers is,another Zador—Gersho function. This operational distortion-
approximately,m(xz) = M. In this case, using variationalrate function was also derived by Zador [561], who showed
techniques or simply Jensen’s inequality, one can show thlat his unknown factors, andc;, converged tal/2we. The

the best point density is uniform on all &" (or at least over derivation given here is due to Gersho [193]. Notice that in
the support of the source density). In other words, all quantiziis limiting case, there is no doubt about the consfant

cells have the same size, as in a tessellation. Using this facAs previously mentioned, th&f;’s are subadditive, so that
along with (27) and (31) yields they are smallest wheh is large. Similarly, for stationary
sources it can be shown that the sequefieg 3} is also
subadditive [193], so that they too are smallest whénlarge.
Therefore, another expression for the above Zador-Gersho
function is Z(R) = inf), Zy(R).

6k7L(R) = Mk’ykLO'2272R = Zy, L(R) (32)
where

= 1 saa/mnix, - x0)
o? E. The Benefits of Increasing Dimension
is the term depending on the source distribution. Dividing by Fixed-Rate Quantization

variance makes it invariant to scale. We Cﬁ”the Qcth-order) Continuing in the random process domain (stationary
Zador entropy factor and;., .(1?) a Zador—Gersho function sources), the generally decreasing naturesMyf and S,
for variable-rate coding. Since fixed-rate coding is a specigectly quantify the benefits of increasing dimension in
case of variable-length coding, it must be thatis less than fixed-rate quantization. (Of course, there is also a cost to
or equal tof in (30). This can be directly verified usingincreasing dimension, namely, the increase in complexity.)
Jensen’s inequality [193]. For example,M;. decreases from /12 = 0.0833 for k = 1

In the case of scalar quantizati¢gh = 1), the optimality to the limit 1/2r¢ = 0.0586. In decibels, this represents
of the uniform point density and the operational distortiong 1.53-dB decrease in MSE. For an i.i.d. Gaussian source,
rate functioné, (R) were found by Gish and Pierce (1968)/3k decreases fron6v/3n = 32.6 for £k = 1 to the limit
[204]. Zador (1966) [562] considered the = 1 case and 25, = 17.1, which represents an additional 2.81-dB gain.
showed thaté; 1(R) has the formeyvio?272% when R is  |n total, high-dimensional quantization gains 4.35 dB over
large, wherer,, is a constant that is independent of the soure@alar quantization for the i.i.d. Gaussian source. For a
density and no larger than the constaptthat he found for Gauss—Markov source with correlation coefficignt= 0.9,
fixed-rate quantization. Gersho [193] used the argument givgp decreases fron6v/3r = 32.6 for k = 1 to the limit
above to find the form ob, 1(R) given in (32). 2re(1 — p?) = 3.25 or a gain of 10.0 dB, yielding a total

As with fixed-rate quantization, we shall proceed under thggh-dimensional VQ gain of 11.5 dB over scalar quantization.
assumption that Gersho’s conjecture is correct, in which casgcause of the 6-dB-per-bit rule, any gain stated in decibels
cp = bp = M. If it is wrong, then our analyses will be off can be translated to a reduction in rate (bits per sample) by
by the factorM; /¢, which, as before, will probably be jUStdividing by 6.02.

a little larger than one, and which in any case will converge on the other hand, it is also important to understand

to one ask — oo. what specific characteristics of vector quantizers improve with
dimension and by how much. Motivated by several prior
D. Fixed-Rate Quantization with Arbitrary Dimension explanations [342], [333], [365], we offer the following. We

We now restrict attention to the random process domajfiSh to compare an optimal quantizgg with dimension#
wherein the source is assumed to be a one-dimensional, scd@ran optimal’-dimensional quantizer with ' > k.
valued, stationary random process. We seek a high-resolutigh Simplify the discussion, assumé is a multiple of k.
approximation to the operational distortion-rate functiohough these two quantizers have differing dimensions, their
5(R) = infy &x(R), which represents the best possimé‘,haractensucs can be fqlrly co.m.pared by compaqggo the
performance of any fixed-rate (memoryless) quantizer. ABroduct’ VQ g, ;s thatis implicitly formed whery, is used
mentioned in Section Ill, for stationary Sourcé¢R) = K /k tlmes. in succession. Specifically, the product quantizer
limy,_.- 6,(R). Therefore, taking the limit of the high- h@s quantization rule
resolution approximation (30) fof,(R) yields the fact that

for Iarge R dpr, k’(.’l’) = (Qk(gl)v T Qk(gk’/k))
5(R) = MpBo?272R = Z(R) (33) where z,, ---, z;,,;, are the successivé-tuples of z, and
reproduction codebook,,. s consisting of the concatenations
where of all possible sequences bf/k codevectors frong,'s repro-
o 1 duction codebook;.. The subscripts#” and “pr, &’ will be
M = lim My = —me attached as needed to associate the appropriate features with
— k._’°° 2 the appropriate quantizer. The distortion and rate of the product
p= ,}g{; P quantizer are easily seen to be those of#tkiimensional VQ.
and Thus the shortcomings of an optimiadimensional quantizer
Z(R) = lim Zu(R) relative to an optimal high-dimensional quantizer may be
k—oo identified with those of the product quantizer—in particular,
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with the latter's suboptimal point density and inertial profilethe point-density lossL,,, is the ratio of the distortion of a
which we now find. hypothetical quantizer with the point density of the product

To simplify discussion, assume for now that = 1, quantizer and a constant (e.g., optimal) inertial profile to that
and letq; be a fixed-rate scalar quantizer, with large rat®f a hypothetical quantizer with an optimal point density and
levels in the middle of the cells, and point denshy,(z1). the same (constant) inertial profile. Substituting (35) into (36)
The cells of the product quantizey, »» are k’-dimensional and using the fact that for large, A, = 1/27e, one finds
rectangles formed by Cartesian products of cells from the

scalar quantizer. When the scalar cells have the same width, /i zk: 1 () dx
a k’-dimensional cube is formed; otherwise, a rectangle is e k= A2 (i) *
formed, i.e., an “oblong” cube. Since the widths of the L:g x 1

cells are, approximately, determined By,(z1), the point / VG Jw () dx

density and inertial profile ofy, i are determined byg,. M y
Specifically, from the rectangular nature of the product cells H)‘sq(xi)
one obtains [365], [378] =1

1
[ @
)‘Pr,k’($) = H )‘sq(aji) (34) H)\Q/k,(a?‘)
=1 ‘ Sq 3
and x — =t i
1 u 1 /W fiw (x) dx
. 232 ) o
My 10 (2) = 35— (35) = Lap X Lob X Lpy (37)
i 1 where the cell shape loss has been factored into the product
H A2 (. of a space-filling losg333]° L., which is the ratio of the
i=1 sq( 1) I

normalized moment of inertia of a cube to that of a high-

which derive, respectively, from the facts that the volum@imensional sphere, and ablongitisloss, L.}, which is the
of a rectangle is the product of its side lengths, that tiactor by which the rectangularity of the cells makes the cell
normalized moment of inertia of a rectangle is that of @hape loss larger than the space-filling loss.
cube (1/12) times the ratio of the arithmetic mean of the To proceed further, consider first an i.i.d. source (stationary
square of the side lengths to their geometric mean, and tA&d memoryless) and consider how to choose the scalar point
the side lengths are determined by the scalar point dens@@nsity A.q(z1) in order to minimizeL. On the one hand,
Note that along the diagonal of the first “quadrant” (wherehoosing\.q(z1) to be uniform on the set where the one-
r; = x3 = --- = x3), the product cells are cubes andlimensional density f,(z1) is not small causes the product
Mpe, 1 (z) = 1/12, the minimum value. Off the diagonal, thecells in the region where thé’-dimensional densityf,(z)
cells are usually rectangular and, consequently, ;(x) is is not small to be cubes and, consequently, makgs= 1,
larger. which is the smallest possible value. However, it causes the
To quantify the suboptimality of the product quantizerroduct point density to be poorly matched to the source
principal feature, we factor the ratio of the distortions oflensity and, as a result,; is large. On the other hand,
gpe. 1 () and gis, which is a kind of loss, into terms thatchoosingAs(z1) = fi(z1) causes the product quantizer to
reflect the loss due to the inertial profile and point densifjave, approximately, the optimal point denSity
[365], [378F

k/
L= D(QDr,k’) ~ B(k/’ Mpr, k7 )‘Dr,k’a f) )\Pr’ K (.’L’) = H fl ('TZ) = fk’(‘T) = )\*,(‘T)

N 6k’(R) B B(klv Mk’7 )‘ZH f) =t

B(K', mpe, ks Ape, ks [)  B(K', My, Ape s ) where the last step uses the fact thais large. However, this
= B, My, Ape s ) x B(K, My, AL, ) choice caused..;, to be infinite? The best point density, as

~ —— ~ implicitly found by Panter and Dite, is the compromise
= L(‘,e X Lpt (36) 1/3($1)

where Al(z) = 1/3
J 117 () du
Bk, m, \, f) = Agia(ji)f(x) dz as given in (29). In the region wherf(x1) is not small,

Af(z1) is “more uniform” thanA;(z1) = fi1(z1) that causes

is the part of Bennett's '”teg_ra' that 0,'063 not erendi\bn 6Actually, Lookabaugh and Gray defined the inverse as a vector quantizer
where thecell-shape lossL.., is the ratio of the distortion of advantage The space-filling loss was calledcabic loss in [365].

the product quantizer to that of a hypothetical quantizer with’ Dimension will be added as a subscriptftin places where the dimension

same point density and an optimal inertial profile, and Whe?é;( needs to be emphasized. , _ o
The fact that product quantizers can have the optimal point density is often
5Na and Neuhoff considered the ratio of the product code distortion to tHaterlooked.
of an optimalk-dimensional VQ for arbitrary, not just for largek. 9This implies that distortion will not decrease 252%.
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dimension k

Fig. 5. Losses of optimat-dimensional quantization relative to optimal high-dimensional quantization for an i.i.d. Gaussian source. The bottom curve is
point-density loss; above that is point-density loss plus oblongitis loss; and the top curve is the total lds%: Epthe space-filling losses are estimates.

the product quantizer to have the optimum point densitproduct point density cannot match the ideal point density,
Therefore, it generates a product quantizer whose cells in th& even approximately. See [333] and [365] for a definition
region wherefys(x) is largest are more cubic, which explainsf memory loss. (One can factor both the point density and
why it has less oblongitis loss. oblongitis losses into two terms, one of which is due to
As an example, for an i.i.d. Gaussian source, the optim@e quantizer’s inability to exploit memory.) There is also a
choice of scalar quantizer causes the product quantizerp@mory loss fork-dimensional quantization, which decreases
have 0.94-dB oblongitis loss and 1.88-dB point-density 10§ 1 as k increases. The value df for which the memory
The sum of these, 2.81 dB, which equaslog,, 51/8, has |oss becomes close to unity (i.e., negligible) can be viewed
been called the “shape loss” [333] because it is determingd king of “effective memory or correlation length” of the
by the shape of the density—the more uniform the density tagrce. It is closely related to the decorrelation/independence
less need for compromise because the scalar point densi%th of the process, i.e., the smallest valuekauch that

leading to best product cell shapes and best point density ag,;ce samples are approximately uncorrelated when separated
more similar. Indeed, for a uniform source density, there Eﬁ/ more thank

no shape loss. In summary, for an i.i.d. source, in comparison
to high-dimensional quantization, the shortcomings of scalBr Variable-Rate Quantization with Arbitrary Quantizer
quantization with fixed-rate coding are 1) tdg, = 1.53- Dimension and Entropy Coding Order

dB space-filling loss and 2) the lack of sufficient degrees of We continue in the random process domain (stationary

freedom to simultgneously attain good inertial profile (Smaélources). To find the best possible performance of vector
.L".b) and good po_mt density (small,). On the other hgnd{ uantizers with block entropy coding over all possible choices
it is often surprising to newcomers that vector quantizatio the dimensionk of the lossy encoder and the ordarof

gains anything at all over scalar quantizers for i.i.d. sources entropy coder, we examine the high-resolution approxima-

and secondly, that the gain is more than just the recovery OF L ~ 2e2R

the space-filling loss. tion (32), which shows that, (R) = Mivyir0°272%. As
mentioned previously, thé4,’s are subadditive, so choosing

A similar comparison can be made betwdedimensional | Kes) I ol | I
(k > 2) and high-dimensional VQ, by comparing the produ(,]f arge makesii; as small as possible, namely, as sma
as M. Next, for stationary sources, it is well known that

quantizer formed by’ /% uses of ak-dimensional VQ to an ; > .
kth-order differential entropyv, = (1/k)R(Xy, -+, Xj) I

optimal &’-dimensional quantizer, for large. The results are ] ) SRy ) )
that ask increases 1) the space-filling loks, = M, /(1/2re) monotonically nonincreasing ih. Therefore, choosing either

decreases, and 2) there are more degrees of freedom so kh&f L large makesy, = 22z as small as possible,
less compromise is needed between thdimensional point Na@mely, as small a§ = limy_o, 7. Interestingly,y =
density that minimizes oblongitis and the one that gives the = lmx—oc Bk, @ shown by Gersho [193], who credits
optimal point density. As a result, the oblongitis, point density,nomas Liggett. It follows immediately that the best possible
and shape losses decrease to zero, along with the space-filRgfformance of vector quantizers with block entropy coding
loss. For the i.i.d. Gaussian source, these losses are plotteisigiven by §(R) = M jo*2-2%, which is the operational
Fig. 5. distortion-rate function of fixed-rate quantizers. In other words,
For sources with memory, scalar quantizatifh = 1) entropy coding does not permit performance better than high-
engenders an additional loss due to its inability to exploiimensional fixed-rate quantization.
the dependence between source samples. Specifically, whehet us now re-examine the situation a bit more carefully. We
there is dependence/correlation between source samples,ntlag summarize the various high-resolution approximations to
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or 2) L large andk = 1, i.e., scalar quantization with high-

order entropy coding. In fact, uniform scalar quantization will

suffice in the second case. Alternatively, one may choose
moderate values for botk and .. Roughly speakingkl
must be approximately equal to the effective memory length
of the source plus the value needed for a memoryless source.

In effect, if the source has considerable memory, such memory

can be exploited either by the lossy encodet&rge), or the

lossless encodet (large), or both (moderate values bfand

L). Moreover, in such cases the potential reductions;in;,

due to increasing: or L tend to be much larger than the

potential reductions in the space-filling loss. For example, for

the Gauss—Markov source of Fig. 64 0 = [, decreases

10.0 dB ask increases from one to infinity, and has already

) ] ] decreased 8.1 dB whein = 6.

E(':?én?'oé(_) log10 @k, 1 for a Gauss-Markov source with correlation coet- ) e point of view of the lossy encoder, the benefit of
entropy coding is that it reduces the dimension required of the
lossy encoder. Similarly, from the point of view of the lossless

operational distortion-rate functions as encoder, the benefit of increasing the dimension of the vector

S, L(R) = Mycu L0229 2R k>1,L>0 (38) gquantizer is that it decreases the order re_quired of the Iossl_ess
’ ’ encoder. Stated another way, the benefits of entropy coding
where by conventiod. = 0 refers to fixed-rate codindg, > 1 decrease with increasing quantizer dimension, and the benefits

refers toLth-order entropy coding, and of increasing quantizer dimension decrease with increasing
3 =0 entropy coding order. In summary (cf. [377]), optimal per-
ag L = {7"" I ; 1 formance is attainable with and only with a high-dimensional
kL, = i

lossy encoder, and with or without entropy coding. However,
Note that bothAM;’s and au, r's tend to decrease as good performance (within 1.53 dB of the best) is attainable
or L increase. (TheM;’'s and thelog 3;'s are subaddi- with uniform scalar quantizer and high-order entropy coding.
tive. The «,’s are nonincreasing.) As an illustration, FigBoth of these extreme approaches are quite complex, and
6 plots 10 log,, ok, 1 (in decibels) versus: and L for a so practical systems tend to be compromises with moderate
Gauss—Markov source with correlation coefficignt 0.9. guantizer dimension and entropy coding order.
Consider how;, 1.(R) decreases, i.e., improves, withand As with fixed-rate quantization, it is important to understand
L increasing. On the one hand, for fixédit decreases with what specific characteristics of variable-rate quantizers cause
increasingL (actually, it is monotonically nonincreasing) to them to perform the way they do. Consequently, we will
M, — take another look at variable-rate quantization, this time from
ﬁé(R). (39) the point of view of the point density and inertial profile
of the high-dimensional product quantizer induced by an
Thusk-dimensional quantization with high-order entropy codoptimal low-dimensional variable-rate quantizer. The situation
ing suffers only thek-dimensional space-filling loss. On thejs simpler than it was for fixed-rate quantization. As mentioned
other hand, for fixedL, &, £(R) decreases wittk (actually earlier, when rate is large, an optimiadimensional variable-
it is subadditive) to rate quantizer has a uniform point density and a partition and
8oo. L(R) = M Bo?272R = 5(R). (40) f:odebook formed by tessellatifdg. Supposeé: is s_mall an_dk’
’ is a large multiple of. From the structure of optimal variable-
Hence, high-dimensional quantization suffers no loss relativate quantizers, one sees that using an optitadiimensional
to the best possible performance, no matter the order quantizerk’/k times yields &’-dimensional quantizer having
absence of an entropy coder. the same (uniform) point density as the optirhatimensional
From the above, we see that to attain performance cloggantizer and differing, mainly, in that its inertial profile
to 6(R), k must be large enough that the space-filling losaquals the constand/;, whereas that of the optimal’-
M,/ M is approximately one, and the combinationkoind . ~ dimensional quantizer equal/y, = M. Thus the loss due
must be large enough thattyL//_i is also approximately one. to k-dimensional quantization is only the space-filling loss
Regarding the first of these, evén= 1 (scalar quantization) M;/M, which explains what Gish and Pierce found for scalar
yields M /M = me/6 = 1.42, representing only a 1.53-quantizers in 1968 [204]. We emphasize that there is no point
dB loss, which may be acceptable in many situations. Wheensity, oblongitis, or memory loss, even for sources with
it is not acceptablek needs to be increased. Unfortunatelynemory. In effect, the entropy code has eliminated the need
as evident in Fig. 5, the space-filling loss decreases slovity shape the point density, and as a result, there is no need to
with increasingk. Regarding the second, we note that oneompromise cell shapes.
has considerable freedom. There are two extreme casés: 1) Finally, let us compare the structure of the fixed-rate and
large andL = 0, i.e., fixed-rate high-dimensional quantizationyariable-rate approaches when dimension is large. On the one

Ok, oo R) = Mypo?2728 =
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hand, optimal quantizers of each type have the same constafit — y), where L is a monotone increasing function of the
inertial profile, namely,m(z) = M. On the other hand, magnitude of its argument anf(0) = 0 with the added
they have markedly different point densities: an optimal fixeghroperty that
rate quantizer has point density;(z) = fi(z), whereas 1 [v/2
an optimal variable-rate quantizer has point density that is M(v) = v / 12
. i O ) 5 v
unlfo_rm over .a” ofe - How is it that two sugh d?lsparate pOIr]thas the property thati’(v) is monotone. None of these dis-
densmes do in fact yleld_ the same Q|stort|on. The answer Srtion measures has been widely used, although the magnitude
pro_wd(_ed by the asymptotic equ_lpartltlon prc_)perty (AEP) [110 rror ("th power withr» = 1) has been used in some studies
which is the key fact upon W.h'Ch most qf mforn_watlon theor rimarily because of its simple computation in comparison
rests. For a stationary, ergodic source with continuous ramdwrnh the squared error (no multiplications)
vgnablgs, the AEP says that .wh_en d|men_sﬁua large, thet- The scalar distortion measures have various generalizations
dimensional probability density is approximately constant, exs

. . = i vectors. If the dimension is fixed, then one needs only a
cept on a set with small probability. More specifically, it ShoW§iciortion measure sayi(z, y), defined for allz, y € R*. If
Pr(X € 7;) = 1, where ’ P ’

the dimension is allowed to vary, however, then one requires a
T = {x c wF. _ 1 log fi(z) = hoo} family .Of qistortion mea_sureék(;, y.), k=12, e which
k collection is called didelity criterionin source coding theory.
is a set oftypical sequencesvhereh, = limy_.., hy is the Most commonly it is assumed that the fidelity criterion is
differential entropy rateof the source. It follows immediately additive or single letterin the sense that
from the AEP and the fact that} (x) = fi.(x) that the point

L(u) du

density of an optimal fixed-rate quantizer is approximately di((@s vy @), (Y, o0y i)

uniform on7 and zero elsewhere. Moreover, for an optimal =di((z1, -, 2), (y, -+, w))

variable-rate quantizer, whose point density is uniform over all +dp_i((@ig1s o zx), (igns - we))  (41)
of ®*, we see that the cells not ifj, can be ignored, because

they have negligible probability, and that the cellsZp all for [ =1, 2, ---, k — 1, or, equivalently,

have the same probability and, consequently, can be assigned
codewords of equal length. Thus both approaches lead to
quantizers that are identical & (uniform point density and di((x, -5 2a), (s o5 ) = Z di(i, vi).  (42)
fixed-length codewords) and differ only in what they do on =t
the complement of, a set of negligible probability. Additive distortion measures are particularly useful for proving

It is worthwhile emphasizing that in all of the discussiosource coding theorems since the normalized distortion will
in this section we have restricted attention to quantizers witlonverge under appropriate conditions as the dimension grows
memoryless lossy encoders and either fixed-rate, memorylé&sge, thanks to the ergodic theorem. One can also assume
or block lossless encoders. Though there are many lossgre generally that the distortion measure is subbadditive in
and lossless encoders that are not of this form, such the sense that
DPCM or finite-state, predictive or address vector VQ, and

k

Lempel-Ziv or arithmetic lossless coding, we believe that di (w1, - @), (1, 05 Un))

the easily analyzed case studied here shows, representatively, < di((z1, -, =), (1, 5 W)

the edffects of increasing memory in the lossy and lossless +dp_i((@igrs o zn), (Wigns - wx))  (43)
encoders.

and the subadditive ergodic theorem will still lead to positive
and negative coding theorems [218], [34®0]An example of

By far the most commonly assumed distortion measure @ssubadditive distortion measure is the Levenshtein distance
squared error, which for scalars is defineddy, v) =|z—y|*> [314] which counts the number of insertions and deletions

G. Other Distortion Measures

and for vectors is defined by along with the number of changes that it takes to convert one
k sequence into another. Originally developed for studying error-
di(x, y) =Y |z —wl*,  wherex =(z1,---, 21).  correcting codes, the Levenshtein distance was rediscovered in
i=1 the computer science community as the “edit distance.”

Often the distortion is normalized by/k. A variety of For a fixed dimensiok one can observe that the squared-

more general distortion measures have been considered ingh®r distortion measure can be written [as — y||?, where

literature, but the simplicity and tractability of squared errofz — || is the I, norm

has long given it a central role. Intuitively, the average squared s

error is the average energy or power in the quantization k ) /

noise. The most common extension of distortion measures lz—yll = Z |z — wil

for scalars is therth-power distortiond(z,y) = |z —y|". =1

For example, Roe [443] generalized Max’s formulation to . ) - N

distortion measures of this form. Gish and Pierce [204] consigl. This differs slightly from the previous definition of subadditive because
1S . ; ' me dy. are not assumed to be normalized. The previous definition applied to

ered a more general distortion measure of the fdfm y) = 4, /k is equivalent to this definition.
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This idea can be extended by using any power oflgmporm, is positive definite almost everywhere. The basic idea for this
e.g., distortion measure was introduced by Gardner and Rao [186]
to model a perceptual distortion measure for speech, where

_ _ T
dz, y) = lle = yllp the matrixB(y) is referred to as the “sensitivity matrix.” The

where requirement for the existence of the derivatives of third order
X 1/p and for theB(y) to be positive definite were added in [316]
llz — yll, = <Z s — yi|p> . as necessary for the 'a.naly5|s. Examples of d|st'ort|on measures
= meeting these conditions are the time-domain form of the

_ ) ] Itakura—Saito distortion [258], [259], [257], [224], which has
(In this notation thel; norm is|| - [|>.) If we choosep = 7,  he form of an input-weighted quadratic distortion measure of
then this distortion measure (sometimes referred to simply @3 form of (21). For this case, the input weighting matrix
the rth-power distortion) is additive. Zador [562] defined v, is related to the partial derivative matrix h§(z) =

very generalrth-power distortion measuras any distortion L(W, + W?), so that positive definiteness 6¥, assures
measure of the form(z, y) = p(x —y) where for anya > 0, 3 v

i e that of B(z) and the derivative conditions are transferred to
plazx) = a"p(|z1|, -- -, |zx|), for somer > 0. This includes

s S ., W,. Other distortion measures satisfying the assumptions are
rth-power distortion in the narrow sengie — y|5, as well as ¢ image distortion measures of Eskicioglu and Fisher [150]

the additive distortion measures of the form and Nill [386], [387]. The Bennett integral has been extended
] k ] to this type of distortion, and approximations for both fixed-
lz —yll; = Z lzi — yil’ rate and variable-rate operational distortion-rate functions have
=1 been developed [186], [316]. For the fixed-rate case, the result
and even weighted average distortions such as is that

(1

e [ T By AZ}if;) b @5)

k r
<Z wz|xz _yi|2> D(Q)
=1
where the modified inertial profile:(z) is assumed to be the

k
r limit of
Z w;|xzs — il
o M(S;, i) = (det (B(y:)))~ /"

and

where thew;’s are nonnegative. ,
A variation on thel, norm is thel,, norm defined by / (s — i) B(y:) (@i — i) do
llz — ylloo = max; |z; — y;|, which has been proposed as N

N(k+2)/k
a candidate for a perceptually meaningful norm. Quantizer [V (S 2/

design algorithms exist for this case, but to date no higix- natyral extension of Gersho's conjecture to the nondiffer-
resolution quantization theory or rate-distortion theory Nhag,ce gistortion measures under consideration implies that, as in
been developed for this distortion measure (cf. [347], [23Yhe squared-error case, the optimal inertial profile is assumed

and [348]). to be constant (which in any case will yield a bound) and

High resolution theory usually considers a fixed dime”Si%inimizing the above (for example, usingolder's inequality)
k, so neither additivity nor a family of distortion measureg;q|qs the optimal point density

is required. However, high resolution theory has tended 1o

concentrate on difference distortion measures, i.e., distortion (f(z)(det (B(z)))t/F)k/ (k+2)
measures that have the forl, y) = L(x — y), wherez —y Alz) = (46)
is the usual Euclidean difference andis usually assumed to /(f(ﬂﬂ’)(det (B(a"))M k)R B+ d!

have nice properties, such as being monotonic in some norm of
its argument. Theth-power distortion measures (of all typeshnd the operational distortion-rate function (analogous to (30))
fall into this category.

Recently, the basic results of high resolution theory have 8(R) = Myfpo?2728 47)
been extended to a family of nondifference distortion measures
that are locally quadratic in the sense that provided y, the where now
distortion measure is given approximately by a Taylor series
expansion asx — y)!B(y)(x — y), where B(y) is a positive 1 1/k\k/ (k+2
definite weigfning rr)1atri(x zr(1atde;))ends on tr(1e)output. This form P = ?{/(f(x)(det (B(z))) / ) /4 do
is ensured by assuming that the distortion measg(re ) has (48)
continuous partial derivatives of third order almost everywheg€neralizes Zador’s factor to the given distortion measure. As

and that the matrixB(y) defined as a by %k dimensional shown later in (58)M; can be bounded below by the moment
matrix with the )j, n)th element of inertia of a sphere. Similarly, in the variable-rate case

} (k+2)/k

By uly) = 1 &*d(z, y) (44)  6(R) = Mk2(2/k)(h(X)+(l/2)flog(det (B(@)J () d) g —2R
) 2 a]}j 9xy, =y (49)



2354 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

with optimal inertial profilem(z) = M; and optimal point assume the source density has finite support, but merely

density assert that overload distortion can be ignored. We view that
s this differs only stylistically from an explicit assumption of
Az) = (det (B(x))" ' (50) finite support, for both approaches ignore overload distortion.
/(det (B(a)))Y/2 da’ However, assuming finite support is, arguably, humbler and
mathematically more honest.

i ) The earliest quantizer distortion analyses to appear in the
Both results reduce to the previous results for the special C%3fen literature [43], [405], [474] assumed finite range and
of a squa}red-error|d|st(r)1rt|onhmeasyre Ismc_e t(ﬂ;ﬂT(B'(aZ)z - h used the density-approximately-constant-in-cells assumption.
1. Note in particular that the optimal point density for thesg, oy papers avoided the latter by using a Taylor series ex-
entropy-constrained case is not in general a uniform dens't}Sansion of the source density. For example, Lloyd [330] used

i Parallel fresqlts fr(])r Sht«;innond Iovx:er k()jmfmdsh_to fthe,l ratzﬁis approach to show that, ignoring overload distortion, the
Istortion function have been developed for this family of ., oximation error in the Panter-Dite formuladél/N?),

distortion measures by Linder and Zamir [323] and results f hich means that it tends to zero, even when multiplied by

multidimensional companding with lattice codes for similag;2 Algazi [8], Roe [443], and Wood [539] also used Taylor
distortion measures have been developed by Linder, Za"l’;é'ries ’ '

and Zeger [325]. Overload distortion was first explicitly considered in the

_ _ _ work of Shtein (1959) [471], who optimized the cell size of
H. Rigorous Approaches to High Resolution Theory uniform scalar quantization using an explicit formula for the

Over the years, high-resolution analyses have been pg¥erload distortion (as well ad?/12 for the granular distor-
sented in several styles. Informal analyses of distortion, suchti§) and while rederiving the Panter—Dite formula, added an
those used in this paper to obtakt /12 and Bennett's integral overload distortion term.

(25), generally ignore overload distortion and estimate granularThe earliest rigorous analyslsis contained in Schutzen-
distortion by approximating the density as being constaBgerger's 1958 paper [462], which showed that fér
within each quantization cell. In contrast, rigorous analys€émensional variable-rate quantizatigd. = 1), rth-power
generally focus on sequences of ever finer quantizers, fgtortion (|lz — y||"), and a source with finite differential
which they demonstrate that, in the limit, overload distortiofintropy andE[[|.X||"] < oo for somer’ > r, there is a
becomes negligible in comparison to granular distortion ar,» > 0, depending on the source and the dimension, such
the ratio of granular distortion to some function of the finene$gat any k-dimensional quantizer with finitely or infinitely
parameter tends to a constant. Though informal analygegny cells, and output entropfd, has distortion at least
generally lead to the same basic results as rigorous ons, .2~ /. Moreover, there existé} , > K, and a
the latter make it clear that the approximations are gog&@duence of quantizers with increasing output entropies
enough that their percentage errors decrease to zero asah@ distortion no more thaf(; ,2~/%" In essence, these
quantizers become finer, whereas the former do not. Moreov@sults show that

the rigorous derivations provide explicit conditions under e e
which the assumption of negligible overload distortion is valid. Ki 20O < 6, 1(R) < K 200798 for all R.
Some analyses (informal and rigorous) provide correctio .
for overloag disto(rtion, and somegeven )gi\ee examples Whe%fortungtely,.a;.s $chut3§nberger notes, the ratlg(ng,, dt'o

the overload distortion cannot be asymptotically ignored bH1’“7” tends to infinity as dimension increases. As he indicates,

can be estimated nevertheless. Similar comments apply 6 problem is that in demonstrating the upper bound, he

: . . tructs a sequence of quantizers with cubic cells of equal
informal versus rigorous analyses of asymptotic entropy. P> . R
9 Y ymp Py size and then bounds from above the distortion in each cell

the following we review the development of rigorous theor . . X .
g P 9 Y something proportional to its diameter to théh power.

Many analyses—informal and rigorous—explicitly assumg’. . .
y y 9 phcity Eymstead one were to bound the distortion by the moment

the 'source has finite range (i.e., a probability distributio%f inertia of the cell times the maximum value of the density
with bounded support); so there is no overload distortio ithin it, then K;/€77,/Kk7r would not tend to infinity.

) i
to be ignored [43], [405], [474]. In some cases, the sour&'aNext' two papers appeared in the same issueAofa

really does have finite range. In others, for example speec i . .
and images, the source samples have infinite range, but th. Acad.-SCL Hungarj_n 1959. The paper by Renyi
3] gave, in effect, a rigorous derivation of (11) for a

measurement device has finite range. In such cases, the t . N . .
taform guantizer with infinitely many levels. Specifically, it

cation by the measurement device creates an implicit overlo o ] !
distortion that is not affected by the design of the quantizel%.qOWeOI thatH (g,(X)) = h(X) + logn + o(1), provided
t the source distribution is absolutely continuous and that

It makes little sense, then, to choose a quantizer so fi - .

that its (granular) distortion is significantly less than thi (q"t(.X ) a?ﬁ ht(X ) ".’“g f|n|teawqer;11n dtenotes a utqlfotrhmt

implicit overload distortion. This means there is an upp@ruan izer with step sizé/n ando(1) denotes a quantity tha
proaches zero asgoes tox. They paper also explores what

limit to the fineness of quantizers that need be consider?aﬁ&), ns when the distribution is not absolutel ntin
and consequently, one must question whether such finendgBPens When the diStrioulion 1S not absolutely continuous.

is small enoth t_hat the source densny can be a-ppmx'r.n"_ilte{iThough Lloyd [330] gave a fairly rigorous analysis of distortion, we do
as constant within cells. Some analyses do not explicithgt include his paper in this category because it ignored overload distortion.
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In the second paper, Fejes Toth [159] showed that for a twihte number of codevectors in a subcube is carefully chosen
dimensional random vector that is uniformly distributed on theo that the point density in that subcube approximates the
unit square, the mean-squared error of &mpoint quantizer optimal point density for the original source distribution. One
is bounded from below by\/(hexagon/N. This result was then shows that the distortion of this code, multiplied¥sy/*,
independently rederived in a simpler fashion by Newmas approximatelyby. .|| f||x/x+- The best codes are at least
(1964) [385]. Clearly, the lower bound is asymptoticallghis good and it follows that
achievable by a lattice with hexagonal cells. It follows then . ke
that the ratio ofs,(R) to M (hexagono22—2F tends to one, Lim Sup N6 (N) < b ol e ey

and also, that Gersho’s conjecture holds for dimension two,

Zador's thesis (1963) [561] was the next rigorous Worlpne can easily see how this construction creates codes with
As mentioned earlier, it contains two principal results. FdgsSentially optimal point density and cell shape. We will not

: - . . ibe the converse.
fixed-rate quantization;th-power distortion measures of the”€>¢" .
form ||z — y||” and a source that is uniformly distributed Zador’s 1966 Bell Labs Memorandum [562] reproves these

on the unit cube, it first shows ([561, Lemma 2.3]) tha 0 main results under weaker conditions. The distortion

the operational distortion-rate functitns,(N) multiplied by measure isrth power in the general sense, which includes
N'/* approaches a limity, , as N — oo. The basic idea, as s_peC|aI cases the narrow sense of #tre power of the

which Zador attributes to J. M. Hammersley, is the foIIowingJ.EU(:“_Olean norm considered by Schutzenberger [462]. T_he
For any positive integer®’ andn, divide the unit cube into reqm_rement on the source denS|t_y s only that each of its
n* subcubes, each with sides of lengtfn. Clearly, the best marginals has the property that it is bounded from above

code with N = n*N codevectors is at least as good as t j2|"*, for somee > 0 and all z of sufficiently large
code constructed by using the best code withpoints for magnitude. This is a pure tail condition, as opposed to the
each subcube. It follows then théL(N) < 6uln, N) = finite moment condition of the thesis, which constrains both

(1/n7)6:(N), wheredy(n, N) is the operational distortion- the tail and the peak of the density. Note also that it no longer

rate function of a source that is uniformly distributed on gequires thal| fllx/ .+ be finite.

subcube and where the second relation follows from the factAS |nd|pated earlier, Zador’; memgrandym also derl\(es the
that this “sub” source is just a scaling of the original sourc&Symptotic form of the operational distortion-rate function of
Multiplying both sides byN”/’“ yields variable-rate quantization. In other words, it finishes what

) ) his thesis and Schutzenberger [462] started, though he was
N”/’“ék(N) < N”/’“ék(N). apparently unaware of the latter. Specifically, it shows that

Thus we see that increasing the number of codevectors from 2756k, 1(R) — cx, 2" /BP0 X0 as R — o0

N to N = n*N does not increas&"/*§,(N). A somewhat . .
" &(V) wherec, - is some constant no larger thagp ., assuming the

I h hat this i i I " X "
][nore eabora_te argument shows that this is approxmateytrsuaeme conditions as the fixed-rate result, plus the additional
or any sufficiently largeNV and, as a result, that

requirement that for any > 0 there is a bounded set
lim sup N"/*6,(N) <lim inf N"/*6,(N) containing all pointse such thatf(z) > «.
N=oo Gish and Pierce (1968) [204], who discovered that uniform

i.e., N/*8,(IN) has a limit. One can see how the selfsimilarityS the asymptotically best type of scalar quantizer for
of the uniform density (it is divisible into similar subdensitiesyariable-rate coding, presented both informal and rigorous
plays a key role in this argument. Notice also that nowhere d§rvations—the latter being the first to appear in these
the shapes of the cells or the point density enter into it. | RANSACTIONS Specifically, they showed rigorously that for

Zador next addresses nonuniform densities. WJtfi|. uniform spalar quantization with infinitely many cells of width
denoting( [ f*(x) dx)l/s, his Theorem 2.2 shows that if thed, the distortionD, and the output entropyf, behave as
k-dimensional source density satisfig||./ i+ < oo and follows:
E[||X||*~t*"*] < oo for somee > 0, then Da

N—oo

N"k§(N) — b A a1z &

as N — oo. The positive part, namely, that ) ]
which makes rigorous the\? /12 formula and (11), respec-

lim sup NTR6(NY < bl Fllns ) tively. For this result, they required the density to be con-
N=eo tinuous except at finitely many points, and to satisfy a tail
is established by constructing codes in, approximately, teendition similar to Zador's and another condition about
following manner: GivenV, one chooses a sufficiently largethe behavior at points of discontinuity. The paper also out-
support cube (large enough that overload distortion contribuigsed a rigorous proof of (32) in the scalar case, i.e., that
little), subdivides the cube inta® equally sized subcubes, s, (R)/Z; 1(R) — 1 as R — oo. But as to the details it
and places within each subcube a set of codevectors that gffered only that: “The complete proof is surprisingly long
optimal for the uniform distribution on that subcube, whergnd will not be given here.” Though Gish and Pierce were the

12\e abuse notation slightly and l&1. (V) denote the least distortion of first to 'nforma"y derlve (:!-3)' neither 'thIS. paper nor any paper
k-dimensional quantizers with’ codevectors. to date has provided a rigorous derivation.
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Elias (1970) [143] also made a rigorous analysis of scaldrey exhibited densities where the inequality is strict. In such
quantization, giving asymptotic bounds to the distortion afases, theA?/12 formula is invalidated by the heavy tails of
scalar quantizers with a rather singularly defined measuretbé& density. It was not until much later that the asymptotic
distortion, namely, therth root of the average of theth form of Ay and Dy were found, as will be described later.
power of the cell widths. A companion paper [144] considers Formal theory advanced further in papers by Bucklew and
similar bounds to the performance of vector quantizers witlVise, Cambanis and Gerr, and Bucklew. The first of these
an analogous average-cell-size distortion measure. (1982) [64] demonstrated Zador's fixed-rate result fdi-

In 1973, Csisar [114] presented a rigorous generalizatiopower distortion|z—y||”, assuming only thak[|| X ||"*+%] < o
of (52) to higher dimensional quantizers. Of most interefbr someé > 0. It also contained a generalization to random
here is the following special case of his principal resuitectors without probability densities, i.e., with distributions
([114, Theorem 1]): Consider A-dimensional source and athat are not absolutely continuous or even continuous. The
sequence of-dimensional quantizers;, ¢, ---, whereg, paper also gave the first rigorous approach to the derivation
has a countably infinite number of cells, each with volume of Bennett's integral for scalar quantization via companding.
where thew,,’'s and also the maximum of the cell diameterglowever, as pointed out by Linder (1991) [320], there was
tends to zero. Then under certain conditions, including tHa gap in the proof concerning the convergence of Riemann
condition that there be at least some quantizer with finisums with increasing support to a Riemann integral.” Linder
output entropy, the output entropy,, satisfies fixed this and presented a correct derivation with weaker

. assumptions. Cambanis and Gerr (1983) [70] claimed a similar
,}EEO (Hy +log vn) = h(X). (53) result, but it had more restrictive conditions and suffered from

the same sort of problems as [64]. A subsequent paper by

Clearly, this result applies to _quantlzerS gene_rated by latt.'cﬁacklew (1984) [58] derived a result for vector quantizers
and, more generally, tessellations. It also applies to quantiz St lies between Bennett's integral and Zador's formula.

with finitely many cells for sources with compact support. B pecifically, it showed that when a sequence of quantizers

it does not apply to quantizers with finitely many cells an asymptotically optimal for one probability densify®) (x),

sources with 'mflnlte support, bgcause it does not deal with t &N itsrth-power distortion on a source with densjt§?)(z)
overload region of such quantizers.

H H H —r/k —r/k (2)
In 1977, Babkiret al. [580] obtained results indicating howIS asymptotl_cally given byV . b"‘”’f.)‘ ((fg)f () dz,
. ) . ) . . where A(z) is the optimal point density fof''/(x). On the
rapidly the distortion of fixed-rate lattice quantizers approacohne hand. this is like Bennett's integral in that)(x), and
8(R) as rate R and dimensionk increase, for difference ' 9 '

) : onsequently\(z), can be arbitrary. On the other hand, it is
distortion measures. In 1978, these same authors [581] stuiifg ngor'syr\ésalt (or Gersho’s generalization of Bennett's
uniform scalar quantization with variable-rate coding, a

extended Koshelev's results tth power distortion measures.mteQrfrjlI [193]) in that, in essence, it is assumed that the
SR uantizers have optimal cell shapes.
The next contribution is that of Bucklew and Gallaghe . . .
. . . . In 1994, Linder and Zeger [326] rigorously derived the
(1980) [63], who studied asymptotic properties of fixed- s . . .
. o : . asymptotic distortion of quantizers generated by tessellations
rate uniform scalar quantization. With - denoting the cell . . . .
. U . . : by showing that the quantizey, formed by tessellating with
width that minimizes distortion amongy cell uniform scalar ; o
. ) . . some basic cell shap€ scaled by a positive number has
quantizers andDy denoting the resulting minimum mean-

) . average (narrow-sensebh-power distortionD,, satisfyin
squared error, they showed that for a source with a Riemann ge ( h-p fying

integrable densityf(x) i D, )
m — TR = 1.
Alim NApj =supp (f) a=0 o vol (S)/FM(S)
and They then combined the above with Csisg result (53)
lm N2D. — 2P (£)? to show that under fairly weak conditions (finite differential
Nooo N 12 entropy and finite output entropy for some> 0) the output
wheresupp (f) is the length of the shortest intervék, b) SinatropyHa and the distortionD,, are asymptotically related
with probability one. When the support is finite, i.e.and b
are finite, the above implie®y /(A% /12) — 1 as N — oo, D, .

and so Dy decreases ad/N2. This makes theA?/12 ilﬂ% M(S)20 /R BX)—Ha) =
formula rigorous in the finiteV case, at least wher\ is

chosen optimally. However, when the support is infinitayhich is what Gersho derived informally [193].

e.g., a Gaussian density)y decreases at a rate slower than The generalization of Bennett's integral to fixed-rate vector
1/N?2, and the resulting signal-to-noise ratio versus rate curgeantizers with rather arbitrary cell shapes was accomplished
separates from any line of slope 6 dB/bit. Consequently, tbg Na and Neuhoff (1995) [365], who presented both infor-
ratio of the operational distortion-rate functions of uniform anchal and rigorous derivations. In the rigorous derivations, it
nonuniform scalar quantizers increases without bound as thas shown that if a sequence of quantiz¢ts,}, param-
rate increases; i.e., uniform quantization is asymptotically bagterized by the number of codevectors, has specific point
Moreover, they showed thaby /(A% /12) does not always density and specific inertial profile converging in probabil-
converge tol. Instead liminfy_., Dy /(A% /12) > 1, and ity to a model point density and a model inertial profile,
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respectively, thenV"/*D(qy) converges to Bennett's inte-1. Comparing High Resolution Theory and
gral [ m(z)A~"/*(x)f(x) dz, where distortion isth power Shannon Rate Distortion Theory

llz—y||". A couple of additional conditions were also required, | ig interesting to compare and contrast the two principal

including one that is, implicitly, a tail condition. theories of quantization, and we shall do so in a number of
Though uniform scalar quantization with finitely manyyitterent domains.

levels is the (_)Idest and most (_alementary.form of quanti.zation,Appncab”ity: Sources-Shannon rate-distortion theory ap-
the asymptotic form of the optimal step sizev and resulting jies fundamentally, to infinite sequences of random variables,
mean-squared erroDy has only recently been found forj o {5 sources modeled as random processes. Its results
Ga_us&an and other densities with infinite support. Spemﬁcgl[yerive from the frequencies with which events repeat, as
Hui and Neuhoff [253]-[255] have found that for a Gaussiagypressed in a law of large numbers, such as the weak law
density with variance>* or an ergodic theorem. As such, it applies to sources that are
stationary in either the strict sense or some weaker sense, such

. An . Dy as asymptotic mean stationarity (cf. [218, p. 16]). Though
A}g%o =1 and llfclw T 1 . " 1. originally derived for ergodic sources, it has been extended
do Vin N gf/'QF In N to nonergodic sources [221], [469], [126], [138], [479]. In

contrast, high resolution theory applies, fundamentally, to

finite-dimensional random vectors. However, for stationary
This result was independently found by Eriksson and Agrgibr asymptotically stationary) sources, taking limits yields
[149]. Moreover, it was shown that overload distortion igesults for random processes. For example, the operational
asymptotically negligible and thapy /(A%,/12) — 1, which  distortion-rate functions(R) was found to equalZ(R) in
is the first time this has been proved for a source withjs way; see (33). Rate distortion theory also has one result
infinite support. It follows from the above that the signalrelevant to finite-dimensional random vectors, namely, that the
to-noise ratio increases &02R — 10 log;, R, which shows operational distortion-rate functions for fixed- and variable-
concretely how uniform scalar quantization is asymptoticalpgte quantizationg,(R) and &, 1(R), are (strictly) bounded
bad. Hui and Neuhoff also considered non-Gaussian sourggsm below by thekth-order Shannon distortion-rate function.
and provided a fairly general characterization of the asymptoticBoth theories have been extended to continuous-time ran-
form of Ay andDy. It turned out that the overload diStOftiOﬂdom processes. However, the high_reso|uti0n results are some-
is asymptotically negligible when and only when the taiyhat sketchy [43], [330], [204]. Both can be applied to two-
parameter = limy . (E[X|X > y])/y equals one, which is or higher dimensional sources such as images or video. Both
the case for all generalized Gaussian densities. For such caggge been developed the most for Gaussian sources in the
more accurate approximations oy and Dy can be given. context of squared-error distortion, which is not surprising in
For densities withr > 1, the ratio of overload to granularview of the tractability of squared error and Gaussianity.
distortion is(27—2)/(2—7), andDy /(A% /12) — 7/(2—7).  Applicability: Distortion Measures-Shannon rate distortion
There are even densities with tails so heavy that 2 and theory applies primarily to additive distortion measures; i.e.,
the granular distortion becomes negligible in comparison to thestortion measures of the form

overload distortion. In a related result, the asymptotic form of
the optimal scaling factor for lattice quantizers has also been
found recently for an i.i.d. Gaussian source [359], [149]. dw, y) = Z di(@i, 4i)

We conclude this subsection by mentioning some gaps in =t
rigorous high resolution theory. One, of course, is a pro¢br a normalized version), though there are some results for
or counterproof of Gersho’s conjecture in dimensions thresbadditive distortion measures [218], [340] and some for
and higher. Another is the open question of whether the bekistortion measures such &8 — )" B,(z — y) [323]. High
tessellation in three or more dimensions is a lattice. Botksolution theory has the most results ftim-power difference
of these are apparently difficult questions. There have begistortion measures, and as mentioned previously, some of its
no rigorous derivations of (11), or its extension to higheesults have recently been extended to nondifference distortion
dimensional tesselations, where the quantizers have finitelgasures such a& — y)'B.(x — y) [186], [316], [325].
many levels, and overload distortion must be dealt witlhn any event, both theories are the most fully developed for
Likewise, there have been no rigorous derivations of (13he squared-error distortion measure, especially for Gaussian
or its higher dimensional generalization, except in the caseurces. In addition, both theories require a finite moment
where the point density is constant. Even assuming Gershotndition, specific to the distortion measure. For squared-
conjecture is correct, there is no rigorous derivation of therror distortion, it is simply that the variance of the source be
Zador—Gersho formulas (30) and (32) along the lines of tfimite. More generally, it is thaF[d(X, y)] < oo for somey.
informal derivations that start with Bennett's integral. We alsim addition, as discussed previously, rigorous high resolution
mention that the tail conditions given in some of the rigoroubeory results require tail conditions on the source density, for
results (e.g., [58], [365]) are very difficult to check. Simpleexample,E[X?®] < oo for someé > 0.
ones are needed. Finally, as discussed in Section Il there ar€omplementarity-Fhe two theories are complementary in
no convincing (let alone rigorous) asymptotic analyses of thiee sense that Shannon rate distortion theory prescribes the
operational distortion-rate function of DPCM. best possible performance of quantizers with a given rate and

k
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asymptotically large dimension, while high resolution theory keoo / k=2
prescribes the best possible performance of codes with a given 20 |
dimension and asymptotically large rate. That is, for fixed-rate
codes
§x(R) 2 D(R), for largek and anyR  (54) m
o) :
ok(R) =2 Zk(R), for large R and anyt  (55) gzg |
w

and, similarly, for variable-rate codes

Sk, L(R) 2 D(R), for largek and anyL, R (56)
ok, L(R) =2 Z), (R), forlargeR and anyk, L. (57)

When both dimension and rate are large, they all give the 5
same result, i.e., 1 2 3 4

81(R) = 8. 1.(R) = 5(R) = D(R). (@)

Rates of Convergencdtis useful to know how largé? and 25
k must be, respectively, for high resolution and rate distortion
theory formulas to be accurate. As a rule of thumb, high
resolution theory is fairly accurate for rates greater than or
equal to abous. And it is sufficiently accurate at rates ab@ut
for it to be useful when comparing different sources and codes.
For example, Fig. 7 shows signal-to-noise ratios for fixed-
rate quantizers produced by conventional design algorithms
and predictions thereof based on the Zador—Gersho function
Zy(R), for two Gaussian sources: i.i.d. and Markov with
correlation coefficien6.9. It is apparent from data such as this
that the accuracy of the Zador—Gersho function approximation

[\
(=)

SNR, dB
o

5 } t }
to 6x(R) increases with dimension. 1 ) 3 4
The convergence rate ofy(R) to 6(R) as k tends to Rate
infinity has also been studied [413], [548], [321], [576]. (b)

ROUgth speaklng these reSU|tS_ show that for memoryleﬁﬁ. 7. Signal-to-noise ratios for optimal VQ's (dots) and predictions thereof
sources, the convergence rate is betwggflog k)/k and based on the Zador-Gersho formula (straight lines). (a) i.i.d. Gaussian. (b)
(log k)/k. Unfortunately, this theory does not enable one tgauss-Markov, correlation coefficiefito.

actually predict how large the dimension must be in order that

6 (1) is within some specified percentage, e.g., 10%(80). ~ [327] [267], [46], [322], which is entirely consistent with
However, one may use high resolution theory to do this, Bie fact thatZ(R)/5(R) approaches one d increases. The
comparingM . (or Mz in the variable-rate case) fd . rg|ationships among the various distortion-rate functions are

For example, for the i.i.d. Gaussian source Fig. 5 shows thalmmarized below. Inequalities marked with € ‘become
6x(R) yields distortions within 1 and 0.2 dB of that pred|cteqlight as dimensiork increases, and those marked with-g"
by 6(R) at dimensionsl2 and 100, respectively. For sourcespacome tight as® increases.

with memory, the dimension needs to be larger, by roughly the
effective memory length. One may conclude that the Shannon __

distortion-rate function approximation i#,(R) is applicable D) = Dan, () = Z(R)
for moderate to large dimensiors nle + Nl M . nle
Quantitative RelationshipsFer squared-error distortion, Di(R) 2 Do, (R) = 2y, 1(R)E 2 (R

the Zador-Gersho functio&(R) is precisely equal to the

well-known Shannon lower boun®.,(R) to the Shannon  Applicability: Quantizer TypesRate distortion theory finds
distortion-rate function. It follows that when rate is not largehe performance of the best quantizers of any type for station-
Z(R) is, at least, a lower bound t6(R). Similarly, the ary sources. It has nothing to say about suboptimal, structured
Shannon lower bound,y, x(R) to the kth-order Shannon or dimension-constrained quantizers except, as mentioned ear-
distortion-rate function equalgy 1(R)(M /My), from which lier, that quantizers of dimensiok have distortion bounded

it follows that D.y, (R) may be thought of as the distortionfrom below by thekth-order Shannon distortion-rate function.
of a fictional quantizer having the distortion of an optimaln contrast, high resolution theory can be used to analyze and
k-dimensional variable-rate quantizer with first-order entropgptimize the performance of a number of families of structured
coding, except that its cells have the normalized moment @fiantizers, such as transform, lattice, product, polar, two-stage,
inertia of a high-dimensional sphere insteadidf. It is well and, most directly, dimension-constrained quantizers. Such
known that D.,(R)/D(R) approaches one ag increases analyses are typically based on Bennett's integral. Indeed,
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the ability to analyze structured or dimension-constraineg§EP. High resolution theory is a simpler, less elegant theory
guantizers is the true forte of high resolution theory. based on geometric characterizations and integral approxima-
Performance versus ComplexityAssessing performancetions over fine partitions.
versus complexity should be a major goal of quantization Siblings: Lossless source coding and channel coding are
theory. On the one hand, rate distortion theory specifisibling branches of information theory, also based on the law
the fundamental limits to performance without regard tof large numbers and the asymptotic equipartition property.
complexity. On the other hand, because high resolution the@®iblings of high resolution theory include error probability
can analyze the performance of families of quantizers witnalyses in digital modulation and channel coding based on
complexity-reducing structure, one can learn much from minimum distance and a high signal-to-noise ratio assumption,
about how complexity relates to performance. In recent wornd the average power analyses for the additive Gaussian
Hui and Neuhoff [256] have combined high resolution theorghannel based on the continuous approximation.
and Turing complexity theory to show that asymptotically Code Design PhilosophyNeither theory is ordinarily con-
optimal quantization can be implemented with complexitgidered to be constructive, yet each leads to its own design
increasing at most polynomially with the rate. philosophy. Rate distortion theory shows that, with high prob-
Computability: First-order Shannon distortion-rate funcability, a good high-dimensional quantizer can be constructed
tions can be computed analytically for squared error amy randomly choosing codevectors according to the output
magnitude error and several source densites, such as Gaussistnibution of the test channel that achieves the Shannon rate-
and Laplacian, and for some discrete sources, cf. [46], [494fstortion function. As a construction technique, this leaves
[560], [217]. For other sources it can be computed witthuch to be desired because the dimension of such codes is
Blahut's algorithm [52]. And in the case of squared errotarge enough that the codes so constructed are completely
it can be computed with simpler algorithms [168], [444]impractical. On the other hand, the AEP indicates that such
For sources with memory, complete analytical formulasodevectors will be roughly uniformly distributed over a “typ-
for kth-order distortion-rate functions are known only foical” set, and this leads to the design philosophy that a good
Gaussian sources. For other cases, the Blahut algorithm [88He has its codevectors uniformly distributed throughout this
can be used to comput®,(R), though its computational set. In the special case of squared-error distortion and an i.i.d.
complexity becomes overwhelming unlgsss small. Due to Gaussian source with varianeé, the output distribution is
the difficulty of computing it, many (mostly lower) boundsi.i.d. Gaussian with varianeg® — D( R); the typical set is a thin
to the Shannon distortion-rate function have been developsiskll near the surface of a sphere of radis(s2 — D(R));
which for reasonably general cases yield the distortion-ragéd a good code has its codevectors uniformly distributed
function exactly for a region of small distortion (cf. [465],0n this shell. Since the interior volume of such a (high-
[327], [267], [239], [46], [212], [550], [559], [217]). An dimensional) sphere is negligible, it is equally valid for the
important upper bound derives from the fact that with respegddevectors to be uniformly distributed throughout the sphere.
to squared error, the Gaussian source has the largest Sharfsiother sources, the codevectors will be uniformly dis-
distortion-rate functionith-order or in the limit) of any source tributed over some subset of the shell.
with the same covariance function. High resolution theory indicates that for large rate and
To compute a Zador-Gersho function, one needs to fiadbitrary dimensionk, the quantization cells should be as
M, and either 3, or v, in the fixed- and variable-rate spherical as possible—preferably shaped liKg with nor-
cases, respectively. Thoughy is known only fork < 2, malized moment of inertia\f;. Moreover, the codevectors
there are bounds for other values /of One lower bound is should be distributed according to the optimal point density
the normalized moment of inertia of a sphere of the same. Thus high resolution theory yields a very clear design

dimension philosophy. In the scalar case, one can use this philosophy
L ork/2 —(2/k) directly to construct a good quantizer, by designing a com-
My > m(W) (58) pander whose nonlinearity(z) has derivativeA}(x), and

extracting the resulting reconstruction levels and thresholds
Another bound is given in [106]. One upper bound wal® obtain an approximately optimal point quantizer. This was
developed by Zador; others derive from the currently beltst mentioned in Panter—Dite [405] and rediscovered several
known tessellations (cf. [5] and [106]). The Zador fact@is times. Unfortunately, at higher dimensions, companders cannot
and+;. can be computed straightforwardly fbr= 1 and, also, implement an optimal point density without creating large
for £k > 2 for i.i.d. sources. In some cases, simple closedblongitis [193], [56], [57]. So there is no direct way to
form expressions can be found, e.g., for Gaussian, Laplaciannstruct optimal vector quantizers with the high resolution
gamma densities. In other cases, numerical integration canpgbdlosophy.
used. Upper bounds t6; are given in [294]. To the authors’ When dimension as well as rate is large, the two philoso-
knowledge, for sources with memory, simple expressions fphies merge because the output distribution that achieves
the Zador factors have been found only for Gaussian sourctt® Shannon distortion-rate function converges to the source
they depend on the covariance matrix. density itself, as does the optimal point density. However, for
Underlying Principles: Rate distortion theory is a deep andsmall to moderate values &f A}, specifies a better distribution
elegant theory based on the law of large numbers and the kdypoints than the rate distortion philosophy of uniformly
information-theoretic property that derives from it, namely, theistributing codevectors over the typical set. For example, in
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the i.i.d. Gaussian case it indicates that the point density shothdt in the high-resolution case, the power spectral density of
be a Gaussian hill with somewhat larger variance than thattbe quantizer error with uniform quantization is approximately
the source density. Which design philosophy is more usefwhite (and uniformly distributed) provided the assumptions of
At low rates (say 1 bit per sample or less), one has no choitee high resolution theory are met and the joint density of
but to look to rate distortion theory. But at moderate to higeample pairs is smooth. (See also [196, Sec. 5.6].) Bennett
rates, it appears that the high-resolution design philosophyaiso found exact expressions for the power spectral density
the better choice. To see this consider an i.i.d. Gaussian sounfea uniformly quantized Gaussian process. Sripad and Snyder
a target rate, and ak-dimensional quantizer witB*2 points [477] and Claasen and Jongepier [97] derived conditions under
uniformly distributed throughout a spherical support regiomvhich the quantization error is white in terms of the joint
This is the ideal code suggested by rate distortion theogharacteristic functions of pairs of samples, two-dimensional
One obtains a lower bound to its distortion by assuming thamalogs of Widrow’s [529] condition. Zador [562] found high-
source vectors outside the support region are quantized to tbsolution expressions for the characteristic function of the
closest point on the surface of the sphere, and by assuming #rabr produced by randomly chosen vector quantizers. Lee and
the cells within the support region akedimensional spheres. Neuhoff [312], [379] found high-resolution expressions for the
In this case, at moderate to large rates (say rate ten), afiensity of the error produced by fairly general (deterministic)
choosing the diameter of the support region to minimize thécalar and vector quantizers in terms of their point density
lower bound, it has been found that the dimensiomust be and theirshape profilewhich is a function that conveys more
larger than250 in order that the resulting signal-to-noise rati@ell shape information than the inertial profile. As a side
be within 1 dB of that predicted by the Shannon distortiorbenefit, these expressions indicate that much can be deduced
rate function [25]. Similar results were reported by Pegin about the point density and cell shapes of a quantizer from
al. [409]. On the other hand, as mentioned earlier, a quantizerhistogram of the lengths of the errors. Zamir and Feder
with dimension12 can achieve this same distortion. It ig564] showed that the error produced by an optimal lattice
clear then that the ability to come fairly close &R) with quantizer with infinitely many small cells is asymptotically
moderately large dimension is not due to the rate distortiavhite in the sense that its components are uncorrelated with
theory design philosophy, the AEP, nor the use of sphericadro means and identical variances. Moreover, they showed
codes. Rather, it is due to the fact that good codes with smalltt@t it becomes Gaussian as the dimension increases. The
moderate dimension have appropriately tapered point densitigssic ideas are that as dimension increases good lattices have
as suggested by high resolution theory. nearly spherical cells and that a uniform distribution over a
Finally, it is interesting to note that high resolution thehigh-dimensional sphere is approximately Gaussian, cf. [525].
ory actually contains some analyses of the Shannon rand&mce optimal high-dimensional, high-rate VQ’s can also be
coding approach. For example, Zador's thesis [561] gives arpected to have nearly spherical cells and since the AEP
upper bound on the distortion of a randomly generated vectorplies that most cells will have the same size, we reach the
quantizer. same conclusion as from rate distortion theory, namely, that
Nature of the Error ProcessBoth theories have somethinggood high-rate high-dimensional codes cause the quantization
to say about the distribution of quantization errors. Generalgyror to be approximately white and Gaussian.
speaking, what rate distortion theory has to say comes fromSuccessive ApproximatioriMany vector quantizers oper-
assuming that the error distribution caused by a quantizge in a successive approximation or progressive fashion,
whose performance is close &R) is similar to that caused whereby a low-rate coarse quantization is followed by a
by a test channel that comes close to achieving the Shanmsequence of finer and finer quantizations, which add to the
distortion-rate function. This is reasonable because Shannoraite. Tree-structured, multistage and hierarchical quantizers, to
random coding argument shows that using such a test charbeeldiscussed in the next section, are examples of such. Other
to randomly generate high-dimensional codevectors leads, witlethods can be used to design progressive indexing into given
very high probability, to a code whose distortion is close toodebooks, as in Yamada and Tazaki (1991) [553] and Riskin
§(R). For example, one may use this sort of argument & al. (1994) [440].
deduce that the quantization error of a good high-dimensionalSuccessive approximation is useful in situations where
quantizer is approximately white and Gaussian when tlige decoder needs to produce rough approximations of the
source is memoryless, the distortion is squared error, and ttega from the first bits it receives and, subsequently, to
rate is large, cf. [404], which shows Gaussian-like histogrameafine the approximation as more bits are received. Moreover,
for the quantization error of VQ’s with dimensiolisto 32. successive approximation quantizers are often structured in a
As another example, for a Gaussian source with memory andy that makes them simpler than unstructured ones. Indeed,
squared-error distortion, rate distortion theory shows theretige three examples just cited are known more for their good
a simple relation between the spectra of the source and p@formance with low complexity than for their progressive
spectra of the error produced by an optimal high-dimensionaiture. An important question is whether the performance of
quantizer, cf. [46]. a successive refinement quantizer will be better than one that
High resolution theory also has a long tradition of analyzindgoes quantization in one step. On the one hand, rate distortion
the error process, beginning with Clavigral.[95], [100], and theory analysis [228], [291], [292], [557], [147], [437], [96]
Bennett [43], and focusing on the distribution of the error, itsas shown that there are situations where successive approx-
spectrum, and its correlation with the input. Bennett showéahation can be done without loss of optimality. On the other
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hand, high-resolution analyses of TSVQ [383] and two-stageay be signficant. As a result, one might think of a quantizer
VQ [311] have quantified the loss of these particular codess being characterized by a four-tupl®&, D, 4, M); i.e.,
and in the latter case shown ways of modifying the quantizarithmetic complexity4 and storage complexity/ have been
to eliminate the loss. Thus both theories have something @dded to the usual rat& and distortionD.
say about successive refinement. As a reminder, given &-dimensional fixed-rate VQ with
codebook C containing 2% codevectors, brute-forcéull-
search encodin§inds the closest codevector@rby computing

This section presents an overview of quantization techniquibe distortion betweem and each codevector. In other words,
(mainly vector) that have been introduced, beginning in thie uses the optimal lossy encoder for the given codebook,
1980’s, with the goal of attaining rate/distortion performancereating the Voronoi partition. In the case of squared error,
better than that attainable by scalar-based techniques sthib requires computing approximately= 3 x 2% operations
as direct scalar quantization, DPCM, and transform codinger sample and storing approximately = k x 2¥% vector
but without the inordinately large complexity of brute-forceomponents. For example, a codebook with rate 0.25 bits per
vector quantization methods. Recall that if the dimensigrixel (bpp) and vector dimensioh x 8 = 64 has2*® = 216
of the source vector is fixed, say &t then the goal is codevectors, an impractical number for, say, real-time video
to attain performance close to the optimal performance esding. This exponential explosion of complexity and memory
expressed by (R) in the fixed-rate case, @, r(R) (usually can cause serious problems even for modest dimension and
o, 1(R)) in the general case where variable-rate codes aage, but it can in general make codes completely impractical
permitted. However, if, as in the case of a stationary source, theeither the high-resolution or high-dimension extremes. A
dimensionk can be chosen arbitrarily, then in both the fixedbrute-force variable-rate scheme of the same rate will be even
and variable-rate cases, the goal is to attain performance closare complex—typically involving a much greater number
to §(R). In this case, all quantizers with > 0 are suboptimal, of codevectors, a Lagrangian distortion computation, and an
and quantizers with various dimensions and even memagtropy coding scheme as well. It is the high complexity
(which blurs the notion of dimension) can be considered. of such brute-force techniques that motivates the reduced

We would have liked to make a carefully categorized;omplexity techniques to be discussed later in this section.
ordered, and ranked presentation of the various methodsSimple measures such as arithmetic complexity and storage
However, the literature and variety of such techniques meed a number of qualifications. One must decide whether
quite large; there are a number of competing ways in whi@ncoding and decoding complexities need to be counted sep-
to categorize the techniques; complexity is itself a difficulirately or summed, or, indeed, whether only one of them is
thing to quantify; there are several special cases (e.g., fixatportant. For example, in record-once-play-many situations,
or variable rate, and fixed or choosable dimension); and thétrés the decoder that must have low complexity. Having no
has not been much theoretical or even quantitative comparigmarticular application in mind, we will focus on the sum
among them. Consequently, much work is still needed of encoder and decoder complexities. For some techniques
sorting the wheat from the chaff, i.e., determining whicfperhaps most) it is possible to trade computations for storage
methods give the best performance versus complexity tradelyf the use of precomputed tables. In such cases a quantizer is
in which situations, and in gaining an understanding of whgharacterized, not by a singleand M but by a curve of such.
certain complexity-reducing approaches are better than othénssome cases, a given set of precomputed tables is the heart
Nevertheless, we have attempted to choose a reasonableoéie method. Another issue is the cost of memory accesses.
of techniques and an ordering of them for discussion. WheBeich operations are usually signficantly less expensive than
possible we will make comments about the efficacies of tlagithmetic operations. However, some methods do such a good
techniques. In all cases, we include references. job of reducing arithmetic operations that the cost of memory

We begin with a brief discussion of complexity. Roughlaccesses becomes significant. Techniques that attain smaller
speaking, it has two aspects: arithmetic (or computationafdlues of distortion need higher precision in their arithmetic
complexity, which is the number of arithmetic operations pe&nd storage, which though not usually accounted for in as-
sample that must be performed when encoding or decodisgssments of complexity may sometimes be of significance.
and storage (or memory or space) complexity, which is th&r example, a recent study of VQ codebook storage has
amount of auxiliary storage (for example, of codebooks) thahown that in routine cases one needs to store codevector
is required for encoding or decoding. Rather than trying womponents with only about + 4 bits per component, where
combine them, it makes sense to keep separate track, becaige the rate of the quantizer [252]. Though this study did
their associated costs vary with implementation venue, e.gat assess the required arithmetic precision, one would guess
a PC, UNIX platform, generic DSP chip, specially designeithat it need not be more than a little larger than that of the
VLSI chip, etc. In some venues, storage is of such lostorage; e.g.R plus 5- or 6-bit arithmetic should suffice.
cost that one is tempted to ignore it. However, there akenally, variable-rate coding raises additional issues such as
techniques that benefit sufficiently from increased memotiye costs associated with buffering, with storing and accessing
that even though the per-unit cost is trivial, to obtain theariable-length codewords, and with the decoder having to
best performance—complexity tradeoff, memory usage shogldrse binary sequences into variable-length codewords.
be increased until the marginal gain-to-cost ratio of further When assessing complexity of a quantization technique, it
increases is small, at which point the total cost of memoiy interesting to compare the complexity invested in the lossy

V. QUANTIZATION TECHNIQUES
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encoder/decoder versus that in the lossless encoder/decogi®en a source vectar to quantize, some initial codevectgr
(Recall that good performance can theoretically be attainedchosen. Then all codevectogs whose distance frong is
with either a simple lossy encoder, such as a uniform scalgreater thar2||x—g|| are eliminated from further consideration
guantizer, and a sophisticated lossless encoder or, vice velgmause they cannot be closer tiiaihose not eliminated are
as in high-dimensional fixed-rate VQ.) A quantizer is corsuccessively compared to until one that is closer thajj is
sidered to have low complexity only when both encodefsund, which then replacag and the process continues. In this
have low complexity. In the discussion that follows we focusiay, the set of potential codevectors is gradually narrowed.
mainly on quantization techniques where the lossless encodlechniques in this category, with different ways of narrowing
is conceptually if not quantitatively simple. We wish, howevethe search, may be found in [362], [517], [475], [476], [363],
to mention the indexing problem, which may be considerdd26], [249], [399], [273], [245], [229], [332], [307], [547],
to lie between the lossless and the lossy encoder. Th§se8], and [493].
are certain fixed-rate techniques, such as lattice quantizationA number of other fast-search techniques begin with a
pyramid VQ, and scalar-vector quantization, where it is fairlicoarse” prequantization with some very low-complexity tech-
easy to find the cell in which the source vector lies, but th@que. It is called “coarse” because it typically has larger
cells are associated with some set/éfindices that are not cells than the Voronoi regions of the codebo6k that is
simply the integers from to &V, where NV is the number of being searched. The coarse prequantization often involves
cells, and converting the identity of the cell into a sequensealar quantization of some type or a tree-structuring of binary
of log IV bits is nontrivial. This is referred to as amdexing quantizers, such as what are callEd! trees. Associated with
problem. each coarse cell is bucketcontaining the indices of each
Finally, we mention two additional issues. The first isodevector that is the nearest codevector to some source vector
that there are some VQ techniques whose implementatiorthe cell. These buckets are determined in advance and saved
complexities are not prohibitive, but which have sufficientlas tables. Then to encode a source veatprone applies
many codevectors that designing them is inordinately compléhe prequantization, finds the index of the prequantization
or requires an inordinate amount of training data. A secowgll in which = is contained, and performs a full search on
issue is that in some applications it is desirable that the outghbe corresponding bucket for the closest codevectot:.to
of the encoder be progressively decodable in the sense thethniques of this type may be found in [44], [176], [88],
a rough reproduction can be made from the first bits that[89], [334], [146], [532], [423], [415], [500], and [84]. In
receives, and improved reproductions are made as more bitsne of these, the coarse prequantization is one-dimensional;
are received. Such quantizers are said topbegressiveor for example, the length of the source vector may be quantized,
embedded. Now it is true that a progressive decoder candsedl then the bucket of all codevectors having similar lengths
designed for any encoder (for example, it can compute tfsesearched for the closest codevector.
expected value of the source vector given whatever bits itAnother class of techniques is like the previous except that
has received so far). However, a “good” progressive codlee low-complexity prequantization has much smaller cells
is one for which the intermediate distortions achieved at tiiean the Voronoi cells ofC, i.e., it is finer. In this case,
intermediate rates are relatively good (though not usually #ie buckets associated with most “fine” prequantization cells
good as those of quantizers designed for one specific rate) andtain just one codevector, i.e., the same codevect@ in
that rather than restarting from scratch every time the decoderthe closest codevector to each point in the fine cell. The
receives a new bit (or group of bits), it uses some simpiedices of these codevectors, one for each fine cell, are stored
method to update the current reproduction. It is also desiraldfea precomputed table. For each of those relatively few fine
in some applications for the encoding to be progressive, eglls that have buckets containing more than one codevector,
well. Though not designed with them in mind, it turns ouone member of the bucket is chosen and its index is placed
that a number of the reduced-complexity VQ approaches aisothe table as the entry for that fine cell. Quantizationzof
address these last two issues. That is, they are easier to deghygm) proceeds by applying the fine prequantizer and then using
as well as progressive. the index of the fine cell in whichk: lies to address the table
containing codevectors fro¥, which then outputs the index
of a codeword inC. Due to the fact that not every bucket
Many techniques have been developed for speeding ttentains only one codevector, such techniques, which may be
full (minimum-distortion) search of an arbitrary codebo6k found in [86], [358], [357], [518], [75], and [219], do not do a
containing NV k-dimensional codevectors, for example, onperfect full search. Some quantitative analysis of the increased
generated by a Lloyd algorithm. In contrast to codebooks tlistortion is given in [356] for a case where the prequantization
be considered later these will be calledstructured As a is a lattice quantizer. Other fast-search methods include the
group these techniques use substantial amounts of additiopaitial distortionmethod of [88], [39], [402] and the transform
memory in order to significantly reduce arithmetic complexitysubspace-domain approach of [78].
A variety of such techniques are mentioned in [196, Sec.Consideration of methods based on prequantization leads
12.16]. to the question of how fine the prequantization cells should
A number of fast-search techniques are similar in spifite. Our experience is that the best tradeoffs come when
to the following: the Euclidean distances between all paitke prequantization cells are finer rather than coarser, the
of codevectors are precomputed and stored in a table. Naxplanation being that if one has prequantized coarsely and

A. Fast Searches of Unstructured Codebooks
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now has to determine which codevector in a bucket is closesturces. (These assume that Gersho’s conjecture holds and
to z, it is more efficient to use some fast search method thémat the best lattice quantizer is approximately as good as the
to do full search. Dividing the coarse cells into finer onelgest tessellation.) Especially important is the fact that their
is a way of doing just this. Another question that arises fdrighly structured nature has led to algorithms for implementing
all fast search techniques is whether it is worth the effottieir lossy encoders with very low arithmetic and storage
to perform a full search or whether one should instead stopmplexity [103]-[105], [459], [106], [199]. These find the
short of this, as in the methods with fine prequantizatidntegersm; associated with the closest lattice point. Conway
cells. Our experience is that it is usually not worth the effornd Sloane [104], [106] have reported the best known lattices
to do a full search, because by suffering only a very smdtir several dimensions, as well as fast quantizing and decoding
increase in MSE one can achieve a significant reduction afgorithms. Some importamt-dimensional lattices are the root
arithmetic complexity and storage. Moreover, in the case Bfttices A,,(n > 1), D,(n > 2), and E,,(n = 6,7, 8),
stationary sources where the dimension is subject to choitlee Barnes—Wall lattice\; in dimension16, and the Leech
for a given amount of arithmetic complexity and storage, orattice As4 in 24 dimensions. These latter give the best
almost always gets better performance by doing a suboptinsghere packings and coverings in their respective dimensions.
search of a higher dimensional codebook than a full searchRécently, Agrell and Eriksson [5] have found improved lattices
a lower dimensional one. in dimensions9 and 10.

Fast search methods based on fine prequantization can b&hough low complexity algorithms have been found for the
improved by optimizing the codebook for the given prequaressy encoder, there are other issues that affect the performance
tizer. Each cell of the partition corresponding @induced and complexity of lattice quantizers. For variable-rate coding,
by prequantization followed by table lookup is the uniowne must scale the lattice to obtain the desired distortion and
of some number of fine cells of the prequantizer. Thus thiate, and one must implement an algorithm for mapping the
guestion becomes: what is the best partition idfocells, m;’s to the variable-length binary codewords. The latter could
each of which is the union of some number of fine cellgotentially add much complexity. For fixed-rate coding with
The codevectors i’ should then be the centroids of thesgateR, the lattice must be scaled and a sut2§étlattice points
cells. Such techniques have been exploited in [86] and [358)ust be identified as the codevectors. This induces a support
One technique worth particular mention is call@drarchical region. If the source has finite support, the lattice quantizer
table lookupVQ [86], [518], [75], [219]. In this case, the will ordinarily be chosen to have the same support. If not, then
prequantizer is itself an unstructured codebook that is searciieg scaling factor and lattice subset are usually chosen so that
with a fine prequantizer that is in turn searched with diine resulting quantizer support region has large probability. In
even finer prequantizer, and so on. Specifically, the firgither case, a low complexity method is needed for assigning
prequantizer uses a high-rate scalar quantiz¢imes. The binary sequences to the chosen codevectors; i.e., for indexing.
next level of prequantization applies a two-dimensional VQ tgonway and Sloane [105] found such a method for the
each ofk/2 pairs of scalar quantizer outputs. The next levéinportant case that the support has the shape of an enlarged
applies a four-dimensional VQ to each/of4 pairs of outputs cell. For sources with infinite support, such as i.i.d. Gaussian,
from the two-dimensional quantizers, and so on. Hence tHere is also the difficult question of how to quantize a source
method is hierarchical. Because each of the quantizers carvBetor z lying outside the support region. For example, one
implemented entirely with table lookup, this method eliminate®ight scalex so that it lies on or just inside the boundary of
all arithmetic complexity except memory accesses. It has beég support region, and then quantize the scaled vector in the
successfully used for video coding [518], [75]. usual way. Unfortunately, this simple method does not always
find the closest codevector te. Indeed, it often increases
overload distortion substantially over that of the minimum-

We now turn to quantizers with structured partitions odistance quantization rule. To date, there is apparently no
reproduction codebooks, which in turn lend themselves to fdstv complexity method that does not substantially increase
searching techniques and, in some cases, to greatly reducsedrload distortion.
storage. Many of these techniques are discussed in [196] anéHigh resolution theory applies immediately to lattice VQ
[458]. when the entire lattice is considered to be the codebook. The

Lattice Quantizers:Lattice quantization can be viewed asheory becomes more difficult if, as is usually the case, only
a vector generalization of uniform scalar quantization. # bounded portion of the lattice is used as the codebook and
constrains the reproduction codebook to be a subset obre must separately consider granular and overload distortion.
regular lattice, where a lattice is the set of all vectors of thEhere are a variety of ways of considering the tradeoffs
form >"" | m,u;, wherem; are integers and the, are linearly involved, cf. [580], [151], [359], [149], [409]. In any case,
independent (usually nondegenerate, he= k). The resulting the essence of a lattice code is its uniform point density and
Voronoi partition is a tessellation with all cells (except fonicely shaped cells with low normalized moment of inertia.
those overlapping the overload region) having the same shaper, fixed-rate coding, they work well for uniform sources or
size, and orientation. Lattice quantization was proposed bther sources with bounded support. But as discussed earlier,
Gersho [193] because of its near optimality for high-resolutidor sources with unbounded support such as i.i.d. Gaussian,
variable-rate quantization and, also, its near optimality fohey require very large dimensions to achieve performance
high-resolution fixed-rate quantization of uniformly distributeglose to§(R).

B. Structured Quantizers
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Fig. 8. Shape-gain VQ.

Product Quantizers:A product quantizer uses a reproducthat arises in all product codebooks and about which more
tion codebook that is the Cartesian product of lower dimemll be said shortly.
sional reproduction codebooks. For example, the applicationlt is important to notice that the use of a product quantizer
of a scalar quantizer tb successive sampleé;, X,, ---, X; does not mean the use of independent quantizers for each
can be viewed as a product quantizer operating onkthe component. As with shape-gain VQ, the optimal lossy encoder
dimensional vectorX = (Xi, Xo,---, Xj). The product will in general not view only one coordinate at a time.
structure makes searching easier and, unlike the special c@8eparate and independent quantization of the components
of a sequence of scalar quantizers, the search need notph®vides a low-complexity but generally suboptimal encoder.
comprised ofk independent searches. Products of vectém the case of the shape-gain VQ, the optimal lossy encoder
guantizers are also possible. Typically, the product quantizer happily a simple sequential operation, where the gain
is applied, not to the original vector of samples, but tquantizer is scalar, but the selection of one of its quantization
some functions or features extracted from the vector. Thevels depends on the result of another quantizer, the shape
complexities of a product quantizer (arithmetic and storaggantizer. Similar ideas can be used for mean-removed VQ
encoding and decoding) are the sums of those of the comfi2d], [21] and mean/gain/shape VQ [392]. The most general
nent quantizers. As such, they are ordinarily much less thfoxmulation of product codes has been given by Chan and
the complexities of an unstructured quantizer with the san@ersho [82]. It includes a number of schemes with dependent
number of codevectors, whose complexities equal the prodgetantization, even tree-structured and multistage quantization,
of those of the components of a product quantizer. to be discussed later.

A shape-gairvector quantizer [449], [450] is an example of Fischer'spyramid VQ[164] is also a kind of shape-gain
a product quantizer. It uses a product reproduction codebod®. In this case, the codevectors of the shape codebook

consisting of a gain codeboo®, = {g;;¢ = 1,.--, N;} are constrained to lie on the surface of kadimensional
of positive scalars and a shape codebabk= {5;; j = pyramid, namely, the set of all vectors whose components
1,---, Ng} of unit norm k-dimensional vectors, and thehave magnitudes summing to one. Pyramid VQ's are very

overall reproduction vector is defined By = gs. It is easy well suited to i.i.d. Laplacian sources. An efficient method
to see the minimum-squared-error reproduction codegrd for indexing the shape codevectors is needed and a suitable
for an input vectorz is found by the following encoding algo- method is included in pyramid VQ.
rithm: First choose the indexthat maximizes the correlation Two-dimensional shape-gain product quantizers, usually
z'5;, then for this chosen choose the index minimizing called polar quantizers have been extensively developed
|g: — «"3;|. This sequential rule gives the minimum-squared182], [183], [407], [406], [61], [62], [530], [489], [490],
error reproduction codeword without explicitly normalizind483], [485], [488], [360]. Here, a two-dimensional source
the input vector (which would be computationally expensiveyector is represented in polar coordinates and, in the basic
The encoder and decoder are depicted in Fig. 8. scheme, the codebook consists of the Cartesian product
A potential advantage of such a system is that by separatiofg a nonuniform scalar codebook for the magnitude and
these two “features,” one is able to use a scalar quantizeruniform scalar codebook for the phase. Early versions
for the gain feature and a lower rate codebook for the shapk polar quantization used independent quantization of the
feature, which can then have a higher dimension, for the samagnitude and phase information, but later versions used the
search complexity. A major issue arises here: given a total réetter method described above, and some even allowed the
constraint, how does one best divide the bits between the tplsase quantizers to have a resolution that depends on the
codebooks? This is an example of a rate-allocation problesntcome of the magnitude quantizer. Such polar quantizers
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are called “unrestricted” [488], [530]. High-resolution analysiiterature of transforms, but will observe that bit allocation
can be used to study the rate-distortion performance of thdsmromes an important issue, and one can either use the
quantizers [61], [62], [483], [485], [488], [360]. Among otherhigh-resolution approximations or a variety of nonasymptotic
things, such analyses find the optimal point density for thalocation algorithms such as the “fixed-slope” or Pareto-
magnitude quantizer and the optimal bit allocation betweaptimality considered in [526], [470], [94], [439], [438], and
magnitude and phase. Originally, methods were developfb3]. The method involves operating all quantizers at points
specifically for polar quantizers. However, recently it hasn their operational distortion-rate curves of equal slopes. For
been shown that Bennett's integral can be applied to analyaesurvey of some of these methods, see [107] or [196, Ch.
polar quantization in a straightforward way [380]. It turnd0]. A combinatorial optimization method is given in [546].

out that for an i.i.d. Gaussian source, optimized conventionalAs a final comment on traditional transform coding, the
polar quantization gains about 0.41 dB over direct scalaode can be considered as being suboptimaliadianensional
guantization, and optimized unrestricted polar quantizatimuantizer because of the constrained structure (transform and
gains another 0.73 dB. Indeed, the latter has, asymptoticallypduct code). It gains, however, in having a low complexity,
square cells and the optimal two-dimensional point densitgnd transform codes remain among the most popular com-
and loses only 0.17 dB relative to optimal two-dimensiongiression systems because of their balance of performance and
vector quantization, but is still 3.11 dB froa(R). complexity.

Product quantizers can be used for any set of featuresSubband/Wavelet/Pyramid QuantizatiorSBubband codes,
deemed natural for decomposing a vector. Perhaps the mwavelet codes, and pyramid codes are intimately related and all
famous example is one we have seen already and now revigie cousins of a transform code. The oldest of these methods
transform coding. (so far as quantization is concerned) is the pyramid code of

Transform Coding: Though the goal of this section isBurt and Adelsen [66] (which is quite different from Fischer’s
mainly to discuss techniques beyond scalar quantizatigeyramid VQ). The Burt and Adelsen pyramid is constructed
DPCM and transform coding, we discuss the latter heflom an image first by forming a Gaussian pyramid by
because of its relationships to other techniques and becassecessively lowpass filtering and downsampling, and then by
we wish to discuss work on the bit-allocation problem. forming a Laplacian pyramid which replaces each layer of the

Traditional transform coding can be viewed as a produ@aussian pyramid by a residual image formed by subtracting
guantizer operating on the transform coefficients resulting fromprediction of that layer based on the lower resolution layers.
a linear transform on the original vector. We have alreadyhe resulting pyramid of images can then be quantized, e.g.,
mentioned the traditional high-resolution fixed-rate analysiy/ scalar quantizers. The approximation for any layer can be
and the more recent high-resolution entropy-constrained anaeonstructed by using the inverse quantizers (reproduction
ysis for separate lossless coding of each quantized transfatetoders) and upsampling and combining the reconstructed
coefficient. An asymptotic low-resolution analysis [338], [339ayer and all lower resolution reconstructed layers. Note that
has also been performed. In almost all actual implementatioas, one descends the pyramid, one easily combines the new
however, scalar quantizers are combined with a block lossldsts for that layer with the bits already used to produce a
code, where the lossless code is allowed to effectively operaigher resolution spatially and in amplitude. The pyramid
on an entire block of quantized coefficients at once, usuallpde can be viewed as one of the original multiresolution
by combining run-length coding with Huffman or arithmeticcodes. It can be viewed as a transform code because the entire
coding. As a result, the usual high-resolution analyses are woiginal structure can be viewed as a linear transform of the
directly applicable. original image, but observe that the number of pixels has been

Although high resolution theory shows that theoughly doubled.

Karhunen-Leéve transform is optimal for Gaussian sources, Subband codes decompose an image into separate images
and the asymptotic low-resolution analysis does likewise, thg using a bank of linear filters, hence once again performing
dominant transform for many years has been the discretelinear transformation on the data prior to quantizing it.
cosine transform (DCT) used in most current image anitaditional subband coding used filters of equal or roughly
video coding standards. The primary competition for futurequal bandwidth. Wavelet codes can be viewed as subband
standards comes from discrete wavelet transforms, which withdes of logarithmically varying bandwidths instead of equal
be considered shortly. One reason for the use of the DCThiandwidths, where the filters used satisfy certain properties.
its lower complexity. An “unstructured” transform like theSince the introduction of subband codes in the late 1980’s and
Karhunen-Le@ve requires approximatel@t operations per wavelet codes in the early 1990’s, the field has blossomed and
sample, which is small compared to the arithmetic complexiproduced several of the major contenders for the best speech
of unstructured VQ, but large compared to the approximateiynd image compression systems. The literature is beyond
log k operations per sample for a DCT. Another motivatiothe scope of this article to survey, and much is far more
for the DCT is that in some sense it approximates the behavammcerned with the transforms, filters, or basis functions used
of the Karhunen—Leve transform for certain sources. Andand the lossless coding used following quantization than with
a final motivation is that the frequency decomposition dorthe quantization itself. Hence we content ourselves with the
by the DCT mimics, to some extent, that done by the humamention of a few highlights. The interested reader is referred to
visual system and so one may quantize the DCT coefficiettkee book by Vetterli and Kow@vic on wavelets and subband
taking perception into account. We will not delve into the largeoding [516].
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Subband coding was introduced in the context of speedh is the number of scalar quantization levels. The original
coding in 1976 by Crochiereet al. [113]. The extension scalar-vector method differs in that rational lengths rather than
of subband filtering from 1-D to 2-D was made by Vethinary codewords are assigned to the scalar quantizer levels,
terli [515] and 2-D subband filtering was first applied talynamic programming is used to find the best codevector, and
image coding by Woodst al. [541], [527], [540]. Early the resulting codevectors are losslessly encoded with a kind
wavelet-coding techniques emphasized scalar or lattice veavériexicographic encoding. For i.i.d. Gaussian sources these
quantization [12], [13], [130], [463], [14], [30], [185], and methods attain SNR within about 2 dB &fR) with k on the
other vector quantization techniques have also been appl@der of 100, which is about 0.5 dB from the goal of 1.53
to wavelet coefficients, including tree encoding [366], residudB larger thans(R). A high-resolution analysis is given in
vector quantization [295], and other methods [107]. A majg26] and [23]. The scalar-vector method extends to sources
breakthrough in performance and complexity came with tivith memory by combining it with transform coding using a
introduction of zerotrees [315], [466], [457], which providedlecorrelating or approximately decorrelating transform [305].
an extremely efficient embedded representation of scalar quanfree-Structured Quantizationtn its original and simplest
tized wavelet coefficients, calleembedded zerotree waveleform, ak-dimensional tree-structured vector quantizer (TSVQ)
(EZW) coding. As done by JPEG in a primitive way, thg69] is a fixed-rate quantizer with, say, raiewhose encoding
zerotree approach led to a code which first sent bits about tkguided by a balanced (fixed-depth) binary tree of dégth
transform coefficients with the largest magnitude, and thdere is a codevector associated with each o2/ité terminal
sent subsequent bits describing these significant coefficientgles (leaves), andkadimensional testvector associated with
to greater accuracy as well as bits about originally legmch of its2¥® — 1 internal nodes. Quantization of a source
significant coefficients that became significant as the accura®ctorz proceeds in a tree-structured search by finding which
improved. The zerotree approach has been extended to vecfathe two nodes stemming from the root node has the closer
gquantization (e.g., [109]), but the slight improvement comesstvector taz, then finding which of the two nodes stemming
at a significant cost in added complexity. Rate-distortion ide&®m this node has the closer testvector, and so on, until a
have been used to optimize the rate-distortion tradeoffs usitggminal node and codevector are found. The binary encoding
wavelet packets by minimizing a Lagrangian distortion ovef this codevector consists of the sequencekd binary
code trees and bit assignments [427]. Recently, competitigecisions that lead to it. Decoding is done by table lookup
schemes have demonstrated that separate scalar quantizasom unstructured VQ. As in successive approximation scalar
of individual subbands coupled with a sophisticated but lovguantization, TSVQ yields an embedded code with a naturally
complexity lossless coding algorithm called stack-run codingogressive structure.
can provide performance nearly as good as EZW [504]. With this method, encoding requires storing the tree of

The best wavelet codes tend to use very smart losslésstvectors and codevectors, demanding approximately twice
codes, lossless codes which effectively code very large vectdl® storage of an unstructured codebook. However, encoding
While wavelet advocates may credit the decomposition itseéfquires only2k R distortion calculations, which is a tremen-
for the gains in compression, the theory suggests that ratdeus decrease over th#® required by full search of an
it is the fact that vector entropy coding for very large vectonsnstructured codebook. In the case of squared-error distortion,
is feasible. instead of storing testvectors and computing the distortion

Scalar-Vector QuantizationLlike permutation vector quan- betweenz and each of them, at each internal node one may
tization and Fischer's pyramid vector quantizer, Laroia argtore the normal to the hyperplane bisecting the testvectors
Farvardin’s [305kcalar-vector quantizatioattempts to match at the two nodes stemming from it, and determine on which
the performance of an optimal entropy-constrained scakide of the hyperplane lies by comparing an inner product
quantizer with a low-complexity fixed-rate structured vectasf = with the normal to a threshold that is also stored. This
quantizer. A derivative technique calldolock-constrained reduces the arithmetic complexity and storage roughly in half
quantization[24], [27], [23], [28] is simpler and easier toto approximatelyk R operations per sample ar2d? vectors.
describe. Here the reproduction codebook is a subset df-theFurther reductions in storage are possible, as described in
fold product of some scalar codebook. Variable-length binaf252].
codewords are associated with the scalar levels, and givermhe usual (but not necessarily optimgheedymethod for
some target rat#, the k-dimensional codebook contains onlydesigning a balanced TSVQ [69], [225] is first to design
those sequences @éf quantization levels for which the sumthe testvectors stemming from the root node using the Lloyd
of the lengths of the binary codewords associated with tladgorithm on a training set. Then design the two testvectors
levels is at mosttR. The minimum distortion codevectorstemming from, say, the left one of these by running the Lloyd
can be found using dynamic programming. Alternatively, aalgorithm on the training vectors that were mapped to the left
essentially optimal search can be performed with very loane, and so on.
complexity using a knapsack packing or Lagrangian approachin the scalar case, a tree can be found that implements any
The output of the encoder is the sequence of binary codeworfigntizer, indeed, the optimal quantizer. So tree-structuring
corresponding to the codevector that was found, plus someses nothing, though the above design algorithm does not
padded bits if the total does not equaR. The simplest necessarily generate the best possible quantizers. In the multi-
method requires approximateBON?/k + 20 operations per dimensional case, one cannot expect that the greedy algorithm
sample and storage for approximatel? numbers, where will produce a TSVQ that is as good as the best unstructured
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VQ or even the best possible TSVQ. Nevertheless, it seems + ey 6y
to work pretty well. It has been observed that in the high- X |— @ q2 2 @_’X

resolution case, the cells of the resulting TSVQ’s are mostly -
a mixture of cubes, cubes cut in half, the latter cut in half T _
again, and so on until smaller cubes are formed. And it has X1
been found for i.i.d. Gauss and Gauss—Markov sources that It:he o Twostage V
performances of TSVQ’s with moderate to high rates designe'g' - Two-stage VQ.
by the greedy algorithm are fairly well predicted by Bennett's
integral, assuming the point density is optimum and the celiescendants of any internal node, thereby making it a leaf. This
are an equal mixture of cubes, cubes cut in half, and so on. Thi#ll increase average distortion, but will also decrease the rate.
sort of analysis indicates that the primary weakness of TSMQnce again, one can select for pruning the node that offers
is in the shapes of the cells that it produces. Specifically, iise best tradeoff in terms of the least increase in distortion
loss relative to optimak-dimensional fixed-rate VQ rangesper decrease in bits. It can be shown that, for quite general
from 0.7 dB fork = 2 to 2.2 dB for very large dimensions.measures of distortion, pruning can be done in an optimal
Part of the loss ig1/12)/M,, the ratio of the normalized fashion and the optimal subtrees of decreasing rate are nested
moment of inertia of a cube to that of the béstlimensional [94] (see also [355]). It seems likely that in the moderate-
cell shape, which approaches 1.53 dB for lafgeand the to high-rate case, pruning removes leaves corresponding to
remainder, about 0.5 to 0.7 dB, is due to the oblongitis causeells that are oblong such as cubes cut in half, leaving mainly
by the cubes being cut into pieces [383]. A paper investigatigbic cells. We also wish to emphasize that if variable-rate
the nature of TSVQ cells is [569]. quantization is desired, the pruning can be done so as to
Our experience has been that when taking both performarugimize the tradeoff between distortion and leaf entropy.
and complexity into account, TSVQ is a very competitive There has been a flurry of recent work on the theory of tree-
VQ method. For example, we assert that for most of the fagtowing algorithms for vector quantizers, which are a form of
search methods, one can find a TSVQ (with quite possikigcursive partitioning. See, for example, the work of Nobel and
a different dimension) that dominates it in the sense th@ishen [390], [388], [389]. For other work on tree growing and
D, R, A, andM are all at least as good. Indeed, many of theruning see [393], [439], [276], [22], and [355].
fast-search approaches use a tree-structured prequantizatioMultistage Vector QuantizationMultistage (or multistep,
However, in TSVQ the searching tree and codebook apecascade, or residual) vector quantization was introduced by
matched in size and character in a way that makes them wddang and Gray [274] as a form of tree-structured quantization
well together. A notable exception is the hierarchical tabl@ith much reduced arithmetic complexity and storage. Instead
lookup VQ which attains a considerably smaller arithmetiof having a separate reproduction codebook for each branch
complexity than attainable with TSVQ, at the expense df the tree, a single codebook could be used for all branches
higher storage. The TSVQ will still be competitive in terms 0bf a common length by coding the residual error accumulated
throughput, however, as the tree-structured search is amenablé¢hat point instead of coding the input vector directly. In
to pipelining. other words, the quantization error (or residual) from the
TSVQ’s can be generalized to unbalanced trees (with vagrevious stage is quantized in the usual way by the following
able depth as opposed to the fixed depth discussed abmtape, and a reproduction is formed by summing the previous
[342], [94], [439], [196] and with larger branching factorgeproduction and the newly quantized residual. An example
than two or even variable branching factors [460]. Howeveof a two-stage quantizer is depicted in Fig. 9. The rate of
it should be recalled that the goodness of the original TSViQe multistage quantizer is the sum of the rates of the stages,
means that the gains of such are not likely to be substantiid the distortion is simply that of the last stage. (It is easily
except in the low-resolution case or if variable-rate coding &een that the overall error is just that of the last stage.) A
used or if the source has some complex structure that the usualtistage quantizer hasdirect sumreproduction codebook in
greedy algorithm cannot exploit. the sense that it contains all codevectors formed by summing
A tree-structured quantizer is analogous to a classificationdevectors from the reproduction codebooks used at each
or regression tree, and as such unbalanced TSVQ’'s canstege. One may also view it as a kind of product code
designed by algorithms based on a gardening metaphorimfthe sense that the reproduction codebook is determined
growing and pruning The most well known is the CART by the Cartesian product of the stage codebooks. And like
algorithm of Breiman, Friedman, Olshen, and Stone [53product quantization, its complexities (arithmetic and storage,
and the variation of CART for designing TSVQ's bears theiencoding and decoding) are the sum of those of the stage
initials: the BFOS algorithm [94], [439], [196]. In this method quantizers plus a small amount for computing the residuals
a balanced or unbalanced tree with more leaves than neededhe encoder or the sums at the decoder. In contrast, a
is first grown and then pruned. One can grow a balanced tmventional single-stage quantizer with the same rate and
by splitting all nodes in each level of the tree, or by splittingimension has complexities equal to the product of those of
one node at a time, e.g., by splitting the node with the largaebe stage quantizers.
contribution to the distortion [342] or in a greedy fashion to Since the total rate is the sum of the stage rates, a bit-
maximize the decrease in distortion for the increase in reaocation problem arises. In two-stage quantization using
[439]. Once grown, the tree can be pruned by removing ditked-rate, unstructured;-dimensional VQ’s in both stages,
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it usually happens that choosing both stages to have the satase in two-stage VQ. Moreover, since this distribution is
rate leads to the best performance versus complexity tradeefsentially uniform on a support region shaped &g the

In this case, the complexities are approximately the square rgetond stage can itself be a uniform tesselation. The net effect
of what they would be for a single-stage quantizer. is a quantizer that inherits the optimal point density of the first

Though we restrict attention here to the case where all stagésgé® and the optimal cell shapes of the second. Therefore,
are fixed-rate vector quantizers with the same dimension, thérghe high-resolution case, thigll-conditionedwo-stage VQ
is no reason why they need have the same dimension, hawaks essentially as well as an optimal (single-stage) VQ, but
fixed rate, or have any similarity whatsoever. In other wordgjith much less complexity.
multistage quantization can be used (and often is) with veryDirect implementation of cell-conditioned two-stage VQ,
different kinds of quantizers in its stages (different dimensiomequires the storing of a scale factor and a rotation for each
and much different structures, e.g., DPCM or wavelet codindjist stage cell, which operate on the first stage residual before
For example, structuring the stage quantizers leads to gagubntization by the second stage. Their inverses are applied
performance and further substantial reductions in complexigybsequently. However, since the first stage cells are so nearly
e.g., [243], [79]. spherical, the rotations gain only a small amount, typically

Of course, the multistage structuring leads to a suboptin@bout 0.1 dB, and may be omitted. Moreover, since the best
VQ for its given dimension. In particular, the direct-sunknown lattice tesselations are so close to the best known
form of the codebook is not usually optimal, and the greediesselations, one may use lattice VQ as the second stage, which
search algorithm described above, in which the residual frdrther reduces complexity. Good schemes of this sort have
one stage is quantized by the next, does not find the closegen been developed for low to moderate rates by Gibson
codevector in the direct-sum codebook. Moreover, the usiiar0], [271] and Pan and Fischer [403], [404].
greedy design method, which uses a Lloyd algorithm to designCell-conditioned two-stage quantizers can be viewed as
the first stage in the usual way and then to design the secdm@ying a piecewise-constant point density of the sort proposed
stage to minimize distortion when operating on the errors efirlier by Kuhimann and Bucklew [302] as a means of
the first, and so on, does not, in general, design an optingdicumventing the fact that optimal vector quantizers cannot
multistage VQ, even for greedy search. However, two-stagje implemented with companders. This approach was further
VQ's designed in this way work fairly well. developed by Swaszek in [487].

A high-resolution analysis of two-stage VQ using Bennett’'s Another scheme for adapting each stage to the previous is
integral on the second stage can be found in [311] and [3093lled codebook sharing, as introduced by Chan and Gersho
In order to apply Bennett's integral, it was necessary to fif80], [82]. With this approach, each stage has a finite set of
the form of the probability density of the quantization errofeproduction codebooks, one of which is used to quantize
produced by the first stage. This motivated the asymptotiee residual, depending on the sequence of outcomes from
error-density analysis of vector quantization in [312] anthe previous stages. Thus each codebook is shared among
[379]. some subset of the possible sequences of outcomes from

Multistage quantizers have been improved in a number &fe previous stages. This method lies between conventional
ways. More sophisticated (than greedy) encoding algorithriglltistage VQ in which each stage has one codebook that
can take advantage of the direct sum nature of the codebd®kshared among all sequences of outcomes from previous
to make optimal or nearly optimal searches, though with soritages, and TSVQ in which, in effect, a different codebook is
(and sometimes a great deal of) increased complexity. Atged for each sequence of outcomes from the previous stages.
more sophisticated design algorithms (than the greedy of&)an and Gersho introduced a Lloyd-style iterative design
can also have benefits [32], [177], [81], [31], [33]. Variablealgorithm for designing shared codebooks; they showed that
rate multistage quantizers have been developed [243], [297Y, controlling the number and rate of the codebooks one could
[298], [441], [296]. optimize multistage VQ with a constraint on storage; and they

Another way of improving multistage VQ is to adapt eachsed this method to good effect in audio coding [80]. In the
stage to the outcome of the previous. One such scher@gger scheme of things, TSVQ, multistage VQ, and codebook
introduced by Lee and Neuhoff [310], [309], was motivated bgharing all fit within the broad family of generalized product
the observation that if the first stage quantizer has high rate, s@ges that they introduced in [82].

R, then by Gersho’s conjecture, the first stage cells all haveFeedback Vector Quantizationjust as with scalar quantiz-
approximately the shape df,, the tesselating polytope with €rs, a vector quantizer can be predictive; simply replace scalars
least normalized moment of inertia, and the source densitjth vectors in the predictive quantization structure depicted in
is approximately constant on them. This implies that thelg. 3 [235], [116], [85], [417]. Alternatively, the encoder and
conditional distribution of the residual given that the sourcéecoder can share a finite set of states and a quantizer custom
vector lies in theith cell differs from that for thegith only by a designed for each state. Both encoder and decoder must be
scaling and rotation, because c§}l differs from S; by just a able to track the state in the absence of channel errors, so that
scaling and rotation. Therefore, if first-stage-dependent scalif¢ state must be determinable from knowledge of an initial
and rotation are done prior to second-stage quantization, §iate combined with the binary codewords transmitted to the
conditional distribution of the residual will be the same for aflecoder. The result is a finite-state version of a predictive
cells, and the second stage can be designed for this diStribUtiOﬁBSince the second stage uniformly refines the first stage cells, the overall
rather than having to be a compromise, as is otherwise tbunt density is approximately that of the first stage.



GRAY AND NEUHOFF: QUANTIZATION 2369

which is usually very similar. This is a kind of interblock
lossless coding [384], [410], [428].

Address-vector quantization, introduced by Nasrabadi and
Feng [371] (see also [160] and [373]), is another way to
introduce memory into the lossy encoder of a vector quantizer
~ 1 with the goal of attaining higher dimensional performance with

lower dimensional complexity. With this approach, in addition
next-state ) .
function to the usual reproduction codebodk, there is an address
codebookC, containing permissible sequences of indices of
S, Spet codevectors inC. The address codebook plays the same role
as the outer code in a concatenated channel code (or the trellis
in trellis-encoded quantization discussed below), namely, it
limits the allowable sequences of codewords from the inner
code, which in this case i§'. In this way, address-vector
guantization can exploit the property that certain sequences of
codevectors are much more probable than others; these will
be the ones contained i@1,.
iy As with DPCM, the introduction of memory into the lossy
encoder seriously complicates the theory of such codes, which
likely explains why there is so little.

Tree/Trellis-Encoded QuantizationChannel coding has of-
ten inspired source coding or quantization structures. Channel
next-state coding matured much earlier and the dual nature of channel
function .

and source coding suggests that a good channel code can
be turned into a good source code by reversing the order
Sn Snt1 of encoder and decoder. This role reversal was natural for
the codes which eased search requirements by imposition of
Unit a tree or trellis structure. Unlike the tree-structured vector
Delay quantizers, these earlier systems imposed the tree structure
on the sequence of symbols instead of on a single vector
Decoder of symbols. For the channel coding case, the encoder was a
Fig. 10. Finite-state vector quantizer. convolutional code, input symbols shifted into a shift register
as output symbols, formed by linear combinations (in some
guantizer, referred to as a finite-state vector quantizer afield) of the shift-register contents, shifted out. Sequences of
depicted in Fig. 10. Although little theory has been developeritput symbols produced in this fashion could be depicted with
for finite-state quantizers [161], [178], [179], a variety of tree structure, where each node of the tree corresponded to
design methods exist [174], [175], [136], [236], [15], [16]the state of the shift register (all but the final or oldest symbol)
[286], [196], Lloyd's optimal decoder extends in a naturaind the branches connecting nodes were determined by the
way to finite-state vector quantizers, the optimal reproductionost recent symbol to enter the shift register and were labeled
decoder is a conditional expectation of the input vector givdyy the corresponding output, the output symbol resulting if that
the binary codewordndthe state. The optimal lossy encodebranch is taken. The goal of a channel decoder is to take such a
is not easily described, however, as the next state must d&guence of tree branch labels that has been corrupted by noise,
chosen in a way that ensures good future behavior, and aod find a minimum-distance valid sequence of branch labels.
just in a greedy fashion that minimizes the current squardthis could be accomplished by a tree-search algorithm such
error. If look-ahead is allowed, however, then a tree or trellas the Fano, stack, at/-algorithm. Since the shift register
search can be used to pick a long-term minimum distortig® finite, the tree becomes redundant and new nodes will
path, as will be considered in the next subsection. correspond to previously seen states so that the tree diagram

Both predictive and finite-state vector quantizers typicallgecomes a merged tree or trellis, which can be searched by
use memory in the lossy encoder, but use a memorylesslynamic programming algorithm, the Viterbi algorithm, cf.
lossless code independently applied to each successive bifaid8]. In the early 1970’s, the algorithms for tree-decoding
codeword. One can, of course, also make the lossless caetlannel codes were inverted to form tree-encoding algorithms
depend on the state, or be conditional on the previous bindoy sources by Jelinek, Anderson, and others [268], [269], [11],
codeword. One can also use a memoryless VQ combined witl32], [123], [10]. Later, trellis channel-decoding algorithms
a conditional lossless code (conditioned on the previous binamgre modified to trellis-encoding algorithms for sources by
codeword) designed with a conditional entropy constraint [95{jterbi and Omura [519]. While linear encoders sufficed for
[188]. A simple approach that works for TSVQ is to code thehannel coding, nonlinear decoders were required for the
binary path to the codevector for the present source vectmurce coding application, and a variety of design algorithms
relative to the binary path to that of the previous source vectevere developed for designing the decoder to populate the
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trellis searched by the encoder [319], [531], [481], [18], [40ppproximately Gaussian density, scalar-quantizing the result,
Observe that the reproduction decoder of a finite-state VQ cand then inverse-filtering to recover the original [419].

be used as the decoder in a trellis-encoding system, where

the finite-state encoder is replaced by a minimum-distortia® Robust Quantization

search of thg de_coder tre!hs implied .by the finite-state VQ The Gaussian quantizers were described as beingstin
decoder, which is an optimal encoding for a sequence of

inouts a minimax average sense: a vector quantizer suitably designed
puts. . . .. for.a Gaussian source will yield no worse average distortion

Tree- and trellis-encoded quantizers can both be consideted . .
X : r any source in the class of all sources with the same

as a VQ with large blocklength and a reproduction codebog . . :
; . : . Second-order properties. An alternative formulation of robust
constrained to be the possible outputs of a nonlinear filterofa = .~ .~ . i . X
. ; : . . quantization is obtained if instead of dealing with average
finite-state quantizer or vector quantizer of smaller dimension. : : . )
. . distortion, as is done in most of this paper, one places a
Both structures produce long codewords with a trellis structure

; . . maximum distortion requirement on quantizer design. Here a
i.e., successive reproduction symbols label the branches of .~ . : o :

. . o . . .guantizer is considered to be robust if it bounds the maximum
a trellis and the encoder is just a minimum-distortion trelli

search algorithm such as the Viterbi algorithm, istortion for a class of sources. Morris and Vandelinde (1974)

o T . .. [361] developed the theory of robust quantization and provide
Trellis-Coded Quantlzat|(?n.TreII|s coded qggnnzatlon,' conditions under which the uniform quantizer is optimum in
both scalar and vector, IMproves upon tradmona! tre”'?ﬁis minimax sense. This can be viewed as a variation on
encoded systems by labeling the trellis branches \.N'th .ent'rgsilon entropy since the goal is to minimize the maximum
f:br((:)(:jduec?i?)zklsev(glrs [;JE]S e[tg 4) 4] ra[tlhgé] t?fg?] W['ggz']mig/gllja istortion. Further results along this line may be found in [37],

b ’ ' ' ' ' ’4275], [491]. Because these are minimax results aimed at scalar

[478], [514]. The primary gain resulting is a reductio o . .
; . : quantization, these results apply to any rate or dimension.
in encoder complexity for a given level of performance.

As the original trellis encoding systems were motivated . o
by convolutional channel codes with Viterbi decoderd- Universal Quantization
trellis-coded quantization was motivated by Ungerboeck’s The minimax approaches provide one means of designing
enormously successful coded-modulation approach to chanadixed-rate quantizer for a source with unknown or partially
coding for narrowband channels [505], [506]. known statistics: a quantizer can be designed that will perform
Recent combinations of TCQ to coding wavelet coefficient® worse than a fixed value of distortion for all sources in some
[478] have yielded excellent performance in image codingpllection. An alternative approach is to be more greedy and
applications, winning the JPEG 2000 contest of 1997 amy to design a code that yields nearly optimal performance
thereby a position as a serious contender for the new standaegiardless of which source within some collection is actually
Gaussian QuantizersShannon [465] showed that a Gausssoded. This is the idea behind universal quantization.
ian i.i.d. source had the worst rate-distortion function of any Universal quantization or universal source coding had its
i.i.d. source with the same variance, thereby showing that thegins in an approach to universal lossless compression de-
Gaussian source was an extremum in a source coding senseelioped by Rice and Plaunt [435], [436] and dubbed the
was long assumed and eventually proved by Sakrison in 19Rce machine.” Their idea was to have a lossless coder that
[456] that this provided a robust approach to quantization would work well for distinct sources by running multiple
the sense there exist vector quantizers designed for the i.laksless codes in parallel and choosing the one producing the
Gaussian source with a given average distortion which wikwest bits for a period of time, sending a small amount of
provide no worse distortion when applied to any i.i.d. sourcaverhead to inform the decoder which code the encoder was
with the same variance. This provided an approachobust using. The classic work on lossy universal source codes was
vector quantization, having a code that might not be optimalv’'s 1972 paper [577], which proved the existence of fixed-
for the actual source, but which would perform no worse thaate universal lossy codes under certain assumptions on the
it would on the Gaussian source for which it was designedsource statistics and the source and codebook alphabets. The
Sakrison extended the extremal properties of the rate digultiple codebook idea was also used in 1974 [221] to extend
tortion functions to sources with memory [453]-[455] anthe Shannon source coding theorem to nonergodic stationary
Lapidoth [306] (1997) showed that a code designed fors@urces by using the ergodic decomposition to interpret a
Gaussian source would yield essentially the same performamegergodic source as a universal coding problem for a family
when applied to another process with the same covariar@feergodic sources. The idea is easily described and provides
structure. one means of constructing universal codes. Suppose that one
These results are essentially Shannon theory and hehes a collection ofi-dimensional codebooks; with 2%%x
should be viewed as primarily of interest for high-dimensionglodevectorst = 1, ---, K, each designed for a different
guantizers. type of local behavior. For example, one might have different
In a different approach toward using a Gaussian quantizfdebooks in an image coder for edges, textures, and gradients.
on an arbitrary source, Popat and Zeger (1992) took advantdge union codebook];_, Cx then contains all the codevectors
of the central limit theorem and the known structure of aim all of the codes, for a total oF;_, 2*% codevectors. Thus
optimal scalar quantizer for a Gaussian random variable ftr example, if all of the subcodebooks, have equal rate
code a general process by first filtering it to produce aR; = R, then the rate of the universal codefis- k! log K
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bits per symbol, which can be small if the dimensibns quantization so as to minimize visual artifacts. It was further
moderately large. This does not mean that it is necessarydeveloped for images by Limb (1969) [317] and for speech
use a large-dimensional VQ, since the VQ can be a prodist Jayant and Rabiner (1972) [266]. Intuitively, the goal was
VQ, e.g., for an image one could hake= 64 by coding each to cause the reconstruction error to look more like signal-
square of dimensio8 x 8 = 64 using four applications of a independent additive white noise. It turns out that for one
VQ of dimension4 x 4 = 16. If one had, say, four different type of dithering, this intuition is true. In a dithered quantizer,
codes, the resulting rate would e+ 2/64 = R + 0.031, instead of quantizing an input sign&l, directly, one quantizes
which would be a small increase over the original rate if the signalU,, = X,, + W,,, where W,, is a random process,
original rate is, say(.25. independent of the signaX,,, called adither process. The

A universal code is in theory more complicated than agither process is usually assumed to be i.i.d.. There are
ordinary code, but in practice it can mean codes with smallevo approaches to dithering. Roberts considered subtractive
dimension might be more efficient since separate codebodakthering, where the final reconstruction is formed Es=
can be used for distinct short-term behavior. q(X,, + W,,) — W,,. An obvious problem is the need for the

Subsequently, a variety of notions of fixed-rate univedecoder to possess a copy of the dither signal. Nonsubtractive
sal codes were considered and compared [382], and fixeithering forms the reproduction as = q(X,, + Wy).
distortion codes with variable rate were developed by Mack- The principal theoretical property of nonsubtractive dither-
enthun and Pursley [340] and Kieffer [277], [279]. ing was developed by Schuchman [461], who showed that the

As with the early development of block source codesyuantizer error
universal quantization during its early days in the 1970’s was . = . .
viewed as more of a method for developing the theory than as a en = Xp = Xp = X = g(Xn +Wa) + W,
practical code-design algorithm. The Rice machine, howeves,uniformly distributed on—A/2, A/2] and is independent
proved the practicality and importance of a simple multiplef the original input signalX,, if and only if the quantizer
codebook scheme for handling composite sources. does not overload and the characteristic functidg (ju) =

These works all assumed the encoder and decoder to posgeles V] satisfies M (j271/A) = 0; 1 # 0. Schuchman’s
copies of the codebooks being used. Zeger, Bist, and Lindgnditions are satisfied, for example, if the dither signal has
[566] considered systems where the codebooks are desigaedniform probability density function o—A/2, A/2]. It
at the encoder, but must be also coded and transmittedféflows from the work of Jayant and Rabiner [266] and
the decoder, as is commonly done in codebook replenishmgpipad and Snyder [477] (see also [216]) that Schuchman’s
[206]. condition implies that the sequence of quantization erfess

A good review of the history of universal source codings independent. The case of uniform dither remains by far the
through the early 1990’s may be found in Kieffer (1993) [283nost widely studied in the literature.

Better performance tradeoffs can be achieved by allow-The subtractive dither result is nice mathematically because
ing both rate and distortion to vary, and in 1996, Choi promises a well-behaved quantization noise as well as
et al. [92] formulated the universal coding problem as aguantization error. It is impractical in many applications,
entropy-constrained vector quantization problem for a famikyowever, for two reasons. First, the receiver will usually not
of sources and provided existence proofs and Lloyd-styieive a perfect analog link to the transmitter (or else the
design algorithms for the collection of codebooks subjegtiginal signal could be sent in analog form) and hence a
to a Lagrangian distortion measure, yielding a fixed ratgseudorandom deterministic sequence must be used at both
distortion slope optimization rather than fixed distortion offansmitter and receiver as proposed by Roberts. In this
fixed rate. The clustering of codebooks was originally due tase, however, there will be no mathematical guarantee that
Chou [90] in 1991. High-resolution quantization theory waghe quantization error and noise have the properties which
used to study rates of convergence with blocklength to th@ld for genuinely random i.i.d. dither. Second, subtractive
optimal performance, yielding results consistent with earliglither of a signal that indeed resembles a sample function
convergence results developed by other means, e.g., Lingera memoryless random process is complicated to imple-
et al. [321]. The fixed-slope universal quantizer approacfent, requiring storage of the dither signal, high-precision
was further developed with other code structures and desigithmetic, and perfect synchronization. As a result, it is of
algorithms by Yanget al. [558]. interest to study the behavior of the quantization noise in a

A different approach which more closely resembles tradsimple nonsubtractive dithered quantizer. Unlike subtractive
tional adaptive and codebook replenishment was developgither, nonsubtractive dither is not capable of making the
by Zhang, Yang, Wei, and Liu [329], [575], [574]. Theirreconstruction error independent of the input signal (although
approach, dubbed “gold washing,” did not involve trainingslaims to the contrary have been made in the literature). Proper
but rather created and removed codevectors according to ghice of dithering function can, however, make the condi-
data received and an auxiliary random process in a way thi@hal moments of the reproduction error independent of the
could be tracked by a decoder without side information.  input signal. This can be practically important. For example,

) ) it can make the perceived quantization noise energy constant
E. Dithering as an input signal fades from high intensity to low intensity,

Dithered quantization was introduced by Roberts [442}here otherwise it can (and does) exhibit strongly signal-

in 1962 as a means of randomizing the effects of uniforadependent behavior. The properties of nonsubtractive dither
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were originally developed in unpublished work by Wrightmeasure allows the channel statistics to be included in an
[542] in 1979 and Brinton [54] in 1984, and subsequentlgptimal quantizer design formulation. Recently, the method
extended and refined with a variety of proofs [513], [512has been referred to as “channel-optimized quantization,”
[328], [227]. For anyk = 1, 2, --- necessary and sufficientwhere the quantization might be scalar, vector, or trellis.
conditions on the characteristic functioh/yy are known This approach was introduced in 1969 by Kurtenbach and
which ensure that théth moment of the quantization noiseWintz [304] for scalar quantizers. A Shannon source coding
en = ¢(X,, + W,,) — X,, conditional onX,, does not depend theorem for trellis encoders using this distortion measure was
on X,,. A sufficient condition is that the dither signal consistproved in 1981 [135] and a Lloyd-style design algorithm for
of the sum ofk independent uniformly distributed randomsuch encoders provided in 1987 [19]. A Lloyd algorithm for
variables on[—A/2, A/2]. Unfortunately, this conditional vector quantizers using the modified distortion measure was
independence of moments comes at the expense of a losgntbduced in 1984 by Kumazawa, Kasahara, and Namekawa
fidelity. For example, ift = 2 then the quantizer noise power{303] and further studied in [157], [152], and [153]. The

(the mean-squared error) will be method has also been applied to tree-structured VQ [412]. It
A2 can be combined with a maximum-likelihood detector to fur-
E[E|X]|=E[P] = EW?] + I ther improve performance and permit progressive transmission

] ) . . o over a noisy channel [411], [523]. Simulated annealing has
This means that the power in the dither signal is directly addggt, peen used to design such quantizers [140], [152], [354].
to that of the quantizer error in order to form the overall apother approach to joint source and channel coding based
mean-squared error. o o _ on a quantizer structure and not explicitly involving typical

In.addmon tq its rolle in whltenlng guantization no'se_a”@hannel-coding techniques is to design a scalar or vector
making the noise or its moments independent of the iNPYyantizer for the source without regard to the channel, but
dithering has played a role in proofs of “universal quantizaren code the resulting indices in a way that ensures that
tion” results in information theory. For example, Ziv [S78]sma (large) Hamming distance of the channel codewords
showed that even without high resolution theory, unifor,presponds to small (large) distortion between the resulting
scal_arquantlza_non combined with _d|t_her|ng aqd vector '053|e|%?3roduction codewords, essentially forcing the topology on
coding could yield performance within 0.75 bit/symbol of thgne channel codewords to correspond to that of the resulting
rate-distortion function. Extensions to lattice quantization a’?@production codewords. The codes that do this are often
variations of this result have been developed by Zamir apdjjeq index assignments. Several specific index assignment

Feder [565]. methods were considered by Rydbeck and Sundberg [448].
o ) DeMarca and Jayant in 1987 [121] introduced an iterative
F. Quantization for Noisy Channels search algorithm for designing index assignments for scalar

The separation theorem of information theory [464], [180Juantizers, which was extended to vector quantization by
states that nearly optimal communication of an informatiofeger and Gersho [568], who dubbed the approach “pseudo-
source over a noisy channel can be accomplished by separafaigy” coding. Other index assignment algorithms include
guantizing or source coding the source and channel coding[®t0], [543], [287]. For binary-symmetric channels and certain
error-control coding the resulting encoded source for relialg@ecial sources and quantizers, analytical results have been
transmission over a noisy channel. Moreover, these two codiplgtained [555], [556], [250], [501], [112], [351], [42], [232],
functions can be designed separately, without knowledge [@83], [352]. For example, it was shown by Crimmiesal.
each other. The result is only for point-to-point communican 1969 [112] that the index assignment that minimizes mean-
tions, however, and it is a limiting result in the sense that largguared error for a uniform scalar quantizer used on a binary-
blocklengths and hence large complexity must be permittesymmetric channel is the natural binary assignment. However,
If one wishes to perform near the Shannon limit for moderathis result remained relatively unknown until rederived and
delay or blocklengths, or in multiuser situations, it is necessaggneralized in [351].
to consider joint source and channel codes, codes which jointiyWhen source and channel codes are considered together,
consider quantization and reliable communication. It may natkey issue is the determination of the quantization rate to
actually be necessary to combine the source and channel cotlespysed when the total of number of channel symbols per
but simply to jointly design them. There are a variety o$ource symbol is held fixed. For example, as quantization rate
code structures and design methods that have been considéseidcreased, the quantization noise decreases, but channel-
for this purpose, many of which involve issues of channéiduced noise increases because the ability of the channel
coding which are well beyond the focus of this paper. Hexmde to protect the bits is reduced. Clearly, there is an
we mention only schemes which can be viewed as quantizefgimal choice of quantization rate. Another issue is the
which are modified for use on a noisy channel and not thodetermination of the rate at which overall distortion decreases
schemes which involve explicit channel codes. More geneialan optimal system as the total number of channel uses per
discussions can be found, e.g., in [122]. source symbol increases. These issues have been addressed in

One approach to designing quantizers for use on noisgcent papers by Zeger and Manzella [570] and Hochwald and
channels is to replace the distortion measure with respectdeger [244], which use both exponential formulas produced by
which a quantizer is optimized by the expected distortion ovhigh resolution quantization theory and exponential bounds to
the noisy channel. This simple modification of the distortionhannel coding error probability.
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There are a variety of other approaches to joint source argteived bitrate. Clearly, one can do no better than having each
channel coding, including the use of codes with a chanrngdcket alone result in in a reproduction with distortion near the
encoder structure optimized for the source or with a special d@hannon distortion-rate functioR(R) while simultaneously
coder matched to the source, using unequal error protectiorhtving the two packets together yield a reproduction with
better protect more important (lower resolution) reproductiafistortion nearD(2R), but this optimistic performance is in
indices, jointly optimized combinations of source and channgéneral not possible. This problem was first tackled in the
codes, and combinations of channel-optimized quantizers wittiormation theory community in 1980 by Wolf, Wyner, and
source-optimized channel codes, but we leave these to #ie [536] and Ozarow [401] who developed achievable rate
literature as they involve a heavy dose of channel coding ideasgions and lower bounds to performance. The results were

extended by Ahlswede (1985) [6], El Gamal and Cover (1982)
G. Quantizing Noisy Sources [139], and Zhang and Berger (1987) [573].

In 1993, Vaishampayaet al. used a Lloyd algorithm to

%ctually design fixed-rate [508] and entropy-constrained [509]
lar quantizers for the multiple description problem. High-
%eaolution guantization ideas were used to evaluate achievable

A parallel problem to quantizing for a noisy channel i
qguantizing for a noisy source. The problem can be seen
trying to compress a dirty source into a clean reproduction,
as doing estimation of the original source based on a quanti
version of a noise-corrupted version. If the underlying statisti $
are known or can be estlmatgd b_y a training sequence, .t.*}ﬁ Itiple-description quantization using transform coding has
th|s can be treated as a quan'uzatlor! prot_)lem with a modnjg 0 been considered, e.g., in [38] and [211].
distortion measure, where now the distortion between a noise-
corrupted observation™ = y of an unseen originaX and
a reconstructiont based on the encoded and decodeds
given as the conditional expectatidid(X, z)|Y = y|. The We have not treated many interesting variations and applica-
usefulness of this modified distortion for source-coding noigions of quantization, several of which have been successfully
sources was first seen by Dobrushin and Tsybakov (196G#)alyzed or designed using the tools described here. Examples
[134] and was used by Fine (1965) [162] and Sakrison (196&hich we would have included had time, space, and patience
[452] to obtain information-theoretic bounds an quantizatidmeen more plentiful include mismatch results for quantizers
and source coding for noisy sources. Berger (1971) [4@¢signed for one distribution and applied to another, quantizers
explicitly used the modified distortion in his study of Shannodesigned to provide inputs to classification, detection, or esti-
source coding theorems for noise-corrupted sources. mation systems, quantizers in multiuser systems such as simple

In 1970, Wolf and Ziv [537] used the modified distortiomnetworks, quantizers implicit in finite-precision arithmetic (the
measure for a squared-error distortion to prove that the optinrmbdern form of roundoff error), and quantization in noise-
guantizer for the modified distortion could be decomposesthaping analog-to-digital and digital-to-analog converters such
into the cascade of a minimum mean-squared error estimaasA>-modulators. Doubtless we have failed to mention a few,
followed by an optimal quantizer for the estimated originddut this list suffices to demonstrate how rich the theoretical
source. This result was subsequently extended to a mared applied fields of quantization have become in their half
general class of distortion measures include the input-weighteshtury of active development.
guadratic distortion of Ephraim and Gray [145], where a
generalized Lloyd algorithm for design was presented.

Related results and approaches can be found in Witsen-
hausen’s (1980) [535] treatment of rate-distortion theory with 1h€ authors gratefully acknowledge the many helpful com-

modified (or “indirect”) distortion measures, and in the Occaf€Nts, corrections, and suggestions from colleagues, students,
filters of Natarajan (1995) [370]. and reviewers. Of particular assistance were A. Gersho, B.

Girod, N. Kashyap, T. Linder, N. Moayeri, P. Moo, Y.
Shtarkov, S. Verd, M. Vetterli, and K. Zeger.

formance in 1998 by Vaishampayan and Batllo [510] and
der, Zamir, and Zeger [324]. An alternative approach to
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