
Access Path Selection
in a Relational Database Management System

P. Griffiths Selinger
M. M. Astrahan

D. D. Chamberlin
‘, : It. A. Lorie
.: ' T. G. Price
4:

IBM Research Division, San Jose, California 95193

ABSTRACT: In a high level query and data
manipulation language such as SQL, requests
are stated non-procedurally, without
reference to access paths. This paper
describes how System R chooses access paths
for both simple (single relation) and
complex queries (such as joins), given a
user specification of desired data as a
boolean expression of predicates. System R
is an experimental database management
system developed to carry out research on
the relational model of data. System R was
designed and built by members of the IBM
San Jose Research'Laboratory.

1. Introduction

System' R is an experimental database
management system based on the relational
model of data which has been under develop-
ment at the IBM San Jose Research Laborato-
ry since 1975 Cl>. The software was

. developed as a research vehicle in rela-
tional database, and is not generally
available outside the IBM Research Divi-
sion.

This paper assumes familiarity with
relational data model terminology as
described in Codd <7> and Date <a>. The
user interface in System R is the unified
query, data definition, and manipulation
language SQL <5>. Statements in SQL can be
issued both from an on-line casual-user-or-
iented terminal interface and from program-
ming languages such as PL/I and COBOL.

In System R a user need not know how
the tuples are physically stored and what
access paths are available (e.g. which
columns have indexes). SQL statements do
not require the user to specify anything
about the access path to be used for tuple

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct couunercial ad-
vantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is
given that copying is by permission of the Associa-
tion for Computing Machinery. To copy otherwise,
or to republish, requires a fee end/or specific
permission.

01979 ACM 0-89791-001-X/79/0500-0023 $00.75

retrieval. Nor does a user specify in what
order joins are to be performed. The
System R optimizer .chooses both join order
and an access path for each table in the
SQL statement. Of the many possible
choices, the optimizer chooses the one
which minimizes "total access cost" for
performing the entire statement.

This paper will address the issues of
access path selection for queries.
Retrieval for data manipulation (UPDATE,
DELETE) is treated similarly. Section 2
will describe the place of the optimizer in
the processing of a SQL statement, and
section 3 will describe the storage compo-
nent access paths that are available on a
single physically stored table. In section
4 the optimizer cost formulas are intro-
duced for single table queries, and section
5 discusses the joining of two or more
tables, and their corresponding costs.
Nested queries (queries in predicates) are
covered in section 6.

2. processi.Bg & B.B u statement

A SQL statement is subjected to four
phases of processing. Depending on 'the
origin and contents of the statement., these
phases may be separated by arbitrary
intervals. of time. In System RI these
arbitrary time intervals are transparent to
the system components which process a SQL
statement. These mechanisms and a descrip-
tion of the processing of SQL statements
from both programs and terminals are
further discussed in <2>. Only an overview
of those processing steps that are relevant
to access path selection will be discussed
here.

The four phases of statement processing
are-parsing, optimization. code generation.
and execution. Each SQL statement is sent
to , the parser. where it is checked for
correct syntax. A guery block is repre-
sented by a SELECT list, a FROM list, and a
WHERE tree, containing, respectively the
list of .items to be retrieved, the table(s)
referenced, and the boolean combination of
simple predicates specified by the user. A
single SQL statement may have many query
blocks because a predicate may have one

23

operand which is itself a query.

If the parser returns without any
errors detected, the OPTIMIZER component is
called. The OPTIMIZER accumulates the
names of tables and columns referenced in
the query and looks them up in the System R
catalogs to verify their existence and to
retrieve information about them.

The catalog lookup portion of the
OPTIMIZER also obtains statistics about the
referenced relations, and the access paths

‘available on each of them. These will be
used later in access path selection. After
catalog lookup has obtained the datatype
and length of each column, the OPTIMIZER
rescans the SELECT-list and WHERE-tree to
check for semantic errors and type compati-
bility in both expressions and predicate
comparisons.

Finally the OPTIMIZER performs access
path selection. It first determines the
evaluation order among the query blocks in
the statement. Then for each query block,
the relations in the FROM list are
processed. If there is more than one
relation in a block, permutations of the
join order and of the method of joining are
evaluated. The access paths that minimize
total cost for the block are chosen from a
tree of alternate path choices. This
minimum cost .solution is represented by a
structural modification of the parse tree.
The result is an execution plan in the
Access Specification Language (ASLI <lo>.

After a plan is chosen for each query
block and represented in the parse tree,
the CODE GENERATOR is called. The CODE
GENERATOR is a table-driven program which
translates ASL trees into machine language
code to execute the plan chosen by the
OPTIMIZER. In doing this it uses a rela-
tively small number of code templates, one
for each type of join method (including no
join). Query blocks for nested queries are
treated as "subroutines" which return
values to the predicates in which they
occur. The CODE GENERATOR is further
described in <9>.

During code generation, the parse tree
is replaced by executable machine code and
its associated data structures. Either
control is immediately transfered to this
code or the code is stored away in the
database for later execution, depending on
the origin of the statement (program or
terminal). In either case, when the code
is ultimately enecuted, it calls upon the
System R internal storage system (RSS) via
the storage system interface (RSII to scan
each of the physically stored relations in
the query. These scans are along the
access paths chosen by the OPTIMIZER. The
RSI commands that may be used by generated
code are described in the next section.

3. _T'he Research Storaae System

The Research Storage System (RSSI is
the storage subsystem of System R. It is
responsible for maintaining Physical
storage of relations, access paths on these
relations, locking (in a multi-user envi-
ronment), and logging and recovery facili-
ties. The RSS presents a tuple-oriented
interface (RSII to its users. Although the
RSS may be used independently of System R,
we are concerned here with its use for
executing the code generated by the proces-
sing of SQL statements in System R, as
described in the previous section. For a
complete description of the RSS, see <l>.

Relations are stored in the RSS as a
collection of tuples whose columns are
physically contiguous. These tuples are
stored on 4K byte pages; no tuple spans a
page. Pages are organized into logical
units called segments. Segments may
contain one or more relations, but no
relation rn%y span a segment. Tuples from
two or more relations may occur on the same
page. Each tuple is tagged with the
identification of the relation to which it
belongs.

The'primary way of accessing tuples in
a relation is via an RSS scan. A scan
returns a tuple at a time along a given
access path. OPEN, NEXT, and CLOSE are the
principal commands on a scan.

Two types of scans are currently
available for SQL statements. The first
type is a segment scan to find all the
tuples of a given relation. A series of
NEXTs on a segment scan simply examines all
pages of the segment which contain tuples,
from any relation, and returns those tuples
belonging to the given relation.

The second type of scan is an index
scan. An index may be created by a.Sy.stem
R user on one or more columns of a rela-
tion, and a relation may have any number
(including zero1 of indexes on it. These
indexes are stored on separate pages from
those containing the relation tuples.
Indexes are implemented as B-trees <3>,
whose leaves are pages containing sets of
(key, identifiers of tuples .. which contain
that key). Therefore a series of NEXTs on
an index scan does a sequential read along
the leaf Pages of the index, obtaining the
tuple identifiers matching a key, and using
them to find and return the data tuples to
the user in key value order. Index leaf
pages are chained together so that NEXTs
needinot reference any upper level Pages Of
the i,ndex.

In a segment scan, all the non-empty
page5 of a segment will be touched. regard-
less of whether there are any tuples from
the desired relation on them. However,
each page is touched only once. When an
entire relation is enamined via an index
scan, each page of the index is touched

24

only once, but 'a data page may be examined
more than once if it has two tuples on it
which are not "close" in the index order-
ing. If the tuples are inserted into
segment pages in the index 'ordering, and if
this physical proximity corresponding to
index key value is maintained, we say that
the index is clustered. A clustered index
has the property that not only each index
paw P but also each data page containing a
tuple from that relation will be touched
only once in a scan on that index. ,..

.:
An index scan need not scan the *entire

relation. Starting and stopping key values
may be specified in order to scan only
those tuples which have a key in a range of
index values. Both index and segment scans
may optionally take a set of predicates,
called search arguments (or SARGS), which
are applied to a tuple before it is
returned to the RSI caller. If the tuple
satisfies the predicates, it is returned;
otherwise the scan continues until it
either finds a tuple which satisfies the
SARGS or exhausts the segment or the
specified index value range. This reduces
cost by eliminating the overhead of making
RSI calls for tuples which can be effi-
ciently rejected within the RSS. Not all
predicates are of the form that can become
SARGS. A sm predicate is one of the
form (or which can be put into the form)
ncolumn comparison-operator value". SARGS
are expressed as a boolean expression of
such predicates in disjunctive normal form.

f 4. fox sinqle Costs relation access paths

In the next 'several sections we will
describe the process of choosing a plan for
evaluating a query. We will first describe
the simplest case, accessing a single
relation, and show how it extends and
generalizes to t-way joins of relations,
n-way joins, and finally multiple query
blocks (nested queries).

The OPTIMIZER examines both the predi-
cates in the query and the access paths
available on the relations referenced by
the queryI and.formu1ate.s a cost prediction
for each access plan, using the following
cost formula:

COST = PAGE -FETCHES + W * (RSI CALLS).
This cost is' a weighted measure of I/O
(pages fetched) and CPU utilization
(instructions executed). W is an adjusta-
ble weighting factor between I/O and CPU.
RSI CALLS is the predicted number 0.f tuples
returned from the RSS. Since most of
System R's CPU time is spent in the RSS,
the number of RSI calls is a good approxi-
mation for CPU utilization. Thus the
choice of a minimum cost path to process a
query attempts to minimize total resources
required.

During execution of the type-compati-
bility and semantic checking portion of the
OPTIMIZER, each query block's WHERE tree of
predicates is examined. The WHERE tree is

considered to be in conjunctive normal
form, and every conjunct is called a
boolean factoy. Boolean factors are
notable because every tuple returned to the
user must satisfy every boolean factor. An
index is said to match a boolean factor i,f
the boolean factor is
whose referenced

a sargable predicate
column is the index key;

e.g., an index on SALARY matches the
predicate 'SALARY = 20000'. More precise-
ly, we say that a predicate or set of
predicates matches an index access path
when the predicates are sargable and the
columns mentioned in the predicate(s) are
an initial substring of the set of columns
of the index key. For example. a NAME,
LOCATION index matches NAME = 'SMITH' AND
LOCATION = 'SAN JOSE'. If an index matches
a boolean factor, an access using that
index is an efficient way to satisfy the
boolean factor. Sargable boolean factors
can also be efficiently satisfied if they
are expressed as search arguments. Note
that a boolean factor may be an entire tree
of predicates headed by an OR.

During catalog lookup, the OPTIIlIZER
retrieves statistics on the relations in
the query and on the access paths available
on each relation. The statistics kept are
the following:

For each relation T.
- NCARD(TIr the cardinality of relation T.
- TCARDfT). the number of pages in the

segment that hold tuples of relation T.
- P(T), the fraction of data pages in the

segment that hold tuples of relation T.
P(T) = TCARD(T1 / (no. of non-empty

pages in the segment).

For each index I on relation T,
- ICARD(number of distinct keys in

index I.
- NINDXfIlr the number of pages in index I.

These statistics are maintained in the
System R catalogs, and come from several
sources. Initial relation loading and
index creation ihitialize these statistics.
They are then updated periodically by an
UPDATE STATISTICS command, which can be run
by any user. System R does not update
these statistics at every INSERT, DELETE,
or UPDATE because of the extra database
operations and the locking bottleneck th,is
would create at the system catalogs.
Dynamic updating of statistics would tend
to serialize accesses that modify the
relation contents.

Using these statistics, the OPTIMIZER
assigns a selectivity factor 'F' for each
boolean factor in the predicate list. This
selectivity factor very roughly corresponds
tb the of tuples which
w k

expected fraction
11 satisfy the predicate. TABLE 1 gives

the selectivity factors for different kinds
of predicates. We assume that a lack of
statistics implies that the relation is
small, so an arbitrary factor is chosen.

25

TABLE 1 SELECTIVITY FACTORS

column = value
. F = 1 / ICARDfcolumn index) if there is an index on column

This assumes an even distribution of tuples among the index key
values.
F = l/10 otherwise

column1 = column2
F = l/MAX(ICARD(columnl index), ICARD(column2 index))

if there are indexes on both column1 and column2
This assumes that each key value in the index with the smaller
cardinality has a matching value in the other index.
F = l/ICARD(col.umn-i index) if there is only an index on Column-i
F = l/l0 otherwise

column > value (or any other open-ended comparison)
F = (high key value - value) / (high key value - low key value)‘
Linear interpolation of the value within the range of key values
yields F if the column is an arithmetic type and value is kno,wn at
access path selection time.
F = l/3 otherwise (i.e. column not arithmetic)
There is no significance to this number, other than the fact that
it is l’ess selective than the guesses for equal predicates for
which there are no indexes, and that it is less than l/2. We
hypothesize that few queries use predicates that are satisfied by
more than half the tuples.

column BETWEEN value1 AND value2
F = (value? -. value11 / (high key value - low key value)

A ratio of the BETWEEN value range to the entire key value range is
used as the selectivity factor if column is arithmetic and both
value1 and value2 are known at access path selection.
F = l/4 otherwise
Again there is no significance to this choice except that it is
between the default selectivity factors for an equal predicate and
a range p.redicate.

column IN (list of values)
F = (number of items in list) * (selectivity factor for column =
value 1
This is allowed to be no more than l/2.

columnA IN subquery
F = (expected cardinality of the subquery result) /

(product of the cardinalities of all the relations in the
subquery’s FROM-list).
The computation of query cardinality will be discussed below.
This formula is derived by the following argument:
Consider the simplest case, where subquery is of the form “SELECT
columnB FROM relationc . ..“. Assume that the set of all columnB
values in relationc contains the set of all columnA values. If all
the tuples of relationc are selected by the subquery, then the
predicate is always TRUE and F = 1. If the tuples of the subquery
are restricted by a selectivity factor F’, then assume that the set
of unique values in the subquery result that match columnA values
is proportionately restricted, i.e. the selectivity factor for the
predicate should be F’. F’ is the product of all the subquery’s
selectivity factors. namely (subquery cardinality) / (cardinality
of all possible subquery answers). With a little optimism, we can
extend this reasoning to include sifbqueries which are joins and
subqueries in which columnB is replabed by an arithmetic expression
involving column names. This leads to the formula given above.

fpred expression11 OR (pred expression2)
F = F(pred1) + F(pred2) - Ffpredll * F(pred21

26

(predll AND (predtl
F = Ffpredl) * F(pred27
Note that this assumes that column values are independent.

NOT pred
F = 1 - Ffpredl

Query cardinality (QCARD) is the product of
the cardinalities of every relation in the
query block's FROM list times the product
of all the selectivity factors of that
query block's boolean factors. The number
of expected RSI calls (RSICARD) i* the
product of the relation cardinalities times
the selectivity factors of the s_arsablq
boolean factors, since the sargable boolean
factors will be put into search arguments
which will filter out tuples without
returning across the RSS interface.

Choosing,an optimal access path for a
single relation consists of using these
selectivity factors in formulas together
with the statistics on available access
paths. Before this process is described, a
definition is needed. Using an index
access path or sorting tuples produces
tuples in the index value or sort key
order. We say that a tuple order is an
jnterestinq order if that order is one
specified by the query block's GROUP BY or
ORDER BY clauses.

For single relations, the cheapest
access path is obtained by evaluating the
cost for each available access path (each
index on the relation, plus a segment
scan). The costs will be- described below.
For each such access path, a predicted cost
is computed along with the ordering of the
tuples it will produce. Scanning along the
SALARY index in ascending order, for
example, will produce some cost C and a
tuple order of SALARY (ascending). To find
the cheapest access plan fo; a

TABLE 2

SITUATIOR

Unique index matching
an equal predicate

Clustered index I matching
one or more boolean factors

Non-clustered index I matching
one or more boolean factors

Clustered index I not
matching any boolean factors

Non-clustered index I not
matching any boolean factors

Segment scan

single

relation query, we need only to examine the
cheapest access path which produces tuples
in each "interesting" order and the cheap-
est "unordered" access path. Note that an
"unordered" access path may in fact produce
tuples in some order, but the order is not
"interesting". If there are no GROUP BY or
ORDER BY clauses on the query, then there
will be no interesting orderings, and the
cheapest access path is the one chosen. If
there are GROUP BY or ORDER BY clauses,
then the cost for producing that interest-
ing ordering must be compared to the cost
of the cheapest unordered path J&U the
cost of sorting QCARD tuples into the
proper order. The cheapest of these
alternatives is chosen as the plan for the
query block.

The cost formulas for
access paths

single'relation
are given in TABLE 2. These

formulas give index pages fetched plus data
pages fetched plus the weighting factor
times RSI tuple retrieval calls. W is the
weighting factor between page fetches and
RSI calls. Some situations give several
alternative formulas depending on whether
the set of tuples retrieved will fit
entirely in the RSS buffer pool for effec-
tive buffer pool per user). We assume for
clustered indexes that a page remains. in
the buffer long enough for every tup1e to
be retrieved from it. For non-clustered
indexes, it is assumed that for those
relations not fitting in the buffer, the

.relation is sufficiently large with respect
to the buffer size that a page fetch is
required for every tuple retrieval.

COST FORMULAS

lxGlc(inaases)

1+1+w

F(predsI * (NINDX(Il + TCARD) + W x RSICARD

F(predsl * (NINDXfI) + NCARD) + W * RSICARD

or F(predsl * (NINDXfI) + TCARD) + W * RSICARD if
this number fits in the System R buffer

(NINDX(Il + TCARDI + W * RSICARD

(NINDX(Il + NCARDI + W * RSICARD

or (NINDX(II + TCARD) + W * RSICARD if
this number fits in the System R buffer

TCARD/P + W * RSICARD

27

5. pccess & selecti- .&E joins

In 1976, Blasgen and Eswaran <4>
examined a number of methods for performing
2-way joins. The performance of each of
these methods was analyzed under a variety
of relation cardinalities. Their evidence
indicates that for other than very small
relations, one of two join methods were
always optimal or near optimal. The System
R optimizer chooses between these two
methods. We first describe these methods,
and then discuss how they are extended for
n-way joins. Finally we specify how the
join order (the order in which the rela-
tions are joined) is chosen. For joins
involving two relations, the two relations
are called the outer relation, from which a
tuple will be retrieved first, and the
m relation, from which tuples will be
retrieved, possibly depending on the values
obtained in the outer relation tuple. A
predicate which relates columns of two
tables to be joined is called a &&I
Predicate. The columns referenced in a
join predicate are called && golumnq.

The first join method, called the
nested loops. method, uses scans, in any
order, on the outer and inner relations.
The scan on the outer relation is opened
and the first tuple is retrieved. For each
outer relation tuple obtained, a scan is
opened on the inner relation to retrieve,
one at a time, all the tuples of the inner
relation which satisfy the join predicate.
The composite tuples formed by the
outer-relation-tuple / inner-relation-tuple
pairs comprise the result of this join.

The second join method, called mereinq
scans. requires the outer and inner rela-
tions to be scanned in join column order.
This implies that, along with the columns
mentioned in ORDER BY and GROUP BY, columns
of equi-join predicates (those of the form
Table1 .columnl = TableZ.column2) also
define “interesting” orders. If there is
more than one join predicate, one of them
is used as the join predicate and the
others are treated as ordinary predicates.
The merging scans method is only applied to
equi-joins, although in principle it could
be applied to other types of joins. If one
or both of the relations to be joined has
no indexes on the join column, it must be
sorted into a temporary list which is
ordered by the join column.

The more complex logic of the merging
scan join method takes advantage of the
ordering on join columns to avoid rescan-
ning the entire inner relation (looking for
a match 1 for each tuple of the outer
relation. It does this by synchronizing
the inner and outer scans by reference to
matching join column values and by “remem-
ber ing” where matching join groups .are
located. Further savings occur if the
inner relation is clustered on the join
column (as would be true if it is the
output of a sort on the join column).

“Clustering” on a column
which have the same

means that tuples
value in that column

are physically stored close to each other
so that one Page access will retrieve
several tuples.

N-way joins can be visualized as a
sequence of a-way joins. In this visuali-
zation, two relations are joined together,
the resulting composite relation is joined
with the third relation, etc. At each step
of the n-way join it is possible to identi-
fy the outer relation (which in general is
composite.1 and the inner relation (the
relation being added to the join). Thus
the methods described above for two way
joins are easily generalized to n-way
joins. However, it should be emphasized
that the first 2-way join does not have to
be completed before the second t-way join
is started. As soon as we get a composite
tuple for the first t-way join, it can be
joined with tuples of the third relation to
form result tuples for the 3-way join, etc.
Nested ioop joins and merge scan joins may
be mixed in the same query, e.g. the first
two relations of a three-way join may be
joined using merge scans and the composite
result may be joined with the third rela-
tion using a nested loop join. The
intermediate composite relations are
physically stored only if a sort is
required for the next join step. When a
sort of the composite relation is not
specified, the composite relation will be
materialized one tuple at a time to parti-
cipate in the next join.

We now consider the order in which the
relations are chosen to be joined. It
should be noted that although the cardinal-
ity of the join of n relations is the same
regardless of join order, the cost of
joining in different orders can be substan-
tially different. If a query block has n
relations in its FROM list, then there are
n factorial permutations of relation join
orders. The search space can be reduced by
observing that that once the first k
relations are joined, the method to join
the composite to the k+l-st relation is
independent of the order of joining the
first k; i.e. the applicable predicates are
the same, the set of interesting orderings
is the same, the possible join methods are
the same, etc. Using this property, an
efficient way to organize the search is to
find the best join order for successively
larger subsets of tables.

A heuristic is used to reduce the join
order permutations which are considered.
Whe’h possible, the search is reduced by
consideration only of join orders which
have join predicates relating the inner
relation to the other relations already
participating in the join. This means that
in joining relations tl,tt,...,tn only
those orderings til,ti2,...,tin are
examined .in which for all j (j=2,...,n)
either
(1) tij has at least one join predicate

28

with some relation tik, where k < j, or
(2) for all k > j, tik has no join predi-
cate with til,tit,...,or ti(j-1).
This means that all joins requiring Carte-
sian products are performed as late in the
join sequence as possible. For example, if
Tl.T2,T3 are the three relations in a query
block’s FROM list, and there are join
predicates between Tl and T2 and between T2
and T3 on different columns than the Tl-T2
join, then the following
not considered:

permutations are
.’

T l-T3-T2 *,
T3-T l-T2

To find the optimal plan for joining n
relations, a tree of possible solutions is
constructed. As discussed above, the
search is performed by finding the best way
to join subsets of the relations. For each
set of relations joined, the cardinality of
the composite relation is estimated and
saved. In addition, for the unordered
join, and for each interesting order
obtained by the join thus far, the cheapest
solution for achieving that order and the
cost of that solution are saved. A solu-
tion consists of an ordered list of the
relations to be joined, the join method
used for each join, and a plan indicating
how each relation is to be accessed. If
either the outer composite relation or the
inner relation needs to be sorted before
the join, then that is also included in the
plan. As in the single relation case,
“interesting” orders are those listed in
the query block’s GROUP BY or ORDER BY
clause. if any. Also every join column
defines an “interesting” order. To mini-
nimize the number of different interesting
orders and hence the number of solutions in
the tree, equivalence clns,ses for interest-
ing orders are computed and only the best
solution for each equivalence class is
saved. For example, if there is a join
predicate E. DNO = D.DNO and another join
predicate D.DNO = F.DNOe then all three of
these columns belong to the same order
equivalence class.

The search tree is constructed by
iteration ‘on the number of relations joined
so far. First, the best way is found to
access each single relation for each
interesting tuple ordering and for the
unordered case. Next, the best way of
joining any relation to these is found,
subject to the heuristics for join order.
This produces solutions for joining pairs
of relations. Then the best way to join
sets of three relations is found by COnSid-
eration of all sets of two relations and
joining in each third relation permitted by
the join order heuristic. For each plan to
join a set of relations, the order of the
composite result is kept in the tree. This
allows consideration of a merge scan join
which would not require sorting the compo-
site. After the complete solutions (all Of
the relations joined together) have been
found, the optimizer chooses the cheapest
solution which gives the required order, if

any was specified. Note that if a solution
exists with the correct order, no sort is
performed for ORDER BY or GROUP BY, unless
the ordered solution is more expensive than
the cheapest unordered solution plus the
COSt of. sorting into the required order.

The number of solutions which must be
stored is at most 2X*n (the number of
subsets of n tables) t i.mes the number of
interesting result orders. The computation
time to generate the tree is approximately
proportional to the same number. This
number is frequently reduced substantially
by the join order heuristic. Our experi-
ence is that typical cases require only a
few thousand bytes of storage and a few
tenths of a second of 3701158 CPU time.
Joins of 8 tables have been optimized in a
few seconds. '

Gomputation DJ costs
The costs for joins are computed from

the costs of the scans on each of the
relations and the cardinalities. The costs
of the scans on each of the relations are
computed using the cost formulas for single
relation access paths presented in section
b.

Let C-outerfpath 1) be the cost of scanning
the outer relation via pathl, and N be the
cardinality of the outer relation tuples
which satisfy the applicable predicates. N
is computed by:
N = (product of the cardinalities of all

relations T of the join so far) *
(product of the selectivity factors of
al 1 applicable predicates).

Let C-innercpatht) be the cost of scanning
the inner relation, applying all applicable
predicates. Note that in the merge scan
join this means scanning the contiguous
group of the inner relation which corres-
ponds to one join column value in the outer
relation. Then the cost of a nested loop
join is
c-nested-loop-join(pathl.path2)E

C-outerfpathll + N * C-inner(path21

The cost of a merge scan join can be
broken up into the cost of actually doing
the merge plus the cost of sorting the
outer or inner relations, if required. The
cost of doing the merge is
C-merge(pathlspath2)=

C-outer(path1) + N * C-inner(path2)

For the case where the inner relation
is sorted into a temporary relation none of
the single relation access path formulas in
section 4 apply. In this case the inner
scan is like a segment scan except that the
merging scans method makes use of the fact .
that the inner relation is sorted so that
it is not necessary to scan the entire
inner relation looking for a match. For
this case we use the following formula for
the cost of the inner scan.
C-innercsorted list) =
TEHPPAGES/N + W*RSICARD
where TEMPPAGES is the number of pages

29

required to hold the inner relation. This
formula assumes that during the merge each
page of the inner relation is fetched once.

It is interesting to observe that the
cost formula for nested loop joins and the
cost formula for merging scans are essen-
tially the same. The reason that merging
scans is sometimes better than nested loops
is that the cost of the inner scan may be
much less. After sorting, the inner
relation is clustered on the join column
which tends to minimize the number of pages
fetched, and it is not necessary to scan
the entire inner relation (looking for a
match) for each tuple of the outer rela-
tion.

The cost of sorting a relation,
C-sort(path), includes the cost of retriev-
ing the data using the specified access
Path, sorting the data, which may involve
several passes, and putting the results
into a temporary list. Note that prior to
sorting the inner table, only the local
predicates can be applied. Also, if it is
necessary to sort a composite result, the
entire composite relation must be stored in
a temporary relation before it can be
sorted. The cost of inserting the compo-
site tuples into a temporary relation
before sorting is included in C-sortfpath).

We now show how the search is done for
the example join shown in Fig. 1. First we
find all of the reasonable access paths for
single relations with only their local
predicates applied. The results for this
example are shown in Fig. 2. There are
three access paths for the EHP table: an
index on DNO, an index on JOB, and a
segment .scan. The interesting orders are
DNO and JOB. The index on DNO provides the
tuples in DNO order and the index on JOB
provides the tuples in JOB order. The
segment 'scan access path is, for our
purposes, unordered. For this example we
assume that the index on JOB is the cheap-
est path, so the segment scan path is
pruned. For the DEPT relation there are
two access paths, an index on DNO and a
segment scan. We assume that the index on
DNO is cheaper so the segment scan path is
pruned. For the JOB relation there are two
access paths, an index on JOB and a segment
scan. We assume that the segment scan path
is cheaper, so both paths are saved. The
results just described are saved in the
search tree as shown in Fig. 3. In the
figures, the notation C(EMP.DNOl or
C(E.DNOl means the cost of scanning EMP via
the DNO index, applying all predicates
which are applicable given that tuples from
the specified set of relations have already
been fetched. The notation Ni is used to
represent the cardinalities of the differ-
ent partial results.

Next, solutions for pairs of relations
are found by joining a second relation to

JoB pzqxr--JOB
5 CLERK
6 TYPIST
9 SALES

12 MECHANIC

SELECT NAME, TITLE, SAL, DNAME
FROM EMP, DEPT, JOB
WHERE TITLE=‘CLERK’
AND LOCYDENVER
AND EMP.DNO=DEPT.DNO
AND EMP.JOB=JOB.JOB

“Retrieve the name, salary, job title, and department
name of employees who are clerks and work for
departments in Denver.”

Figure 1. JOIN example

Access Path for Single Relations

l Eligible Predicates: Local Predicates Only
l “Interesting” Orderings: DNO,JOB

EM” 1 %:DNO

$EMP.DNO,

1 :I., 1 Ftt

CIEMP seg. scan)

’ N2
C(DEPT.DNO)

’ N2
C(DEPT reg. scan)

X pruned

JOB:
index

I I

segment
JOBJOB scan on

JOB

$JOB.JOB)
N
doe sag. scan)

‘: t
Figure 2.

the.$esults for single relations shown in
Fig. 3. For each single relation, we find
access paths for joining in each second
relation for which there exists a predicate
connecting it to the first relation. First
we consider access path selection for
nested loop joins. In this example we
assume that the EMP-JOB join is cheapest by
accessing JOB on the JOB index. This is

30

likely since it can fetch directly the
tuples with matching JOB, (without having to
scan the entire relation). In practice the
cost of joining is estimated using the
formulas given earlier and the cheapest
path is chosen. For joining the EMP
relation to the DEPT ,relation we assume
that the DHO index is cheapest. The best
access path for each second-level relation
is combined with each of the plans in Fig.
3 to form the nested loop solutions ‘shown
in Fig. 4. ,:'

*,

C(EMP.DNOI C(EMP.JOBI
ON0 order JOB order

UDEPT.ONO~ CIJOB.JOBi CIJOB rsg. scanI
DNO order JOB ordef unordered

Figure 3. Search tree for single relations

Next we generate solutions using the
merging scans method. As we see on the
left side of Fig. 3, there is a scan on the
EHP relation in DHO order, so it is possi-
ble to use this scan and the DHO scan on
the DEPT relation to do a merging scans
join, without any sorting. Although it is
possible to do the merging join without
sorting as just described, it might be
cheaper to use the JOB index on EMP, sort
on DHO. and then merge. Note that we never
consider sorting the DEPT table because the
cheapest scan on that table is already in
DHO order.

For merging JOB with EMP, ue
consider the JOB

only
index on EMP since it is

the cheapest access path for EHP regardless
of order. Using the JOB index on JOB, we
can merge without any sorting. However,
it might be cheapter to sort JOB using a
relation scan as input to the sort and then
do the merge.

Referring to Fig. 3, we see that the
access path chosen for the' the DEPT rela-
tion is the DHO index. After accessing
DEPT via this index, we can merge with EMP
using the DHO index on EMP, again without
any sorting. However, it might be cheaper
to sort EMP first using the JOB index as
input to the sort and then do the merge.
Both of these cases are shown in Fig. 5.

As each of the costs shown in Figs. 4
and 5 are computed they are compared with
the cheapest equivalent solution (same
tables and same result order) found so far,
and the cheapest solution is saved. After
this pruning. solutions for all three
relations are found. For each pair of
relations, we find access paths for joining
in the remaining third relation. As before
we will extend the tree using nested loop
joins and merging scans to join the third
relation. The search tree for three
relations is shown in Fig. 6. Note that in
one case both the composite relation‘ and
the table being added (JOB1 are sorted.
Note also that for some of the cases. no
sorts are performed at all. In these
cases, the composite result is materialized
one tuple at a time and the intermediate
composite relation is never stored. As

'before, as each of the costs are computed
they are compared with the cheapest solu-

(EMP. OEPT)

h&x Index
EMP.DNO EMP.JOB

‘Nt

n

Nl

Index Index
DEPT.DNO DEPT.DNO

N4 N4

1 (DEPT. EMP) (JOB, EMP)

Index
segment

JOB.JOB 3

L N3

n

N3

index Index
EMPJOB EMP.JOB

1 % NS

C(E.DNO) C(E.JOBl C(E.DNO) CULJOBI C(D.DNO) IXJJOB) C(J seg scan)
+ + + +

N&(D.DNO) N,C,(D.DNO) N,&J.JOB) N&J.JOBI N,C,(E.DNO) N,C,(E.JOBI NIL&JOB)
DNO order JOE order DNO order JOE order DNO order JOB order unordered

Figure 4. Extended search tree for second relation (nested loop join)

31

NI

Merge
EON0
with
DDNO

4
son
E.JOB
ly DNO
into

Ll
0

Merpa

Ll
with
D.LlNO

N, l

*JOB, EMP)

f
IEMP, JOB1

index
E.JOB

Index
D.DNO

Be!lmmt
SG
.JC :i

N3

DNO order ON0 order

M-C Merge
E.JO8 EJOB
with with
J.JOB LZ

NS
JOB order

N5
JOB order

“JI
Sort JOB reg scan

\
tq JOB into L2

\

Figure 5. Extended search tree for second relation (merge join)

Merge
D.DNO
with

Ll

N3

Sort JOI
s.?g. scan
hy JOE
into L2

Merge
J.JOB
with
E.JOB

Mew
LZ
with
E.JOB

N5
JOB order

Ns
JOB order

,EMP. DEW fi

M-9
I I

Merge b L5 with
with D.DNO
D.DNO

Figure 6. Extended search tree for third relation

32

6. Nested Queries

A query may appear as an operand of a
predicate of the form "expression operator
query". Such a query is called a Nested
Query or -a Subquery. If the operator is
one of the six scalar comparisons (=, -1,
>t >=, <, <=I, then the subquery must
return a single .value. The following
example using the 'I=" operator was given in
section 2: Ii

SELECT NAME
FROM EMPLOYEE 3,
WHERE SALARY =

(SELECT AVG(SALARY)
FROM EHPLOYEE)

If the operator is IN or NOT IN then
the subquery may return a set of values.
For example:

SELECT NAME
FROM EMPLOYEE
WHERE DEPARTMENT-NUMBER IN

(SELECT DEPARTMENT-NUHBER
FROM DEPARTMENT
WHERE LOCATION='DENVER'l

In both examples, the subquery needs to
be evaluated only once. The OPTIMIZER will
arrange for the subquery to be evaluated
before the top level query is evaluated.
If a single value is returned, it is
incorporated into the top level query as
though it had been part of the original
query statement; for example, if AVG(SAL1
above evaluates to 15000 at execution time,
then the predicate becomes "SALARY =
15000". If the subquery can return a set
of values, they are returned in a temporary
list, an internal form which is more
efficient than a relation but which can
only be accessed sequentially. In the
example above, if the subquery returns the
list (17,241 then the predicate is evaluat-
ed in a manner similar to the way in which
it would have been evaluated if the origi-
nal predicate had,been DEPARTMENT-NUMBER IN
(17,210.

A subquery may also contain a predicate
with a subquery. down to a (theoretically)
arbitrary level of nesting. When such
subqueries do not reference columns from
tables in higher level query blocks, they
are all evaluated before the top level
query is evaluated. In this case, the most
deeply nested subqueries are evaluated
first, since any subquery must be evaluated
before its parent query can be evaluated.

A subquery may contain a reference to a
value obtained from a candidate tuple of a
higher level query block (see example
below). Such a query is called a correla-
tion subquery. A correlation subquery must
in principle be re-evaluated for each
candidate tuple from the referenced query
block. This re-evaluation must be done
before the correlation subquery's parent
predicate in the higher level block can be
tested for acceptance qr rejection of the
candidate tuple. As an example, consider

If a correlation subquery is not
directly below the query block it referenc-
es but is separated from that block by one
or more intermediate blocks, then the
correlation subquery evaluation will be
done before evaluation of the highest of
the intermediate blocks. For example:
level 1 SELECT NAME

FROM EMPLOYEE X
WHERE SALARY >

level 2 (SELECT SALARY
FROM EMPLOYEE
WHERE EMPLOYEE-NUMBER =

level 3 (SELECT MANAGER
FROM ERPLOYEE
WHERE EMPLOYEE-NUMBER =

X.MANAGERll
This selects names of EMPLOYEE's that earn
more than their MANAGER's MANAGER. As
before, for each candidate tuple of the
level-l query block, the EMPLOYEE.MANAGER
value is used for evaluation of the level-3
query block. In this case, because the
level 3 subquery references a level 1 value
but does not reference level 2 values, it
is evaluated once for every new level 1
candidate tuple. but not for every level 2
candidate tuple.

33

If the value referenced by a correla-
tion subquery (X.MANAGER above) is not
unique in the set of candidate tuples
(e.g., many employees have the same manag-
er), the procedure given above will still
cause the subquery to be re-evaluated for
each occurrence of a replicated value.
However, if the referenced relation is
ordered on the referenced column. the
re-evaluation can be made conditional,
depending. on a test of whether or not the
current referenced value is the same as the
one in the previous candidate tuple. If
they are the same, the previous evaluation
result can be used again. In some cases,
it might even pay to sort the referenced
relation on the referenced column in order
to avoid re-evaluating subqueries unneces-
sarily. In order to determine whether or
not the referenced column values are
unique. the OPTIHIZER can use clues like
NCARD > ICARD. where NCARD is the relation
cardinality and ICARD.is the index cardi-
nality of an index on the referenced
column.

the query:
SELECT NAME
FROM EMPLOYEE X
WHERE SALARY > (SELECT SALARY

FROM EMPLOYEE
WHERE EMPLOYEE-NUMBER=

X.MANAGERl
This selects names of EMPLOYEE's that earn
more than their HANAGER. Here X identifies
the query block and relation which furnish-
es the candidate tuple for the correlation.
For each candidate tuple of the top level
query block, the MANAGER value is used for
evaluation of the subquery. The subquery
result is then returned to the "SALARY >"
predicate for testing acceptance of the
candidate tuple.

7. Conclusion

The System R access path selection has
been described for single table queries,
joins, and nested queries. Evaluation work
on comparing the choices made to the
"right" choice is in progress, and will be
described in a forthcoming paper. Prelimi-
nary results indicate that, although the
costs p.redicted by the optimizer are often
not accurate in absolute value, the true
optimal path is selected in a large majori-
ty of cases. In many cases, the ordering
among the estimated costs for 'all paths
considered is precisely the same as that
among the actual measured costs.

Furthermore. the cost of path selection
is not overwhelming. For a two-way join,
the cost of optimization is approximately
equivalent to between 5 and 20 database
retrie,vals. This number becomes even more
insignificant when such a path selector is
placed in an environment such as System R,
where application programs are compiled
once and run many times. The cost of
optimization is amortized over many runs.

The key contributions of this path
selector over other work in this area are
the expanded use of statistics (index
cardinality, for example), the inclusion of
CPU utilization into the cost formulas, and
the method of determining join order. Many
queries are CPU-bound, particularly merge
joins for which temporary relations are
created and sorts performed. The concept
of "selectivity factor" permits the optim-
izer to take advantage of as many of the
query's restriction predicates as possible
in the RSS search arguments and access
paths. By remembering "interesting order-
ing" equivalence classes for joins and
ORDER or GROUP specifications, the optimiz-
er does more bookkeeping than most path
selectors, but this additional work in many
cases results in avoiding the storage and
sorting of intermediate query results.
Tree pruning and tree searching techniques
allow this additional bookkeeping to be
performed efficiently.

More work on validation of the optimiz-
er cost formulas needs to be done, but we
can conclude from this preliminary work
that database management systems can
support non-procedural query languages with
performance comparable to those supporting

the current more procedural languages.

Cited and General References
<l> Astrahan, M. M. et al. System R:
Relational Approach to Database Management.
ACM Transactions on Database Systems, Vol.
1, No. 2, June 1936, pp. 97-137.
<2> Astrahan, M. M. et al. System R: A
Relational Database Management System. To
appear in Computer.
<3> Bayer, R. and McCreight, E. Organiza-
tion and Maintenance of Large Ordered
Indices. Acta Infornatica, Vol. 1, 1972.
<4> Blasgen, M.W. and Eswaran, K.P. On the
Evaluation of Queries in a Relational Data
Base System. IBM Research Report RJl745.
April, 1976.
<5> Chamberlin, D.D., et al. SEQUELZ: A
Unified Approach to Data Definition,
Manipulation, and Control. IBH Journal of
Research and Development, Vol. 20, No. 6,
Nov. 1976, pp. 560-575.
<6> Chamberlin, D.D., Gray, J.N., and
Traiger, 1.1. Views, Authorization and
Locking in a Relational Data Base System.
ACM National Computer Conference Proceed-
ings, 1975, pp. 425-430.
<7> Codd, E.F. A Relational Model of Data
for Large Shared Data Banks. ACM Communi-
cations, Vol. 13. No. 6, June, 1970, pp.
377-387.
<8> Date, C.J. An Introduction to Data Base
Systems, Addison-Wesley, 1975.
CS> Lorie. R.A. and Wade, B.W. The Compila-
tion of a Very High Level Data .Language.
IBM Research Report RJ2008, May, 1977.
<lO> Lorie, R.A. and Nilsson, J.F. An
Access Specification Language for ,a Rela-
tional Data Base System. IBH Research
Report RJ2218. April, 1978.
(11) Stonebraker, M.R., Wang, E., Kreps.
P., and Held, G-D. The Design and Implemen-
tation of INGRES. ACM Trans. on Database
Systems, Vol. 1, No. 3, September, 1976,
PP. 189-222.
(12) Toad, s. PRTV: An Efficient Implemen-
tation for Large Relational Data Bases.
Proc. International Conf. on. Very Large
Data Bases, Framingham. Mass., September,
1975.
<13> Wong, E., and Youssefi, K. Decomposi-
tion - A Strategy for Query Processing. ACH
Transactions on Database Systems, Vol. 1,
No. 3 (Sept. 1976) pp. 223-2’41.
(19) ZlOOf, M.H. Query by Example. Proc.
AFIPS 1975 NCC, Vol. 94, AFIPS Press,
Montvale, N.J., pp. 431-437. I)

34

