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ABSTRACT: In a high level query and data 
manipulation language such as SQL, requests 
are stated non-procedurally, without 
reference to access paths. This paper 
describes how System R chooses access paths 
for both simple (single relation) and 
complex queries (such as joins), given a 
user specification of desired data as a 
boolean expression of predicates. System R 
is an experimental database management 
system developed to carry out research on 
the relational model of data. System R was 
designed and built by members of the IBM 
San Jose Research'Laboratory. 

1. Introduction 

System' R is an experimental database 
management system based on the relational 
model of data which has been under develop- 
ment at the IBM San Jose Research Laborato- 
ry since 1975 Cl>. The software was 

. developed as a research vehicle in rela- 
tional database, and is not generally 
available outside the IBM Research Divi- 
sion. 

This paper assumes familiarity with 
relational data model terminology as 
described in Codd <7> and Date <a>. The 
user interface in System R is the unified 
query, data definition, and manipulation 
language SQL <5>. Statements in SQL can be 
issued both from an on-line casual-user-or- 
iented terminal interface and from program- 
ming languages such as PL/I and COBOL. 

In System R a user need not know how 
the tuples are physically stored and what 
access paths are available (e.g. which 
columns have indexes). SQL statements do 
not require the user to specify anything 
about the access path to be used for tuple 
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retrieval. Nor does a user specify in what 
order joins are to be performed. The 
System R optimizer .chooses both join order 
and an access path for each table in the 
SQL statement. Of the many possible 
choices, the optimizer chooses the one 
which minimizes "total access cost" for 
performing the entire statement. 

This paper will address the issues of 
access path selection for queries. 
Retrieval for data manipulation (UPDATE, 
DELETE) is treated similarly. Section 2 
will describe the place of the optimizer in 
the processing of a SQL statement, and 
section 3 will describe the storage compo- 
nent access paths that are available on a 
single physically stored table. In section 
4 the optimizer cost formulas are intro- 
duced for single table queries, and section 
5 discusses the joining of two or more 
tables, and their corresponding costs. 
Nested queries (queries in predicates) are 
covered in section 6. 

2. processi.Bg & B.B u statement 

A SQL statement is subjected to four 
phases of processing. Depending on 'the 
origin and contents of the statement., these 
phases may be separated by arbitrary 
intervals. of time. In System RI these 
arbitrary time intervals are transparent to 
the system components which process a SQL 
statement. These mechanisms and a descrip- 
tion of the processing of SQL statements 
from both programs and terminals are 
further discussed in <2>. Only an overview 
of those processing steps that are relevant 
to access path selection will be discussed 
here. 

The four phases of statement processing 
are-parsing, optimization. code generation. 
and execution. Each SQL statement is sent 
to , the parser. where it is checked for 
correct syntax. A guery block is repre- 
sented by a SELECT list, a FROM list, and a 
WHERE tree, containing, respectively the 
list of .items to be retrieved, the table(s) 
referenced, and the boolean combination of 
simple predicates specified by the user. A 
single SQL statement may have many query 
blocks because a predicate may have one 
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operand which is itself a query. 

If the parser returns without any 
errors detected, the OPTIMIZER component is 
called. The OPTIMIZER accumulates the 
names of tables and columns referenced in 
the query and looks them up in the System R 
catalogs to verify their existence and to 
retrieve information about them. 

The catalog lookup portion of the 
OPTIMIZER also obtains statistics about the 
referenced relations, and the access paths 

‘available on each of them. These will be 
used later in access path selection. After 
catalog lookup has obtained the datatype 
and length of each column, the OPTIMIZER 
rescans the SELECT-list and WHERE-tree to 
check for semantic errors and type compati- 
bility in both expressions and predicate 
comparisons. 

Finally the OPTIMIZER performs access 
path selection. It first determines the 
evaluation order among the query blocks in 
the statement. Then for each query block, 
the relations in the FROM list are 
processed. If there is more than one 
relation in a block, permutations of the 
join order and of the method of joining are 
evaluated. The access paths that minimize 
total cost for the block are chosen from a 
tree of alternate path choices. This 
minimum cost .solution is represented by a 
structural modification of the parse tree. 
The result is an execution plan in the 
Access Specification Language (ASLI <lo>. 

After a plan is chosen for each query 
block and represented in the parse tree, 
the CODE GENERATOR is called. The CODE 
GENERATOR is a table-driven program which 
translates ASL trees into machine language 
code to execute the plan chosen by the 
OPTIMIZER. In doing this it uses a rela- 
tively small number of code templates, one 
for each type of join method (including no 
join). Query blocks for nested queries are 
treated as "subroutines" which return 
values to the predicates in which they 
occur. The CODE GENERATOR is further 
described in <9>. 

During code generation, the parse tree 
is replaced by executable machine code and 
its associated data structures. Either 
control is immediately transfered to this 
code or the code is stored away in the 
database for later execution, depending on 
the origin of the statement (program or 
terminal). In either case, when the code 
is ultimately enecuted, it calls upon the 
System R internal storage system (RSS) via 
the storage system interface (RSII to scan 
each of the physically stored relations in 
the query. These scans are along the 
access paths chosen by the OPTIMIZER. The 
RSI commands that may be used by generated 
code are described in the next section. 

3. _T'he Research Storaae System 

The Research Storage System (RSSI is 
the storage subsystem of System R. It is 
responsible for maintaining Physical 
storage of relations, access paths on these 
relations, locking (in a multi-user envi- 
ronment), and logging and recovery facili- 
ties. The RSS presents a tuple-oriented 
interface (RSII to its users. Although the 
RSS may be used independently of System R, 
we are concerned here with its use for 
executing the code generated by the proces- 
sing of SQL statements in System R, as 
described in the previous section. For a 
complete description of the RSS, see <l>. 

Relations are stored in the RSS as a 
collection of tuples whose columns are 
physically contiguous. These tuples are 
stored on 4K byte pages; no tuple spans a 
page. Pages are organized into logical 
units called segments. Segments may 
contain one or more relations, but no 
relation rn%y span a segment. Tuples from 
two or more relations may occur on the same 
page. Each tuple is tagged with the 
identification of the relation to which it 
belongs. 

The'primary way of accessing tuples in 
a relation is via an RSS scan. A scan 
returns a tuple at a time along a given 
access path. OPEN, NEXT, and CLOSE are the 
principal commands on a scan. 

Two types of scans are currently 
available for SQL statements. The first 
type is a segment scan to find all the 
tuples of a given relation. A series of 
NEXTs on a segment scan simply examines all 
pages of the segment which contain tuples, 
from any relation, and returns those tuples 
belonging to the given relation. 

The second type of scan is an index 
scan. An index may be created by a.Sy.stem 
R user on one or more columns of a rela- 
tion, and a relation may have any number 
(including zero1 of indexes on it. These 
indexes are stored on separate pages from 
those containing the relation tuples. 
Indexes are implemented as B-trees <3>, 
whose leaves are pages containing sets of 
(key, identifiers of tuples .. which contain 
that key). Therefore a series of NEXTs on 
an index scan does a sequential read along 
the leaf Pages of the index, obtaining the 
tuple identifiers matching a key, and using 
them to find and return the data tuples to 
the user in key value order. Index leaf 
pages are chained together so that NEXTs 
needinot reference any upper level Pages Of 
the i,ndex. 

In a segment scan, all the non-empty 
page5 of a segment will be touched. regard- 
less of whether there are any tuples from 
the desired relation on them. However, 
each page is touched only once. When an 
entire relation is enamined via an index 
scan, each page of the index is touched 
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only once, but 'a data page may be examined 
more than once if it has two tuples on it 
which are not "close" in the index order- 
ing. If the tuples are inserted into 
segment pages in the index 'ordering, and if 
this physical proximity corresponding to 
index key value is maintained, we say that 
the index is clustered. A clustered index 
has the property that not only each index 
paw P but also each data page containing a 
tuple from that relation will be touched 
only once in a scan on that index. ,.. 

.: 
An index scan need not scan the *entire 

relation. Starting and stopping key values 
may be specified in order to scan only 
those tuples which have a key in a range of 
index values. Both index and segment scans 
may optionally take a set of predicates, 
called search arguments (or SARGS), which 
are applied to a tuple before it is 
returned to the RSI caller. If the tuple 
satisfies the predicates, it is returned; 
otherwise the scan continues until it 
either finds a tuple which satisfies the 
SARGS or exhausts the segment or the 
specified index value range. This reduces 
cost by eliminating the overhead of making 
RSI calls for tuples which can be effi- 
ciently rejected within the RSS. Not all 
predicates are of the form that can become 
SARGS. A sm predicate is one of the 
form (or which can be put into the form) 
ncolumn comparison-operator value". SARGS 
are expressed as a boolean expression of 
such predicates in disjunctive normal form. 

f 4. fox sinqle Costs relation access paths 

In the next 'several sections we will 
describe the process of choosing a plan for 
evaluating a query. We will first describe 
the simplest case, accessing a single 
relation, and show how it extends and 
generalizes to t-way joins of relations, 
n-way joins, and finally multiple query 
blocks (nested queries). 

The OPTIMIZER examines both the predi- 
cates in the query and the access paths 
available on the relations referenced by 
the queryI and.formu1ate.s a cost prediction 
for each access plan, using the following 
cost formula: 

COST = PAGE -FETCHES + W * (RSI CALLS). 
This cost is' a weighted measure of I/O 
(pages fetched) and CPU utilization 
(instructions executed). W is an adjusta- 
ble weighting factor between I/O and CPU. 
RSI CALLS is the predicted number 0.f tuples 
returned from the RSS. Since most of 
System R's CPU time is spent in the RSS, 
the number of RSI calls is a good approxi- 
mation for CPU utilization. Thus the 
choice of a minimum cost path to process a 
query attempts to minimize total resources 
required. 

During execution of the type-compati- 
bility and semantic checking portion of the 
OPTIMIZER, each query block's WHERE tree of 
predicates is examined. The WHERE tree is 

considered to be in conjunctive normal 
form, and every conjunct is called a 
boolean factoy. Boolean factors are 
notable because every tuple returned to the 
user must satisfy every boolean factor. An 
index is said to match a boolean factor i,f 
the boolean factor is 
whose referenced 

a sargable predicate 
column is the index key; 

e.g., an index on SALARY matches the 
predicate 'SALARY = 20000'. More precise- 
ly, we say that a predicate or set of 
predicates matches an index access path 
when the predicates are sargable and the 
columns mentioned in the predicate(s) are 
an initial substring of the set of columns 
of the index key. For example. a NAME, 
LOCATION index matches NAME = 'SMITH' AND 
LOCATION = 'SAN JOSE'. If an index matches 
a boolean factor, an access using that 
index is an efficient way to satisfy the 
boolean factor. Sargable boolean factors 
can also be efficiently satisfied if they 
are expressed as search arguments. Note 
that a boolean factor may be an entire tree 
of predicates headed by an OR. 

During catalog lookup, the OPTIIlIZER 
retrieves statistics on the relations in 
the query and on the access paths available 
on each relation. The statistics kept are 
the following: 

For each relation T. 
- NCARD(TIr the cardinality of relation T. 
- TCARDfT). the number of pages in the 

segment that hold tuples of relation T. 
- P(T), the fraction of data pages in the 

segment that hold tuples of relation T. 
P(T) = TCARD(T1 / (no. of non-empty 

pages in the segment). 

For each index I on relation T, 
- ICARD( number of distinct keys in 

index I. 
- NINDXfIlr the number of pages in index I. 

These statistics are maintained in the 
System R catalogs, and come from several 
sources. Initial relation loading and 
index creation ihitialize these statistics. 
They are then updated periodically by an 
UPDATE STATISTICS command, which can be run 
by any user. System R does not update 
these statistics at every INSERT, DELETE, 
or UPDATE because of the extra database 
operations and the locking bottleneck th,is 
would create at the system catalogs. 
Dynamic updating of statistics would tend 
to serialize accesses that modify the 
relation contents. 

Using these statistics, the OPTIMIZER 
assigns a selectivity factor 'F' for each 
boolean factor in the predicate list. This 
selectivity factor very roughly corresponds 
tb the of tuples which 
w k 

expected fraction 
11 satisfy the predicate. TABLE 1 gives 

the selectivity factors for different kinds 
of predicates. We assume that a lack of 
statistics implies that the relation is 
small, so an arbitrary factor is chosen. 
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TABLE 1 SELECTIVITY FACTORS 

column = value 
. F = 1 / ICARDfcolumn index) if there is an index on column 

This assumes an even distribution of tuples among the index key 
values. 
F = l/10 otherwise 

column1 = column2 
F = l/MAX(ICARD(columnl index), ICARD(column2 index)) 

if there are indexes on both column1 and column2 
This assumes that each key value in the index with the smaller 
cardinality has a matching value in the other index. 
F = l/ICARD(col.umn-i index) if there is only an index on Column-i 
F = l/l0 otherwise 

column > value (or any other open-ended comparison) 
F = (high key value - value) / (high key value - low key value)‘ 
Linear interpolation of the value within the range of key values 
yields F if the column is an arithmetic type and value is kno,wn at 
access path selection time. 
F = l/3 otherwise (i.e. column not arithmetic) 
There is no significance to this number, other than the fact that 
it is l’ess selective than the guesses for equal predicates for 
which there are no indexes, and that it is less than l/2. We 
hypothesize that few queries use predicates that are satisfied by 
more than half the tuples. 

column BETWEEN value1 AND value2 
F = (value? -. value11 / (high key value - low key value) 

A ratio of the BETWEEN value range to the entire key value range is 
used as the selectivity factor if column is arithmetic and both 
value1 and value2 are known at access path selection. 
F = l/4 otherwise 
Again there is no significance to this choice except that it is 
between the default selectivity factors for an equal predicate and 
a range p.redicate. 

column IN (list of values) 
F = (number of items in list) * (selectivity factor for column = 
value 1 
This is allowed to be no more than l/2. 

columnA IN subquery 
F = (expected cardinality of the subquery result) / 

(product of the cardinalities of all the relations in the 
subquery’s FROM-list). 
The computation of query cardinality will be discussed below. 
This formula is derived by the following argument: 
Consider the simplest case, where subquery is of the form “SELECT 
columnB FROM relationc . ..“. Assume that the set of all columnB 
values in relationc contains the set of all columnA values. If all 
the tuples of relationc are selected by the subquery, then the 
predicate is always TRUE and F = 1. If the tuples of the subquery 
are restricted by a selectivity factor F’, then assume that the set 
of unique values in the subquery result that match columnA values 
is proportionately restricted, i.e. the selectivity factor for the 
predicate should be F’. F’ is the product of all the subquery’s 
selectivity factors. namely (subquery cardinality) / (cardinality 
of all possible subquery answers). With a little optimism, we can 
extend this reasoning to include sifbqueries which are joins and 
subqueries in which columnB is replabed by an arithmetic expression 
involving column names. This leads to the formula given above. 

fpred expression11 OR (pred expression2) 
F = F(pred1) + F(pred2) - Ffpredll * F(pred21 
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(predll AND (predtl 
F = Ffpredl) * F(pred27 
Note that this assumes that column values are independent. 

NOT pred 
F = 1 - Ffpredl 

Query cardinality (QCARD) is the product of 
the cardinalities of every relation in the 
query block's FROM list times the product 
of all the selectivity factors of that 
query block's boolean factors. The number 
of expected RSI calls (RSICARD) i* the 
product of the relation cardinalities times 
the selectivity factors of the s_arsablq 
boolean factors, since the sargable boolean 
factors will be put into search arguments 
which will filter out tuples without 
returning across the RSS interface. 

Choosing,an optimal access path for a 
single relation consists of using these 
selectivity factors in formulas together 
with the statistics on available access 
paths. Before this process is described, a 
definition is needed. Using an index 
access path or sorting tuples produces 
tuples in the index value or sort key 
order. We say that a tuple order is an 
jnterestinq order if that order is one 
specified by the query block's GROUP BY or 
ORDER BY clauses. 

For single relations, the cheapest 
access path is obtained by evaluating the 
cost for each available access path (each 
index on the relation, plus a segment 
scan). The costs will be- described below. 
For each such access path, a predicted cost 
is computed along with the ordering of the 
tuples it will produce. Scanning along the 
SALARY index in ascending order, for 
example, will produce some cost C and a 
tuple order of SALARY (ascending). To find 
the cheapest access plan fo; a 

TABLE 2 

SITUATIOR 

Unique index matching 
an equal predicate 

Clustered index I matching 
one or more boolean factors 

Non-clustered index I matching 
one or more boolean factors 

Clustered index I not 
matching any boolean factors 

Non-clustered index I not 
matching any boolean factors 

Segment scan 

single 

relation query, we need only to examine the 
cheapest access path which produces tuples 
in each "interesting" order and the cheap- 
est "unordered" access path. Note that an 
"unordered" access path may in fact produce 
tuples in some order, but the order is not 
"interesting". If there are no GROUP BY or 
ORDER BY clauses on the query, then there 
will be no interesting orderings, and the 
cheapest access path is the one chosen. If 
there are GROUP BY or ORDER BY clauses, 
then the cost for producing that interest- 
ing ordering must be compared to the cost 
of the cheapest unordered path J&U the 
cost of sorting QCARD tuples into the 
proper order. The cheapest of these 
alternatives is chosen as the plan for the 
query block. 

The cost formulas for 
access paths 

single'relation 
are given in TABLE 2. These 

formulas give index pages fetched plus data 
pages fetched plus the weighting factor 
times RSI tuple retrieval calls. W is the 
weighting factor between page fetches and 
RSI calls. Some situations give several 
alternative formulas depending on whether 
the set of tuples retrieved will fit 
entirely in the RSS buffer pool for effec- 
tive buffer pool per user). We assume for 
clustered indexes that a page remains. in 
the buffer long enough for every tup1e to 
be retrieved from it. For non-clustered 
indexes, it is assumed that for those 
relations not fitting in the buffer, the 

.relation is sufficiently large with respect 
to the buffer size that a page fetch is 
required for every tuple retrieval. 

COST FORMULAS 

lxGlc(inaases) 

1+1+w 

F(predsI * (NINDX(Il + TCARD) + W x RSICARD 

F(predsl * (NINDXfI) + NCARD) + W * RSICARD 

or F(predsl * (NINDXfI) + TCARD) + W * RSICARD if 
this number fits in the System R buffer 

(NINDX(Il + TCARDI + W * RSICARD 

(NINDX(Il + NCARDI + W * RSICARD 

or (NINDX(II + TCARD) + W * RSICARD if 
this number fits in the System R buffer 

TCARD/P + W * RSICARD 
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5. pccess & selecti- .&E joins 

In 1976, Blasgen and Eswaran <4> 
examined a number of methods for performing 
2-way joins. The performance of each of 
these methods was analyzed under a variety 
of relation cardinalities. Their evidence 
indicates that for other than very small 
relations, one of two join methods were 
always optimal or near optimal. The System 
R optimizer chooses between these two 
methods. We first describe these methods, 
and then discuss how they are extended for 
n-way joins. Finally we specify how the 
join order (the order in which the rela- 
tions are joined) is chosen. For joins 
involving two relations, the two relations 
are called the outer relation, from which a 
tuple will be retrieved first, and the 
m relation, from which tuples will be 
retrieved, possibly depending on the values 
obtained in the outer relation tuple. A 
predicate which relates columns of two 
tables to be joined is called a &&I 
Predicate. The columns referenced in a 
join predicate are called && golumnq. 

The first join method, called the 
nested loops. method, uses scans, in any 
order, on the outer and inner relations. 
The scan on the outer relation is opened 
and the first tuple is retrieved. For each 
outer relation tuple obtained, a scan is 
opened on the inner relation to retrieve, 
one at a time, all the tuples of the inner 
relation which satisfy the join predicate. 
The composite tuples formed by the 
outer-relation-tuple / inner-relation-tuple 
pairs comprise the result of this join. 

The second join method, called mereinq 
scans. requires the outer and inner rela- 
tions to be scanned in join column order. 
This implies that, along with the columns 
mentioned in ORDER BY and GROUP BY, columns 
of equi-join predicates (those of the form 
Table1 .columnl = TableZ.column2) also 
define “interesting” orders. If there is 
more than one join predicate, one of them 
is used as the join predicate and the 
others are treated as ordinary predicates. 
The merging scans method is only applied to 
equi-joins, although in principle it could 
be applied to other types of joins. If one 
or both of the relations to be joined has 
no indexes on the join column, it must be 
sorted into a temporary list which is 
ordered by the join column. 

The more complex logic of the merging 
scan join method takes advantage of the 
ordering on join columns to avoid rescan- 
ning the entire inner relation (looking for 
a match 1 for each tuple of the outer 
relation. It does this by synchronizing 
the inner and outer scans by reference to 
matching join column values and by “remem- 
ber ing” where matching join groups .are 
located. Further savings occur if the 
inner relation is clustered on the join 
column (as would be true if it is the 
output of a sort on the join column). 

“Clustering” on a column 
which have the same 

means that tuples 
value in that column 

are physically stored close to each other 
so that one Page access will retrieve 
several tuples. 

N-way joins can be visualized as a 
sequence of a-way joins. In this visuali- 
zation, two relations are joined together, 
the resulting composite relation is joined 
with the third relation, etc. At each step 
of the n-way join it is possible to identi- 
fy the outer relation (which in general is 
composite.1 and the inner relation (the 
relation being added to the join). Thus 
the methods described above for two way 
joins are easily generalized to n-way 
joins. However, it should be emphasized 
that the first 2-way join does not have to 
be completed before the second t-way join 
is started. As soon as we get a composite 
tuple for the first t-way join, it can be 
joined with tuples of the third relation to 
form result tuples for the 3-way join, etc. 
Nested ioop joins and merge scan joins may 
be mixed in the same query, e.g. the first 
two relations of a three-way join may be 
joined using merge scans and the composite 
result may be joined with the third rela- 
tion using a nested loop join. The 
intermediate composite relations are 
physically stored only if a sort is 
required for the next join step. When a 
sort of the composite relation is not 
specified, the composite relation will be 
materialized one tuple at a time to parti- 
cipate in the next join. 

We now consider the order in which the 
relations are chosen to be joined. It 
should be noted that although the cardinal- 
ity of the join of n relations is the same 
regardless of join order, the cost of 
joining in different orders can be substan- 
tially different. If a query block has n 
relations in its FROM list, then there are 
n factorial permutations of relation join 
orders. The search space can be reduced by 
observing that that once the first k 
relations are joined, the method to join 
the composite to the k+l-st relation is 
independent of the order of joining the 
first k; i.e. the applicable predicates are 
the same, the set of interesting orderings 
is the same, the possible join methods are 
the same, etc. Using this property, an 
efficient way to organize the search is to 
find the best join order for successively 
larger subsets of tables. 

A heuristic is used to reduce the join 
order permutations which are considered. 
Whe’h possible, the search is reduced by 
consideration only of join orders which 
have join predicates relating the inner 
relation to the other relations already 
participating in the join. This means that 
in joining relations tl,tt,...,tn only 
those orderings til,ti2,...,tin are 
examined .in which for all j (j=2,...,n) 
either 
(1) tij has at least one join predicate 
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with some relation tik, where k < j, or 
(2) for all k > j, tik has no join predi- 
cate with til,tit,...,or ti(j-1). 
This means that all joins requiring Carte- 
sian products are performed as late in the 
join sequence as possible. For example, if 
Tl.T2,T3 are the three relations in a query 
block’s FROM list, and there are join 
predicates between Tl and T2 and between T2 
and T3 on different columns than the Tl-T2 
join, then the following 
not considered: 

permutations are 
.’ 

T l-T3-T2 *, 
T3-T l-T2 

To find the optimal plan for joining n 
relations, a tree of possible solutions is 
constructed. As discussed above, the 
search is performed by finding the best way 
to join subsets of the relations. For each 
set of relations joined, the cardinality of 
the composite relation is estimated and 
saved. In addition, for the unordered 
join, and for each interesting order 
obtained by the join thus far, the cheapest 
solution for achieving that order and the 
cost of that solution are saved. A solu- 
tion consists of an ordered list of the 
relations to be joined, the join method 
used for each join, and a plan indicating 
how each relation is to be accessed. If 
either the outer composite relation or the 
inner relation needs to be sorted before 
the join, then that is also included in the 
plan. As in the single relation case, 
“interesting” orders are those listed in 
the query block’s GROUP BY or ORDER BY 
clause. if any. Also every join column 
defines an “interesting” order. To mini- 
nimize the number of different interesting 
orders and hence the number of solutions in 
the tree, equivalence clns,ses for interest- 
ing orders are computed and only the best 
solution for each equivalence class is 
saved. For example, if there is a join 
predicate E. DNO = D.DNO and another join 
predicate D.DNO = F.DNOe then all three of 
these columns belong to the same order 
equivalence class. 

The search tree is constructed by 
iteration ‘on the number of relations joined 
so far. First, the best way is found to 
access each single relation for each 
interesting tuple ordering and for the 
unordered case. Next, the best way of 
joining any relation to these is found, 
subject to the heuristics for join order. 
This produces solutions for joining pairs 
of relations. Then the best way to join 
sets of three relations is found by COnSid- 
eration of all sets of two relations and 
joining in each third relation permitted by 
the join order heuristic. For each plan to 
join a set of relations, the order of the 
composite result is kept in the tree. This 
allows consideration of a merge scan join 
which would not require sorting the compo- 
site. After the complete solutions (all Of 
the relations joined together) have been 
found, the optimizer chooses the cheapest 
solution which gives the required order, if 

any was specified. Note that if a solution 
exists with the correct order, no sort is 
performed for ORDER BY or GROUP BY, unless 
the ordered solution is more expensive than 
the cheapest unordered solution plus the 
COSt of. sorting into the required order. 

The number of solutions which must be 
stored is at most 2X*n (the number of 
subsets of n tables) t i.mes the number of 
interesting result orders. The computation 
time to generate the tree is approximately 
proportional to the same number. This 
number is frequently reduced substantially 
by the join order heuristic. Our experi- 
ence is that typical cases require only a 
few thousand bytes of storage and a few 
tenths of a second of 3701158 CPU time. 
Joins of 8 tables have been optimized in a 
few seconds. ' 

Gomputation DJ costs 
The costs for joins are computed from 

the costs of the scans on each of the 
relations and the cardinalities. The costs 
of the scans on each of the relations are 
computed using the cost formulas for single 
relation access paths presented in section 
b. 

Let C-outerfpath 1) be the cost of scanning 
the outer relation via pathl, and N be the 
cardinality of the outer relation tuples 
which satisfy the applicable predicates. N 
is computed by: 
N = (product of the cardinalities of all 

relations T of the join so far) * 
(product of the selectivity factors of 
al 1 applicable predicates). 

Let C-innercpatht) be the cost of scanning 
the inner relation, applying all applicable 
predicates. Note that in the merge scan 
join this means scanning the contiguous 
group of the inner relation which corres- 
ponds to one join column value in the outer 
relation. Then the cost of a nested loop 
join is 
c-nested-loop-join(pathl.path2)E 

C-outerfpathll + N * C-inner(path21 

The cost of a merge scan join can be 
broken up into the cost of actually doing 
the merge plus the cost of sorting the 
outer or inner relations, if required. The 
cost of doing the merge is 
C-merge(pathlspath2)= 

C-outer(path1) + N * C-inner(path2) 

For the case where the inner relation 
is sorted into a temporary relation none of 
the single relation access path formulas in 
section 4 apply. In this case the inner 
scan is like a segment scan except that the 
merging scans method makes use of the fact . 
that the inner relation is sorted so that 
it is not necessary to scan the entire 
inner relation looking for a match. For 
this case we use the following formula for 
the cost of the inner scan. 
C-innercsorted list) = 
TEHPPAGES/N + W*RSICARD 
where TEMPPAGES is the number of pages 
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required to hold the inner relation. This 
formula assumes that during the merge each 
page of the inner relation is fetched once. 

It is interesting to observe that the 
cost formula for nested loop joins and the 
cost formula for merging scans are essen- 
tially the same. The reason that merging 
scans is sometimes better than nested loops 
is that the cost of the inner scan may be 
much less. After sorting, the inner 
relation is clustered on the join column 
which tends to minimize the number of pages 
fetched, and it is not necessary to scan 
the entire inner relation (looking for a 
match) for each tuple of the outer rela- 
tion. 

The cost of sorting a relation, 
C-sort(path), includes the cost of retriev- 
ing the data using the specified access 
Path, sorting the data, which may involve 
several passes, and putting the results 
into a temporary list. Note that prior to 
sorting the inner table, only the local 
predicates can be applied. Also, if it is 
necessary to sort a composite result, the 
entire composite relation must be stored in 
a temporary relation before it can be 
sorted. The cost of inserting the compo- 
site tuples into a temporary relation 
before sorting is included in C-sortfpath). 

We now show how the search is done for 
the example join shown in Fig. 1. First we 
find all of the reasonable access paths for 
single relations with only their local 
predicates applied. The results for this 
example are shown in Fig. 2. There are 
three access paths for the EHP table: an 
index on DNO, an index on JOB, and a 
segment .scan. The interesting orders are 
DNO and JOB. The index on DNO provides the 
tuples in DNO order and the index on JOB 
provides the tuples in JOB order. The 
segment 'scan access path is, for our 
purposes, unordered. For this example we 
assume that the index on JOB is the cheap- 
est path, so the segment scan path is 
pruned. For the DEPT relation there are 
two access paths, an index on DNO and a 
segment scan. We assume that the index on 
DNO is cheaper so the segment scan path is 
pruned. For the JOB relation there are two 
access paths, an index on JOB and a segment 
scan. We assume that the segment scan path 
is cheaper, so both paths are saved. The 
results just described are saved in the 
search tree as shown in Fig. 3. In the 
figures, the notation C(EMP.DNOl or 
C(E.DNOl means the cost of scanning EMP via 
the DNO index, applying all predicates 
which are applicable given that tuples from 
the specified set of relations have already 
been fetched. The notation Ni is used to 
represent the cardinalities of the differ- 
ent partial results. 

Next, solutions for pairs of relations 
are found by joining a second relation to 

JoB pzqxr--JOB 
5 CLERK 
6 TYPIST 
9 SALES 

12 MECHANIC 

SELECT NAME, TITLE, SAL, DNAME 
FROM EMP, DEPT, JOB 
WHERE TITLE=‘CLERK’ 
AND LOCYDENVER 
AND EMP.DNO=DEPT.DNO 
AND EMP.JOB=JOB.JOB 

“Retrieve the name, salary, job title, and department 
name of employees who are clerks and work for 
departments in Denver.” 

Figure 1. JOIN example 

Access Path for Single Relations 

l Eligible Predicates: Local Predicates Only 
l “Interesting” Orderings: DNO,JOB 

EM” 1 %:DNO 

$EMP.DNO, 

1 :I., 1 Ftt 

CIEMP seg. scan) 

’ N2 
C(DEPT.DNO) 

’ N2 
C(DEPT reg. scan) 

X pruned 

JOB: 
index 

I I 

segment 
JOBJOB scan on 

JOB 

$JOB.JOB) 
N 
doe sag. scan) 

‘: t 
Figure 2. 

the.$esults for single relations shown in 
Fig. 3. For each single relation, we find 
access paths for joining in each second 
relation for which there exists a predicate 
connecting it to the first relation. First 
we consider access path selection for 
nested loop joins. In this example we 
assume that the EMP-JOB join is cheapest by 
accessing JOB on the JOB index. This is 
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likely since it can fetch directly the 
tuples with matching JOB, (without having to 
scan the entire relation). In practice the 
cost of joining is estimated using the 
formulas given earlier and the cheapest 
path is chosen. For joining the EMP 
relation to the DEPT ,relation we assume 
that the DHO index is cheapest. The best 
access path for each second-level relation 
is combined with each of the plans in Fig. 
3 to form the nested loop solutions ‘shown 
in Fig. 4. ,:' 

*, 

C(EMP.DNOI C(EMP.JOBI 
ON0 order JOB order 

UDEPT.ONO~ CIJOB.JOBi CIJOB rsg. scanI 
DNO order JOB ordef unordered 

Figure 3. Search tree for single relations 

Next we generate solutions using the 
merging scans method. As we see on the 
left side of Fig. 3, there is a scan on the 
EHP relation in DHO order, so it is possi- 
ble to use this scan and the DHO scan on 
the DEPT relation to do a merging scans 
join, without any sorting. Although it is 
possible to do the merging join without 
sorting as just described, it might be 
cheaper to use the JOB index on EMP, sort 
on DHO. and then merge. Note that we never 
consider sorting the DEPT table because the 
cheapest scan on that table is already in 
DHO order. 

For merging JOB with EMP, ue 
consider the JOB 

only 
index on EMP since it is 

the cheapest access path for EHP regardless 
of order. Using the JOB index on JOB, we 
can merge without any sorting. However, 
it might be cheapter to sort JOB using a 
relation scan as input to the sort and then 
do the merge. 

Referring to Fig. 3, we see that the 
access path chosen for the' the DEPT rela- 
tion is the DHO index. After accessing 
DEPT via this index, we can merge with EMP 
using the DHO index on EMP, again without 
any sorting. However, it might be cheaper 
to sort EMP first using the JOB index as 
input to the sort and then do the merge. 
Both of these cases are shown in Fig. 5. 

As each of the costs shown in Figs. 4 
and 5 are computed they are compared with 
the cheapest equivalent solution (same 
tables and same result order) found so far, 
and the cheapest solution is saved. After 
this pruning. solutions for all three 
relations are found. For each pair of 
relations, we find access paths for joining 
in the remaining third relation. As before 
we will extend the tree using nested loop 
joins and merging scans to join the third 
relation. The search tree for three 
relations is shown in Fig. 6. Note that in 
one case both the composite relation‘ and 
the table being added (JOB1 are sorted. 
Note also that for some of the cases. no 
sorts are performed at all. In these 
cases, the composite result is materialized 
one tuple at a time and the intermediate 
composite relation is never stored. As 

'before, as each of the costs are computed 
they are compared with the cheapest solu- 

(EMP. OEPT) 

h&x Index 
EMP.DNO EMP.JOB 

‘Nt 

n 

Nl 

Index Index 
DEPT.DNO DEPT.DNO 

N4 N4 

1 (DEPT. EMP) (JOB, EMP) 

Index 
segment 

JOB.JOB 3 

L N3 

n 

N3 

index Index 
EMPJOB EMP.JOB 

1 % NS 

C(E.DNO) C(E.JOBl C(E.DNO) CULJOBI C(D.DNO) IXJJOB) C(J seg scan) 
+ + + + 

N&(D.DNO) N,C,(D.DNO) N,&J.JOB) N&J.JOBI N,C,(E.DNO) N,C,(E.JOBI NIL&JOB) 
DNO order JOE order DNO order JOE order DNO order JOB order unordered 

Figure 4. Extended search tree for second relation (nested loop join) 
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Figure 5. Extended search tree for second relation (merge join) 
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Figure 6. Extended search tree for third relation 
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6. Nested Queries 

A query may appear as an operand of a 
predicate of the form "expression operator 
query". Such a query is called a Nested 
Query or -a Subquery. If the operator is 
one of the six scalar comparisons (=, -1, 
>t >=, <, <=I, then the subquery must 
return a single .value. The following 
example using the 'I=" operator was given in 
section 2: Ii 

SELECT NAME 
FROM EMPLOYEE 3, 
WHERE SALARY = 

(SELECT AVG(SALARY) 
FROM EHPLOYEE) 

If the operator is IN or NOT IN then 
the subquery may return a set of values. 
For example: 

SELECT NAME 
FROM EMPLOYEE 
WHERE DEPARTMENT-NUMBER IN 

(SELECT DEPARTMENT-NUHBER 
FROM DEPARTMENT 
WHERE LOCATION='DENVER'l 

In both examples, the subquery needs to 
be evaluated only once. The OPTIMIZER will 
arrange for the subquery to be evaluated 
before the top level query is evaluated. 
If a single value is returned, it is 
incorporated into the top level query as 
though it had been part of the original 
query statement; for example, if AVG(SAL1 
above evaluates to 15000 at execution time, 
then the predicate becomes "SALARY = 
15000". If the subquery can return a set 
of values, they are returned in a temporary 
list, an internal form which is more 
efficient than a relation but which can 
only be accessed sequentially. In the 
example above, if the subquery returns the 
list (17,241 then the predicate is evaluat- 
ed in a manner similar to the way in which 
it would have been evaluated if the origi- 
nal predicate had,been DEPARTMENT-NUMBER IN 
(17,210. 

A subquery may also contain a predicate 
with a subquery. down to a (theoretically) 
arbitrary level of nesting. When such 
subqueries do not reference columns from 
tables in higher level query blocks, they 
are all evaluated before the top level 
query is evaluated. In this case, the most 
deeply nested subqueries are evaluated 
first, since any subquery must be evaluated 
before its parent query can be evaluated. 

A subquery may contain a reference to a 
value obtained from a candidate tuple of a 
higher level query block (see example 
below). Such a query is called a correla- 
tion subquery. A correlation subquery must 
in principle be re-evaluated for each 
candidate tuple from the referenced query 
block. This re-evaluation must be done 
before the correlation subquery's parent 
predicate in the higher level block can be 
tested for acceptance qr rejection of the 
candidate tuple. As an example, consider 

If a correlation subquery is not 
directly below the query block it referenc- 
es but is separated from that block by one 
or more intermediate blocks, then the 
correlation subquery evaluation will be 
done before evaluation of the highest of 
the intermediate blocks. For example: 
level 1 SELECT NAME 

FROM EMPLOYEE X 
WHERE SALARY > 

level 2 (SELECT SALARY 
FROM EMPLOYEE 
WHERE EMPLOYEE-NUMBER = 

level 3 (SELECT MANAGER 
FROM ERPLOYEE 
WHERE EMPLOYEE-NUMBER = 

X.MANAGERll 
This selects names of EMPLOYEE's that earn 
more than their MANAGER's MANAGER. As 
before, for each candidate tuple of the 
level-l query block, the EMPLOYEE.MANAGER 
value is used for evaluation of the level-3 
query block. In this case, because the 
level 3 subquery references a level 1 value 
but does not reference level 2 values, it 
is evaluated once for every new level 1 
candidate tuple. but not for every level 2 
candidate tuple. 
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If the value referenced by a correla- 
tion subquery (X.MANAGER above) is not 
unique in the set of candidate tuples 
(e.g., many employees have the same manag- 
er), the procedure given above will still 
cause the subquery to be re-evaluated for 
each occurrence of a replicated value. 
However, if the referenced relation is 
ordered on the referenced column. the 
re-evaluation can be made conditional, 
depending. on a test of whether or not the 
current referenced value is the same as the 
one in the previous candidate tuple. If 
they are the same, the previous evaluation 
result can be used again. In some cases, 
it might even pay to sort the referenced 
relation on the referenced column in order 
to avoid re-evaluating subqueries unneces- 
sarily. In order to determine whether or 
not the referenced column values are 
unique. the OPTIHIZER can use clues like 
NCARD > ICARD. where NCARD is the relation 
cardinality and ICARD.is the index cardi- 
nality of an index on the referenced 
column. 

the query: 
SELECT NAME 
FROM EMPLOYEE X 
WHERE SALARY > (SELECT SALARY 

FROM EMPLOYEE 
WHERE EMPLOYEE-NUMBER= 

X.MANAGERl 
This selects names of EMPLOYEE's that earn 
more than their HANAGER. Here X identifies 
the query block and relation which furnish- 
es the candidate tuple for the correlation. 
For each candidate tuple of the top level 
query block, the MANAGER value is used for 
evaluation of the subquery. The subquery 
result is then returned to the "SALARY >" 
predicate for testing acceptance of the 
candidate tuple. 



7. Conclusion 

The System R access path selection has 
been described for single table queries, 
joins, and nested queries. Evaluation work 
on comparing the choices made to the 
"right" choice is in progress, and will be 
described in a forthcoming paper. Prelimi- 
nary results indicate that, although the 
costs p.redicted by the optimizer are often 
not accurate in absolute value, the true 
optimal path is selected in a large majori- 
ty of cases. In many cases, the ordering 
among the estimated costs for 'all paths 
considered is precisely the same as that 
among the actual measured costs. 

Furthermore. the cost of path selection 
is not overwhelming. For a two-way join, 
the cost of optimization is approximately 
equivalent to between 5 and 20 database 
retrie,vals. This number becomes even more 
insignificant when such a path selector is 
placed in an environment such as System R, 
where application programs are compiled 
once and run many times. The cost of 
optimization is amortized over many runs. 

The key contributions of this path 
selector over other work in this area are 
the expanded use of statistics (index 
cardinality, for example), the inclusion of 
CPU utilization into the cost formulas, and 
the method of determining join order. Many 
queries are CPU-bound, particularly merge 
joins for which temporary relations are 
created and sorts performed. The concept 
of "selectivity factor" permits the optim- 
izer to take advantage of as many of the 
query's restriction predicates as possible 
in the RSS search arguments and access 
paths. By remembering "interesting order- 
ing" equivalence classes for joins and 
ORDER or GROUP specifications, the optimiz- 
er does more bookkeeping than most path 
selectors, but this additional work in many 
cases results in avoiding the storage and 
sorting of intermediate query results. 
Tree pruning and tree searching techniques 
allow this additional bookkeeping to be 
performed efficiently. 

More work on validation of the optimiz- 
er cost formulas needs to be done, but we 
can conclude from this preliminary work 
that database management systems can 
support non-procedural query languages with 
performance comparable to those supporting 

the current more procedural languages. 
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