EECS 651 Source Coding Theory
Winter 2003

Syllabus

1. Introduction
 JPEG image coding
 Overview of the course

2. Fixed-rate lossy source coding
 Vector quantization (VQ) as the lossy source coding paradigm
 partition, codebook, rate, distortion (MSE), opta functions
 Examples (structured and unstructured)
 Bennett's high-resolution analysis of distortion
 Zador's high-resolution analysis of the opta function
 Summary of Shannon's rate-distortion analysis of the opta function
 Comparison of high-resolution and Shannon analyses

3. Lossless source coding
 Block and conditional variable-length coding
 Entropy theory

4. Variable-rate lossy coding
 Vector quantization as the paradigm
 partition, codebook, binary codebook, distortion, rate, opta functions
 Examples (structured and unstructured)
 High-resolution analysis of rate
 Zador's high-resolution analysis of the opta function
 Comparison with fixed-rate and Shannon analyses.

5. Specific lossy source codes (fixed and variable-rate)
 Performance vs. Complexity (arithmetic operations & storage)
 Scalar quantizers -- uniform and nonuniform
 Transform coding -- KLT, DCT, and wavelet based
 Predictive coding -- DPCM, Δ-mod
 Fast quantization of unstructured VQ.
 Structured VQ: tree-structured, multistage, polar, pyramid, lattice, hierarchical table lookup, ...

6. Source coding of speech, audio, images and video
 CELP speech coding
 MP3-like perceptual audio coders
 JPEG-2000 wavelet-based image coding
 MPEG-like video coding
 (these topics may be interspersed earlier in the class)

7. Source coding for noisy channels (time permitting)
 Noisy channel quantizers
 Resynchronizing lossless codes

8. Specific lossless codes (coverge as time permits)
 Run-length coding
 Rice-Golomb
 Lempel-Ziv
 Arithmetic
 Burrows-Wheeler
 JPEG lossless, JBIG, ...

9. Project presentations