
An Overview of Query Optimization in Relational Systems
Surajit Chaudhuri

Microsoft Research
One Microsoft Way

Redmond, WA 98052
+1-(425)-703-l 938

surajitc@ microsofkcom

1. OBJECTIVE
Them has been cxtensivc work in query optimization since the
enrly ‘70s. It is hard to capture the breadth and depth of this large
body of work in a short article. Therefore, I have decided to focus
primarily on the optimization of SQL queries in relational
dntnbasc systems and present my biased and incomplete view of
this licld, The goal of this article is not to be comprehensive, but
ratbcr to explain the foundations and present samplings of
significant work in this area. I would like to apologize to the many
contributors in this area whose work I have failed to explicitly
ncknowlcdge due to oversight or lack of space. I take the liberty of
trndlng tcchnicnl precision for ease of presentation.

Index Nested Loop
(A-x = C-x)

/\
Merge-Join
(A.x=B.x)

/\

Index Scan C

Sort Sort

I I
2. INTRODUCTION Table Scan A Table Scan B

Rclntional query languages provide a high-level “declarative”
lntcrfnce to access data stored in relational databases. Over time,
SQL [41] has emerged as the standard for relational query
languages, Two key components of the query evaluation
component of a SQL database system are the query optimizer and
the qrrery execrrtiort engine.

Figure 1. Operator Tree

The query cxccution engine implements a set of physical
operators, An operator takes as input one or more data streams
and produces an output data stream. Examples of physical
operators nrc (external) sort, sequential scan, index scan, nested-
loop join, nnd sort-merge join. I refer to such operators as
physical operators since they are not necessarily tied one-to-one
with relntionnl operators, The simplest way to think of physical
operntors is ns pieces of code that are used as building blocks to
mnkc possible the execution of SQL queries. An abstract
representation of such nn execution is a physical operator tree, as
lllustrntcd in Figure I. The edges in an operator tree represent the
data flow among the physical operators. We use the terms
physical operator tree and executbt plan (or, simply plan)
lnterchnngenbly. The execution engine is responsible for the
execution of the plan that results in generating answers to the
query. Therefore, the capabilities of the query execution engine
dctcrminc the structure of the operator trees that are feasible. We
rcfcr the reader to [20] for an overview of query evaluation
techniques,

The query optimizer is responsible for generating the input for the
execution engine. It takes a parsed representation of a SQL query
as input and is responsible for generating an eflcient execution
plan for the given SQL query from the space of possible execution
plans. The task of an optimizer is nontrivial since for a given SQL
query, there can be a large number of possible operator trees:
. The algebraic representation of the given query can be

transformed into many other logically equivalent algebraic
representations: e.g.,
Join(Join(A,B),C)= Join(Join(B,C),A)

. For a given algebraic representation, there may be many
operator trees that implement the algebraic expression, e.g.,
typically there are several join algorithms supported in a
database system.

Furthermore, the throughput or the response times for the
execution of these plans may be widely different. Therefore, a
judicious choice of an execution by the optimizer is of critical
importance. Thus, query optimization can be viewed as a difficult
search problem. In order to solve this problem, we need to
provide:
. A space of plans (search space).

. A cost estimation technique so that a cost may be assigned to
each plan in the search space. Intuitively, this is an
estimation of the resources needed for the execution of the
ph.

. An enumeration algorithm that can search through the
execution space.

34

._ ‘__ -~- -_ .___

A dcsirabic optimizer is one where (1) the search space includes
plans that have low cosr (2) the costing technique is accurure (3)
the cnumcration algorithm is efjcienr. Each of these three tasks is
nontrivial and that is why building a good optimizer is an
enormous undertaking,

WC begin by discussing the System-R optimization framework
since this was a remarkably elegant approach that helped fuel
much of the subsequent work in optimization. In Section 4, we
will discuss the search space that is considered by optimizers.
This section will provide the forum for presentation of important
algebraic transformations that are incorporated in the search
space In Section 5, we address the problem of cost estimation. In
Section 6, WC take up the topic of enumerating the search space.
This completes the discussion of the basic optimization
framework, In Section 7, we discuss some of the recent
developments in query optimization.

3. AN EXAMPLE: SYSTEM-R OPTIMIZER
The System-R project significantly advanced the state of query
oplimization of relational systems. The ideas in [55] have been
Incorporated in many commercial optimizers continue to be
remarkably relevant. I will present a subset of those important
ideas hem in the context of Select-Project-Join (SPJ) queries. The
class of SPJ queries is closely related to and encapsulates
co~$rncrivc queries, which are widely studied in Database Theory.

The search space for the System-R optimizer in the context of a
SPJ query consists of operator trees that correspond to linear
scqucncc of join operations, e.g., the sequence
JOin (Join (Join (A, B) , C) , D) is illustrated in Figure
2w Such sequences are logically equivalent because of
associative and commutative properties of joins. A join operator
can USC either the nested loop or sort-merge implementation. Each
scan node can use either index scan (using a clustered or non-
clustered index) or sequential scan. Finally, predicates are
evaluated as early as possible.

The cost model assigns an estimated cost to any partial or
complete plan in the search space. It also determines the estimated
size of the data stream for output of every operator in the plan. It
relies on:

(4

(b>

(4

ThC

A set of statistics maintained on relations and indexes, e.g.,
number of data pages in a relation, number of pages in an
index, number of distinct values in a column

Formulas to estimate selectivity of predicates and to project
the size of the output data stream for every operator node.
For example, the size of the output of a join is estimated by
taking the product of the sizes of the two relations and then
applying the joint selectivity of all applicable predicates.

Formulas to estimate the CPU and 110 costs of query
execution for every operator. These formulas take into
account the statistical properties of its input data streams,
existing access methods over the input data streams, and any
available order on the data stream (e.g., if a data stream is
ordered, then the cost of a sort-merge join on that stream may
be significantly reduced). In addition, it is also checked if the
output data stream will have any order.

cost model uses (a)-(c) to compute and associate the
following information in a bottom-up fashion for operators in a
plan: (1) The size of the data stream represented by the output of

the operator node. (2) Any ordering of tuples created or sustained
by the output data stream of the operator node. (3) Estimated
execution cost for the operator (and the cumulative cost of the
partiaI plan so far).

Join(C,D)

Join(~;*i(*,B&.Dl

A C

A
A B A B C D

(a) W

I Figure 2. (a) Linear and (b) bushy join I
The enumeration algorithm for System-R optimizer demonstrates
two important techniques: use of dynamic programming and use
of interesting orders.

The essence of the dynamic programming approach is based on
the assumption that the cost model satisfies the principle of
optimality. Specifically, it assumes that in order to obtain an
optimal plan for a SPJ query Q consisting of k joins, it suffices to
consider only the optimal plans for subexpressions of Q that
consist of (k-l) joins and extend those plans with an additional
join. In other words, the suboptimal plans for subexpressions of Q
(also called subqueries) consisting of (k-l) joins do not need to be
considered further in determining the optimal plan for Q.
Accordingly, the dynamic programming based enumeration views
a SPJ query Q as a sef of relations (RI, . .R,) to be joined. The
enumeration algorithm proceeds bottom-up. At the end of the j-th
step, the algorithm produces the optimal plans for all subqueries
of size j. To obtain an optimal plan for a subquery consisting of
(j+l) relations, we consider all possible ways of constructing a
plan for the subquery by extending the plans constructed in the j-
th step. For example, the optimal plan for (RI, Rz, R3, R4) is
obtained by picking the plan with the cheapest cost from among
the optimal plans for: (1) Joint {RI, R2, R31, R4) (2)

Join(fRl,R2,%1,R3) (3) Join ((RlrR3,R41,R2) (4)
Join(CRz,Ra,%l, RI). The rest of the plans for
(RI, R2, Rx, &} may be discarded. The dynamic programming
approach is significantly faster than the ndive approach since
instead of O(n!) plans, only O(n2”“) plans need to be enumerated.

The second important aspect of System R optimizer is the
consideration of interesting orders. Let us now consider a query
that represents the join among (Rt , RZ , R3) with the predicates
RI _ a = R2 _ a = R3. a. Let us also assume that the cost of the
plans for the subquery (RI, Rz) are x and y for nested-loop and
sort-merge join respectively and x c y. In such a case, while
considering the plan for {RI, R2, R,), we will not consider the
plan where RI and Rz are joined using sort-merge. However, note
that if sort-merge is used to join RI and R2, the result ofthe join is
sorted on a. The sorted order may significantly reduce the cost of
the join with R3. Thus, pruning the plan that represents the sort-
merge join between RI and R2 can result in sub-optimality of the
global plan. The problem arises because the result of the sort-
merge join between RI and R2 has an ordering of tuples in the

35

output stream that is useful in the subsequent join. However, the
ncstcd-loop join does not have such ordering. Therefore, given a
query, System R identified ordering of tuples that are potentially
consequential to execution plans for the query (hence the name
interesting orders), Furthermore, in the System R optimizer, two
plans arc compared only if they represent the same expression as
well as have the same interesting order. The idea of interesting
order was later generalized to physical properties in [22] and is
used cxtensivcly in modem optimizers. Intuitively, a physical
property is any characteristic of a plan that is not shared by all
plans for the same logical expression, but can impact the cost of
subscqucnt operations. Finally, note that the System-R’s approach
of taking into account physical properties demonstrates a simple
mechanism to handle any violation of the principle of optimality.
not ncccssarily arising only from physical properties.

Despite the elegance of the System-R approach, the framework
cannot be easily extended to incorporate other logical
transformations (beyond join ordering) that expand the search
space, This led to the development of more extensible
optimization architectures. However, the use of cost-based
optimization, dynamic programming and interesting orders
strongly influenced subsequent developments in optimization.

4. SEARCH SPACE
As mentioned in Section 2, the search space for optimization
depends on the set of algebraic transformations that preserve
cquivalcnce and the set of physical operators supported in an
optimizer. In this section, I will discuss a few of the many
important algebraic transformations that have been discovered. It
should be noted that trunsfonnations do not necessarily reduce
cost arrd therefore mwt be applied in a cost-based manner by the
errwrtcrulior~ algorirhm to ensure a positive benejit.

The optimizer may use several representations of a query during
the llfccyclc of optimizing a query. The initial representation is
often the parse tree of the query and the final representation is an
operator tree. An intermediate representation that is also used is
that of logical operator trees (also called query trees) that captures
an algebraic expression. Figure 2 is an example of a query tree.
Often, nodes of the query trees are annotated with additional
Information.

Some systems also use a “calculus-oriented” representation for
analyzing the structure of the query. For SPJ queries, such a
structure is often captured by a qlrery graph where nodes
represent relations (correlation variables) and labeled edges
represent join predicates among the relations (see Figure 3).
Although conceptually simple, such a representation falls short of
rcprcsenting the structure of arbitrary SQL statements in a number
of ways. First, predicate graphs only represent a set of join
prcdlcatcs and cannot represent other algebraic operators, e.g.,
union. Next, unlike natural join, operators such as outerjoin are
asymmetric and arc sensitive to the order of evaluation. Finally,
such a representation does not capture the fact that SQL
statements may have nested query blocks. In the QGM structure
used in the Starburst system [26], the building block is an
cnhanccd query graph that is able to represent a simple SQL
statcmcnt that has no nesting (“single block” query). Multi block
qucrics are rcprcscntcd as a set of subgraphs with edges among
subgraphs that represent predicates (and quantifiers) across query
blocks, In contrast, Exodus [22] and its derivatives, uniformly use
query trees and operator trees for all phases of optimization.

E.Dept&D.Dept#
EMP

v

DEPT

E.Sal>&.S D.Mgr=&.Em

EMP Ez

Figure 3. Query

4.1 Commuting Between Operators
A large and important class of transformations exploits
commutativity among operators. In this section. we see examples
of such transformations.

4.1 .I Generalizing Join Sequencing
In many of the systems, the sequence of join operations is
syntactically restricted to limit search space. For example, in the
System R project, only linear sequences of join operations are
considered and Cartesian product among relations is deferred until
after all the joins.

Since join operations are commutative and associative, the
sequence of joins in an operator tree need not be linear, In
particular, the query consisting of join among relations
RI, R2, R3, Rq can be algebraically represented and evaluated as
Join(Join(A,B),Join(C,D)). Suchquerytrees arecalled
bushy, illustrated in Figure 2(b). Bushy join sequences require
materialization of intermediate relations. While bushy trees may
result in cheaper query plan, they expand the cost of enumerating
the search space considerably’. Although there has been some
studies of merits of exploring the bushy join sequences, by and
large most systems still focus on linear join sequences and only
restricted subsets of bushy join trees.

Deferring Cartesian products may also result in poor performance.
In many decision-support queries where the query graph forms a
star, it has been observed that a Cartesian product among
appropriate nodes (“dimensional” tables in OLAP terminology
[7]) results in a significant reduction in cost.

In an extensible system, the behavior of the join enumerator may
be adapted on a per query basis so as to restrict the “bushy’-ness
of the join trees and to allow or disallow Cartesian products [46].
However, it is nontrivial to determine a priori the effects of such
tuning on the quality and cost of the search.

4.1.2 Outerjoin and Join
One-sided outerjoin is an asymmetric operator in SQL that
preserves all of the tuples of one relation. Symmetric outerjoins
preserve both the operand relations. Thus, (R LOJ S). where LOJ
designates left outerjoin between R and S, preserves all tuples of
R. In addition to the tuples from natural join, the above operation
contains all remaining tuples in R that fail to join with S (padded
with NULLs for their S attributes). Unlike natural joins. a

’ It is not the cost of generating the syntactic join orders that is
most expensive. Rather, the task of choosing physical operators
and computing the cost of each alternative plan is
computationally intensive.

36

scqucncc ofoutcrjoins and joins do not freely commute. However,
when the join predicate is between (R.S) and the outer-join
predicate is between (ST), the following identity holds:

Join(R, S LOJ T) = Join (R,S) LOJ T

If the above associative NIC can be repeatedly applied, we obtain
nn equivalent expression where evaluation of the “block of joins”
prcccdcs the “block of outerjoins”. Subsequently, the joins may be
I-WAY reordered among themselves, As with other
transformations, use of this identity needs to be cost-based. The
identities in [53] define a class of queries where joins and
outcrjoins may be reordered.

4,1,3 Group-By and Join

I Figure 4. Group By and Join I

In traditional execution of a SPJ query with group-by, the
evaluation of the SPJ component of the query precedes the group-
by, The set of transformations described in this section enable the
group by operation to precede a join. These transformations are
npplicablc to queries with SELECT DISTINCT since the latter is
a special case of group-by, Evaluation of a group-by operator can
potentially result in a significant reduction in the number of
tupics, since only one tuple is generated for every partition of the
relation induced by the group-by operator. Therefore, in some
cases, by tirst doing the group-by, the cost of the join may be
significantly reduced, Moreover, in the presence of an appropriate
index, a group-by operation may be evaluated inexpensively. A
dun1 of such transformations corresponds to the case where a
group-by operator may be pulled up past a join. These
trnnsformations arc described in [5,60,25,6] (see [4] for an
overview).
In thls section, we briefly discuss specific instances where the
transformation to do an early group-by prior to the join may be
npplicablc. Consider the query tree in Figure 4(a). Let the join
bctwccn RI and RZ be a foreign key join and let the aggregated
columns of G bc from columns in Rl and the set of group-by
columns be a superset of the foreign key columns of R1. For such
R query, Ict us consider the corresponding operator tree in Fig.
4(b), where Gl=G. In that tree, the final join with RZ can only
climinatc a set of potential partitions of Rl created by Gl but will
not affect the partitions nor the aggregates computed for the
partitions by G1 since every tuple in Rl will join with at fnost one
tuple in Rs. Therefore, we can push down the group-by, as shown
in Fig. 4(b) and preserve equivalence for arbifrury side-effect free
nggrcgatc functions, Fig. 4(c) illustrates an example where the
transformation irrfrohccs a group-by and represents a class of
useful cxnmplcs where the group-by operation is done in sruges.
For example, assume that in Fig. 4(a), where all the columns on

which aggregated functions are applied are from Rl. In these
cases, the introduced group-by operator Gl partitions the relation
on the projection columns of the RI node and computes the
aggregated values on those partitions. However, the true partitions
in Fig 4(a) may need to combine multiple partitions introduced by
G1 into a single partition (many to one mapping), The group-by
operator G ensures the above. Such staged computation may still
be useful in reducing the cost of the join because of the data
reduction effect of Gl. Such staged aggregation requires the
aggregating function to satisfy the property that Agg (S U S ’)
can be computed from Agg (Sl and Agg (S ‘ 1. For example, in
order to compute total sales for all products in each division, we
can use the transformation in Fig. 4(c) to do an early aggregation
and obtain the total sales for each product. We then need a
subsequent group-by that sums over all products that belong to
each division.

4.2 Reducing Mu&Block Queries to Single-
Block
The technique described in this section shows how under some
conditions, it is possible to collapse a multi-block SQL query into
a single block SQL query.

4.2.1 Merging Views
Let us consider a conjunctive query using SELECT ANY. If one
or more relations in the query are views, but each is defined
through a conjunctive query, then the view definitions can simply
be “unfolded” to obtain a single block SQL query. For example, if
aqueryQ = Join(R,V) andviewV = Join(S,T),thenthe
query Q can be unfolded to Join(R, Join(S,T)) and may be
freely reordered. Such a step may require some renaming of the
variables in the view definitions.

Unfortunately, this simple unfolding fails to work when the views
are more complex than simple SPJ queries. When one or more of
the views contain SELECT DISTINCT, transformations to move
or pull up DISTINCT need to be careful to preserve the number
of duplicates correctly, [49]. More generally, when the view
contains a group by operator, unfolding requires the ability to
pull-up the group-by operator and then to freely reorder not only
the joins but also the group-by operator to ensure optimality. In
particular, we are given a query such as the one in Fig. 4(b) and
we are trying to consider how we can transform it in a form such
as Fig. 4(a) so that R1 and RZ may be freely reordered. While the
transformations in Section 4.1.3 may be used in such cases, it
underscores the complexity of the problem [6].

4.2.2 Merging Nested Sabqueries
Consider the following example of a nested query from [I31
where Emp# and Depth are keys of the corresponding relations:
SELECT Emp . Name
FROM Emp
WEERE Emp.Dept# IN

SELECT Dept.Dept# FRON Dept
WHERE Dept.Loc=‘Denver’
AND Emp.Emp* = Dept.Mgr

If tuple iteration semantics are used to answer the query, then the
inner query is evaluated for each tuple of the Dept relation once.
An obvious optimization applies when the inner query block

37

contains no variables from the outer query block (uncorrelufed).
In such cases, the inner query block needs to be evaluated only
once I-lowcver, when there is indeed a variable from the outer
block, WC say that the query blocks are correlated. For example,
in the query above, Emp.Emp# acts as the correlated variable.
Kim [35] and subsequently others [16,13&j have identified
techniques to unnest a correlated nested SQL query and “flatten”
it to n single query. For example, the above nested query reduces
to: SELECT E *Name

FROM Emp E, Dept D
WHERE E.Dept# = D.Dept#
AND D.Loc = ‘Denver’ AND E.Emp# = D.Mgr

Dayal [131 was the first to offer an algebraic view of unnesting.
The complexity of the problem depends on the structure of the
nesting, i.e., whether the nested subquery has quantifiers (e.g.,
ALL, EXISTS), aggregates or neither. In the simplest case, of
which the above query is an example, [131 observed that the tuple
semantics ctm be modeled as Semijoin(Emp,Dept,
Emp, Dopull = Dept. Dept#)*. Once viewed this way, it is
not hard to see why the query may be merged since:
Somijoin(Emp,Dept,Emp.Dept# = Dept. Dept#) =
Project(Join(Emp,Dept), Emp.*)

Whcrc Join (Emp, Dept) is on the predicate Emp.Dept# =
Dopt . Dept# , The second argument of the Project opemto?
indicates that all columns of the relation Emp must be retained.

The problem is more complex when aggregates are present in the
ncslcd subquery, as in the example below from [44] since merging
query blocks now requires pulling up the aggregation without
violating the semantics of the nested query:
SELECT Dept. name
FRON Dept
WHERE Dept,num-of-machines 2
(SELECT coum (Emp . *) ~~01~ Emp
WHERE Dep t , name= Emp . Dep t-name)

It is especially tricky to preserve duplicates and nulls. To
nppreclate the subtlety, observe that if for a specific value of
Dopb .name (say d), there are no tuples with a matching
Emp,Dept:,name, i.e., even if the predicate Dept -name=
Emp. dept,name fails, then there is still an output tuple for the
Dept tuple d. However, if we were to adopt the transformation
used in the first query of this section, then there will be no output
tuplc for the dept d since the join predicate fails. Therefore, in
the presence of aggregation, we must preserve all the tuples of the
outer query block by a left metjoin. In particular, the above
query can be correctly transformed to:
SELECT Dept , name FROM Dept LEFT OUTER JOIN Emp
ON (Dcpt,name= Emp.dept,name)
GROUP BY Dept.name
HAVING Dept. num-of-machines c COUNT @rap.*)

Thus, for this class of queries the merged single block query has
outcrjoins. If the nesting structure among query blocks is linear,
then this approach is applicable and transformations produce a

’ Semijoin(A,B,P) stands for semijoin between A and B that
prcservcs attributes of A and where P is the semijoin predicate.

3 I assume that the operator does not remove duplicates.

single block query that consists of a linear sequence of joins and
outer-joins. It turns out that the sequence of joins and outer-joins is
such that we can use the associative rule described in Section
4.1.2 to compute all the joins first and then do all the outerjoins in
sequence. Another approach to unnesting subqueries is to
transform a query into one that uses table-expressions or views
(and therefore, not a single block query). This was the direction of
Kim’s work (3.51 and it was subsequently refined in [44].

4.3 Using Semijoin Like Techniques for
Optimizing Multi-Block Queries
In the previous section, I presented examples of how multi-block
queries may be collapsed in a single block. In this section, 1
discuss a complementary approach. The goal of the approach
described in this section is to exploit the selectivity of predicates
across blocks4 It is conceptually similar to the idea of using
semijoin to propagate from a site A to a remote site B information
on relevant values of A so that B sends to A no unnecessary
tuples. In the context of multi-block queries, A and B are in
different query blocks but are parts of the same query and
therefore the transmission cost is not an issue. Bather, the
information “received from A” is used to reduce the computation
needed in B as well as to ensure that the results produced by B are
relevant to A as well. This technique requires introducing new
table expressions and views. For example, consider the following
query from [56]:
CREATE VIEW DepAvgSal As (

SELECT E-did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E-did)

SELECT E.eid, E-Sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E-did = D-did AND E-did = V.did
AND E-age c 30 AND D-budget > 100k
AND E.sal > V.avgsal

The technique recognizes that we can create the set of relevant
E.did by doing only the join between E and D in the above
query and projecting the unique E. did. This set can be passed to
the view DepAvgSal to restrict its computation. This is
accomplished by the following three views.
CREATE VIEW partialresult AS
(SELECT E-id, E.sal, E-did
FROM Emp E, Dept D
WHERE E.did=D.did AND E-age c: 30
AND D-budget > lOOk)

CREATE VIEW Filter AS
(SELECT DISTINCT P-did FROM PartialResult P)
CREATE VIEW LimitedAvgSal AS
(SELECT E-did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E-did = F-did GROUP BY E.did)

The reformulated query on the next page exploits the above views
to restrict computation.

’ Although this technique historically developed as a derivative of
Magic Sets and sideways inforrnation passing [2], 1 find the
relationship to semijoin more intuitive and less magical.

38

SELECT P,ei.d, P.sal
FRO14 PartlalResult P, LimitedDepAvgSal V
V!HERE P,did = V.did AND P.sal > V.avgsal

The above technique can be used in a multi-block query
containing view (including recursive view) definitions or nested
subqueries [42,43,56,57]. In each case, the goal is to avoid
redundant computation in the views or the nested subqueries. It is
also important to recognize the tradeoff between the cost of
computing the views (the view PartialResult in the example
above) and USC of such views to reduce the cost of computation.

The formal relationship of the above transformation to semijoin
has rcccntiy been presented in [56] and may form the basis for
integration of this strategy in a cost-based optimizer. Note that a
dgcncratc application of this technique is passing the predicates
across query blocks instead of results of views. This simpler
technique has been used in distributed and heterogeneous
databases and generalized in [36].

5. STATISTICS AND COST ESTIMATION
Given a query, there arc many logically equivalent algebraic
cxprcssions and for each of the expressions, there are many ways
to impicment them as operators, Even if we ignore the
computational complexity of enumerating the space of
posdbilities, there remains the question of deciding which of the
operator trees consumes the least resources. Resources may be
CPU time, J/O cost, memory, communication bandwidth, or a
combination of these. Therefore, given an operator tree (partial or
complete) of a query, being able to accurately and efficiently
cvnluatc its cost is of fundamental importance. The cost
estimation must be accurate because optimizurion is only as good
as its cost cs~brrat~~~ Cost estimation must be efficient since it is
In the inner loop of query optimization and is repeatedly invoked.
The basic estimation framework is derived from the System-R
approach:

I, Collect statistical summaries of data that has been stored.

2, Given an operator and the statistical summary for each of its
input data streams, determine the:

(a) Statistical summary of the output data stream

(b) Estimated cost of executing the operation

Step 2 can be applied iteratively to an operator tree of arbitrary
depth to derive the costs for each of its operators. Once we have
the costs for each of the operator nodes, the cost for the plan may
bc obtained by combining the costs of each of the operator nodes
in the tree, In Section 5.1, we discuss the statistical parameters
for the stored data that are used in cost optimization and efficient
ways of obtaining such statistical information. We also discuss
how to propagate such statistical information. The issue of
estimating cost for physical operators is discussed in Section 5.2.

It is important to recognize the differences between the nature of
the statistical property and the cost of a plan. The statistical
property of the output data stream of a plan is the same as that of
any other plan for the same query, but its cost can be different
from other plans. In other words, statistical summary is a logical
property but the cost of a plan is a physical property.

5.1 Statistical Summaries of Data
51.1 Statistical Information on Base Data
For every tabIe, the necessary statistical information includes the
number of tuples in a data stream since this parameter determines
the cost of data scans, joins, and their memory requirements, In
addition to the number of tupIes, the number of physical pages
used by the table is important. Statistical information on columns
of the data stream is of interest since these statistics can be used to
estimate the selectivity of predicates on that column. Such
information is created for columns on which there are one or more
indexes, although it may be created on demand for any other
column as well.

In a large number of systems, information on the data distribution
on a column is provided by histograms. A histogram divides the
values on a column into k buckets. In many cases, k is a constant
and determines the degree of accuracy of the histogram. However,
k also determines the memory usage, since while optimizing a
query, relevant columns of the histogram are loaded in memory.
There are several choices for “bucketization” of values. In many
database systems, equi-depth (also called equi-height) histograms
are used to represent the data distribution on a column. If the table
has n records and the histogram has k buckets, then an equi-depth
histogram divides the set of values on that column into k ranges
such that each range has the same nrtmber of values, i.e., n/k.
Compressed histograms place frequently occurring values in
singleton buckets. The number of such singleton buckets may be
tuned. It has been shown in [52] that such histograms are effective
for either high or low skew data. One aspect of histograms
relevant to optimization is the assumption made about values
within a bucket. For example, in an equi-depth histogram, values
within the endpoints of a bucket may be assumed to occur with
uniform spread. A discussion of the above assumption as well as a
broad taxonomy of histograms and ramifications of the histogram
structures on accuracy appears in 1521. In the absence of
histograms, information such as the min and mar of the values in
a column may be used. However, in practice, the second lowest
and the second highest values are used since the min and mar
have a high probabitity of being outlying vaIues. Histogram
information is complemented by information on parameters such
as number of distinct values on that column

Although histograms provide information on a single column,
they do not provide information on the correfufions among
columns. In order to capture correlations, we need the joint
distribution of values. One option is to consider 2-dimensional
histograms [45,51]. UnfortunateIy. the space of possibilities is
quite large. In many systems, instead of providing detailed joint
distribution, only summary information such as the number of
distinct pairs of values is used. For example, the statistical
information associated with a multi-column index may consist of
a histogram on the leading column and the total count of distinct
combinations of column values present in the data.

5.1.2 Estimating Statistics on Base Data
Enterprise class databases often have large schema and also have
large volumes of data. Therefore, to have the flexibility of
obtaining statistics to improve accuracy, it is important to be able
to estimate the statistical parameters accurately and efficiently,
Sumphg data provides one possibIe approach. However, the
challenge is to limit the error in estimation. In [48]. Shapiro and
Connell show that for a given query, only a small sample is

needed to estimate a histogram that has a high probability of being
nccuratc@ //IC given query. However, this misses the point since
the goal is to build a histogram that is reasonably accurate for a
lurgc class oi qmzries, Our recent work has addressed this
problem [I I]. We have also shown that the task of estimating
distinct values is provably error prone, i.e., for any estimation
schcmc, there exists a database where the error is significant. This
result explains the past difficulty in estimation of the number of
distinct values [50,27]. Recent work has also addressed the
problem of maintaining statistics in an incremental fashion [18].

5.1.3 Propagation of Statistical Information
It is not sufticient to use information only on base data because a
query typically contains many operators. Therefore, it is important
to be able to propagate the statistical information through
operators, T!tc simplest case of such an operator is selection. If
there is a histogram on a column A and the query is a simple
selection on column A, then the histogram can be modified to
reflect the effect of the selection. Some inaccuracy results in this
step due to assumptions such as uniform spread that needs to be
made within a bucket. Moreover, the inability to capture
correlation is a key source of error. In the above example, this will
bc rcflcctcd in ltor modifying the distribution of other attributes
on the table (except A) and thus incurring potentially significant
errors in subsequent operators, Likewise, if multiple predicates are
prcscnt, then the independence assumption is made and the
product of the selectivity is considered. However, some systems
only USC the selectivity of the most selective predicate and can
nlso Identify potential correlation [17]. In the presence of
histograms on columns involved in a join predicate, the
histograms may be “joined”. However, this raises the issue of
aligning the corresponding buckets. Finally, when histogram
information is not available, then ad-hoc constants are used to
estimate selectivity, as in [55].

5.2 Cost Computation
The cost estimation step tries to determine the cost of an
operation, The costing module estimates CPU, I/O and, in the
cast of parallel or distributed systems, communication costs. In
most systems, these parameters are combined into an overall
metric that is used for comparing alternative plans. The problem
of choosing an appropriate set of to determine cost requires
considerable care, An early study [40] identified that in addition
to the physical and statistical properties of the input data streams
nnd the computation of selectivity, modeling buffer utilization
plnys a key role in accurate estimation. This requires using
different buffer pool hit ratios depending on the levels of indexes
as well as adjusting buffer utilization by taking into account
properties of join methods, e.g., a relatively pronounced locality
of rcfcrcnce in an index scan for indexed nested loop join [17].
Cost models take into account relevant aspects of physical design,
c,g,, co-location of data and index pages. However, the ability to
do nccuratc cost estimation and propagation of statistical
information on data streams remains one of the difficult open
issues in query optimization.

6. ENUMERATION ARCHITECTURES
An enumeration algorithm must pick an inexpensive execution
plan for a given query by exploring the search space. The System-
R join enumerator that we discussed in Section 3 was designed to
choose only an optimal linear join order. A software engineering

consideration is to build the enumerator so that it can gracefully
adapt to changes in the search space due to the addition of new
transformations, the addition of new physical operators (e.g., a
new join implementation) and changes in the cost estimation
techniques. More recent optimization architectures have been
built with this paradigm and are called extensible optimizers.
Building an extensible optimizer is a tall order since it is more
than simply coming up with a better enumeration algorithm.
Rather, they provide an infrastructure for evolution of optimizer
design. However, generality in the architecture must be balanced
with the need for efficiency in enumeration.

We focus on two representative examples of such extensible
optimizers: Sturburst and VolcunolCuscudes briefly. Despite their
differences, we can summarize some of the commonality in them:
(a) Use of generalized cost functions and physical properties with
operator nodes. (b) Use of a rule engine that allows
transformations to modify the query expression or the operator
trees. Such rule engines also provide the ability to direct search to
achieve efficiency. (c) Many exposed “knobs” that can be used to
tune the behavior of the system. Unfortunately, setting these
knobs for optima! performance is a daunting task

6.1 Starburst
Query optimization in the Starburst project [26] at IBM Almaden
begins with a structural representation of the SQL query that is
used throughout the lifecycle of optimization. This representation
is called the Query Graph Model (QGM). In the QGM, a box
represents a query bIock and labeled arcs between boxes represent
table references across blocks. Each box contains information on
the predicate structure as well as on whether the data stream is
ordered. In the query rewtite phase of optimization [49]. rules are
used to transform a QGM into another equivalent QGM. Rules are
modeled as pairs of arbitrary functions. The first one checks the
condition for applicability and the second one enforces the
transformation. A forward chaining rule engine governs the rules.
Rules may be grouped in rule classes and it is possible to tune the
order of evaluation of rule classes to focus search. Since any
appIication of a rule results in a valid QGM. any set of rule
applications guarantee query equivalence (assuming rules
themselves are valid). The query rewrite phase does not have the
cost information available. This forces this module to either retain
ahematives obtained through rule application or to use the rules in
a heuristic way (and thus compromise optimality).
The second phase of query optimization is called plan
optimization. In this phase, given a QGM. an execution plan
(operator tree) is chosen. In Starburst, the physical operators
(called LOLEPOPs) may be combined in a variety of ways to
implement higher level operators. In Starburst, such combinations
are expressed in a grammar production-like language [37]. The
realization of a higher-level operation is expressed by its
derivation in terms of the physical operators. In computing such
derivations, comparable plans that represent the same physical
and logical properties but have higher costs, are pruned. Each
plan has a relational description that corresponds to the algebraic
expression it represents, an estimated cost, and physicuf properties
(e.g.. order). These properties are propagated as plans are built
bottom-up. Thus, with each physical operator, a function is
associated that shows the effect of the physical operator on each
of the above properties. The join enumerator in this system is
similar to System-R’s bottom-up enumeration scheme.

40

6.2 Volcano/Cascades
The Volcano [23] and the Cascades extensible architecture [21]
evolved from Exodus [22]. In these systems, rules are used
universally to represent the knowledge of search space. Two kinds
of rules are used. The transformation rules map an algebraic
cxprcssion into another, The implementation rules map an
algebraic expression into an operator tree. The rules may have
conditions for applicability. Logical properties, physical
properties and costs are associated with plans. The physical
properties and the cost depend on the algorithms used to
implement operators and its input data streams. For efficiency,
Volcano/Cascades uses dynamic programming in a top-down way
(“memoization”), When presented with an optimization task, it
checks whether the task has already been accomplished by
looking up its logical and physical properties in the table of plans
that have been optimized in the past. Otherwise, it will apply a
logical transformation rule, an implementation rule, or use an
enforcer to modify properties of the data stream. At every stage, it
uses the promise of an action to determine the next move. The
promise parameter is programmable and reflects cost parameters.

The Volcano/Cascades framework differs from Starburst in its
approach to enumeration: (a) These systems do not use two
distinct optimization phases because all transformations are
algebrnlc and cost-based. (b) The mapping from algebraic to
physical operators occurs in a single step. (c) Instead of applying
rules in a forward chaining fashion, as in the Starburst query
rcwrltc phase, Volcano/Cascades does goal-driven application of
rules,

7. BEYOND THE FUNDAMENTALS
So far I have covered the basics of the software components of the
optimizer. In this section, I discuss some of the more advanced
issues, Each of these issues is of considerable importance in
commercial systems.

7.1 Distributed and Parallel Databases
Distributed databases introduce issues of communication costs
and an expanded search space due to the fact that it is possible to
move data and choose sites for intermediate operations in
optimlzlng a query, While some of the early work focused almost
cxclusivcly on reducing communication costs [I,31 (e.g., using
scmijoins), results from System R* pointed out the dominant role
of local processing [39] (See [38] for an overview). Over time,
distributed database architectures have evolved into either
rcpllcnted databases to handle physical distribution or to parallel
databases for scale-up. In replicated architectures, maintaining
consistency across replicas is an important issue but is beyond the
scope of this article.

Unlike distributed systems, Parallel databases behave as a single
system but exploit multiple processing elements to reduce the
response the5 of queries. Benefits of parallelism may be
harnessed in several ways. For example, physical data
distribution, where a table (in general, a data stream) is partitioned
or replicated among nodes, enables processors to work on

/ ’ In single processor systems, the key focus has been reducing

I
total work, Parallel execution attempts to reduce response rather
than work, Indeed, in many cases , although not necessarily,

, , parallel execution increases total work.
,

I
41

independent data sets. Parallelism may also be harnessed for
independent operation or pipelined operation (by placing the
producer and the consumer nodes on different processors). The
advantages of parallelism are counteracted by the need for
communication among the processors to exchange data, e.g.,
when data needs to be repartitioned after an operation.
Furthermore, effective scheduling of physical operators on
processors brings a new dimension to the optimization problem.
The XPRS project [31,32] advocated a two-phase approach where
traditional single processor query optimization is used to generate
an execution plan in the first phase. In the second phase,
scheduling of processors was determined. The query optimization
work in XPRS did not study the effects of processor
communication. Work by Hasan 1281 demonstrated the
importance of taking communication costs into account. Hasan
retained the two-phase optimization framework used in XPRS,
but incorporated the cost and benefits of data repartitioning in the
first phase of the optimization to determine the join order and the
access methods used. The partitioning attribute of a data stream
was treated as a physical property of the data stream. The output
of the first phase is a physical operator tree that exposes
precedence constraints (e.g., for sorting) and pipelined execution.
For the second phase of optimization, he proposed scheduling
algorithms that take into account communication costs [28].

7.2 User-Defined Functions
Stored procedures (also called user-defined functions) have
become widely avaiIable in relational systems. While their support
varies from one product to another, they provide a powerful
mechanism to reduce client-server communication and provide
the means for incorporating application semantics in querying.
New optimization questions arise when such stored procedures
are treated as first-order citizens in the query. The problem of
determining the cost model of user-defined functions remains a
difficult problem. Interesting issues also arise in the context of the
enumeration algorithm. For example, consider the case when the
stored procedure acts as a user-defined predicate in the WHERE
clause of a query. Unlike other predicates, such predicates may be
expensive (e.g., since they may be predicates on a BLOB such as
an image) and therefore it is no longer a sound heuristic to
evaluate such predicates as early as possible. The problem of
optimizing queries with user-defined predicates was posed in
[12,29]. The approach taken in [121 has been to treat the user-
defined predicates as a relation from the point of view of dynamic
query optimization. The approaches in 129,301 exploit the
observation that if there are no joins, then the expensive
predicates may be ordered efficiently by their ranks, computed
from their selectivity and per tuple cost of evaluation.
Unfortunately, their attempt to extend the use of ranks for queries
with joins may result in suboptimal plans. This shortcoming is
resolved in [8] by representing the application of user-defined
predicates like a physicaI property of a plan so that the dynamic-
programming-based enumeration algorithm guarantees optimality.
Moreover, for realistic assumptions of the cost model, it is shown
that the probIem is polynomial in the number of user-defined
predicates.

Solving the problem of optimizing user-defined predicates is only
a first step in the broader problem of representing the semantics of
ADTs in a query system and optimizing queries over ADTs. This
problem is also intimately tied to the area of semantic query
optimization.

7.3 Materialized Views
Materialized views are results of views (i.e., queries) that are
cached by the querying subsystem and used by the optimizer
transparently. The optimization problem is as follows: Given a set
of materialized views and a query, the goal is to optimize the
query while taking into account the materialized views that are
present, This problem introduces two fundamental challenges.
First, the problem of reformulating the query so that it can use one
or more of the materialized views must be addressed. ‘The general
problem is undecidable and even determining effective sufficient
conditions are nontrivial due to the complexity of SQL. This
problem has been addressed in the context of single block SQL
queries only [l&61,59,9] and must be extended for complex
queries, Next, approaching the optimization problem as a two step
process, where all logically equivalent expressions are generated
and each one of them is individually optimized, may increase the
cost of optimization since subexpressions are not pruned in a cost-
based way. In [9], we showed how the steps of enumerating and
generating cquivalcnt expressions in the presence of materialized
views may be overlapped.

7.4 Other Optimization Issues
In this paper, I have been able to touch only on some of the
foundational issues in query optimization. There are many
importnnt areas that I have not discussed. One interesting
direction is that of being able to defer generation of complete
plans subject to availability of nmtime information [19,33]. Also,
the problem of considering other resources, especially memory, in
determining execution plans remains an open issue. The work in
[SS] addresses the issue of optimizing the use of order in query
optimization. Optimizer technology in Object-Oriented Systems is
an important area that is worthy of a separate discussion.
Furthermore, as database systems get used in multimedia and web
context, being able to address fuzzy (imprecise) queries is an
interesting direction of work [14,10]. Recent emphasis on
decision support systems has also sparked work in SQL
extensions, Such work, as in CUBE [24], is not motivated by the
need for expressive power, but rather seeks to extend the language
so that the optimizer can use the constructs to optimize decision
support systems better,

8. CONCLUSION
Optimization is much more than transformations and query
equivalence. The infrastructure for optimization is significant.
Designing effective and correct SQL transformations is hard,
developing a robust cost metric is elusive, and building an
extensible enumeration architecture is a significant undertaking.
Despite many years of work, significant open problems remain.
However, an understanding of the existing engineering framework
is necessary for making effective contribution to the area of query
optimization,

ACKNOWLEDGMENTS
My many informal discussions with Umesh Dayal, Goetz Graefe,
Wnqar Hasan, Ravi Krishnamunhy, Guy Lohman, Hamid
Pirnhcsh, Kyuseok Shim and Jeff Ullman have greatly helped me
develop my understanding of SQL optimization. Many of them
aIs0 helped me improve this draft through their comments. I am
also very grateful to Latha Colby, William McKenna, Vivek
Nerasayya, and Janet Wiener for their insightful comments on the
draft, As always, my thanks to Debjani for her patience.

9.
[II

PI

r31

[41

151

VI

171

PI

PI

REFERENCES
Apers. P.M.G., Hevner, A.R.. Yao, S.B. Optimization
Algorithms for Distributed Queries. IEEE Transactions on
Software Engineering, Vol9: 1, 1983.
Bancilhon. F., Maier, D.. Sagiv, Y., Ullman. J.D. Magic sets and
other strange ways to execute logic programs. In Proc. of ACM
PODS, 1986.
Bernstein, P.A., Goodman, N., Wang, E., Reeve, C.L, Rothnie.
J. Query Processing in a System for Distributed Databases
(SDD-I), ACM TODS 64 (Dee 1981).
Chaudhuri, S., Shim K. An Overview of Cost-based
Optimization of Queries with Aggregates. IEEE DE Bulletin.
Sep. 1995. (Special Issue on Query Processing).
Chaudhuri, S., Shim K. Including Group-By in Query
Optimization. In Proc. of VLDB, Santiago. 1994.
Chaudhuri. S., Shim K. Query Optimization with aggregate
views: In Proc. of EDBT, Avignon, 1996.
Chaudhuri. S.. Dayal. U. An Overview of Data Warehousing and
OLAP Technology. In ACM SIGMOD Record. March 1997.
Chaudhuri, S., Shim K. Optimization of Queries with User-
defined Predicates. In Proc. of VLDB. Mumbai. 1996.
Chaudhuri, S.. Krishnamurthy. R., Potamianos. S., Shim K.
Optimizing Queries with Materialized Views. In Proc. of IEEE
Data Engineering Conference, Taipei. 1995.

[IO] Chaudhuri, S.. Gravano, L. Optimizing Queries over Multimedia
Repositories. In Proc. of ACM SIGMOD, Montreal, 1996.

[ll] Chaudhuri. S., Motwani. R.. Narasayya, V. Random Sampling
for Histogram Construction: How much is enough? In Proc. of
ACM SIGMOD. Seattle, 1998.

[12] Chimenti D., Gamboa R.. Krishnamurthy R. Towards an Open
Architecture for LDL. In Proc. of VLDB. Amsterdam, 19S9.

[13] Dayal. U. Of Nests and Trees: A Unified Approach to
Processing Queries That Contain Nested Subqueries. Aggregates
and Quantifiers. In Proc. of VLDB, 1987.

[14] Fagin, R Combining Fuzzy Information from Multiple Systems.
In Proc. of ACM PODS, 1996.

[15] Finkelstein S., Common Expression Analysis in Database

Ml
Applications. In Proc. of ACMSIGMOD. Orlando. 1982.
Ganski. R.A., Long, H.K.T. Optimization of Nested SQL
Queries Revisited. In Proc. of ACM SIGMOD. San Francisco,
1987.

II71

WI

[I91

PO1

WI

Gassner, P.. Lohman. G., Schiefer. K.B. Query Optimization in
the IBM DB2 Family. IEEE Data Engineering Bulletin, Dec.
1993.
Gibbons, P.B.. Matias. Y., Poosala, V. Fast Incremental
Maintenance of Approximate Histograms. In Proc. of VLDB,
Athens, 1997.
Graefe. G.. Ward K. Dynamic Query Evaluation Plans. In Proc.
of ACM SIGMOD. Portland, 1989.
Graefe G. Query Evaluation Techniques for Large Databases. In
ACM Computing Surveys: Vol25. No 2.. June 1993.
Gnefe, G. The Cascades Framework for Query Optimization. In
Data Engineering Bulletin. Sept. 1995.

[22] Graefe. G.. Dewitt D..L The Exodus Optimizer Generator. In
Proc. of ACM SIGMOD, San Francisco, 1987.

42

[23] Grncfc, G,, McKenna, W.J. The Volcano Optimizer Generator:
Extensibility nnd Efficient Search. In Proc. of the IEEE
Conference on Data Engineering, Vienna, 1993.

[24] Clrny, J., Bosworth, A., Layman A., Pirahesh H. Data Cube: A
Relational Aggregation Operator Generalizing Group-by, Cross-
Tab, and Sub-Totals. In Proc. of IEEE Conference on Data
Engineering, New Orleans, 1996.

[25] Guptn A., Harinarnynn V., Quass D. Aggregate-query processing
in data wnrehousing environments. In Proc. of VLDB. Zurich,
1995.

[26] Hnas, L., Freytag, J.C., Lehman, G.M., Pirahesh, H. Extensible
Query Processing in Starburst. In Proc. of ACM SIGMOD,
Portlnnd, 1989.

1271 Hans, P,J., Naughton, J.F., Seshadri, S., Stokes, L. Sampling-
Bnsed Estimation of the Number of Distinct Values of an
Attribute In Proc. of VLDB, Zurich, 199.5.

[28] Hnsnn, W, Optimization of SQL Queries for Parallel Machines.
LNCS 1182, Springer-Verlag, 1996.

[29] Hellcrstein J.M., Stonebraker, M. Predicate Migration:
Optimization queries with expensive predicates. In Proc. of
ACM SIGMOD, Washington D.C., 1993.

[30] Hcllerstcin, J.M. Predicate Migration placement. In Proc. of
ACM SIGMOD, Minneapolis, 1994.

[31] Hong, W., Stonebraker, M. Optimization of Parallel Query
Execution Plans in XPRS. In Proc. of Conference on Parallel
nnd Distributed Information Systems. 1991.

1321 Hong, W. Parallel Query Processing Using Shared Memory
Multiprocessors and Disk Arrays. Ph.D. Thesis, University of
Cnlifornin, Berkeley, 1992.

[33] lonnnidis, Y., Ng, R.T., Shim, K., Sellis, T. Parametric Query
Optimization. In Proc. of VLDB, Vancouver, 1992.

[34] Ioannidis, Y.E. Universality of Serial Histograms. In Proc. of
VLDB, Dublin, Ireland, 1993.

[35] Kim, W, On Optimizing nn SQL-like Nested Query. ACM
TODS, Vol9, No. 3, 1982.

[36] Levy, A., Mumick, IS., Sagiv, Y. Query Optimization by
Prcdicatc Move-Around. In Proc. of VLDB, Santiago. 1994.

[37] Lohmnn, G.M. Grammar-like Functional Rules for Representing
Query Optimization Alternatives. In Proc. of ACM SIGMOD.
1988. ’

[38] Lehman. G., Mohan, C., Haas, L., Daniels, D., Lindsay, B.,
Selinger, P., Wilms, P. Query Processing in R*. In Query
Processing in Database Systems. Springer Verlag, 1985.

(391 Mnckcrt, L.F., Lohman, G.M. R* Optimizer Validation and
Performance Evaluation For Distributed Queries. In Readings in
Datnbnse Systems. Morgan Kaufman.

[40] Mnckert, L.F., Lohman, G.M. R* Optimizer Validation and
Performance Evnluation for Local Queries. In Proc. of ACM
SIGMOD, 1986.

[4l] Melton, J., Simon A. Understanding The New SQL: A Complete
Guide, Morgan Kaufman.

1421 Mumick, IS., Finkelstein, S., Pirahesh, H., Ramakrishnan. R.
Fg$c is Relevant. In Proc. of ACM SIGMOD. Atlantic City,

[43] Mumick, IS., Pinhesh. H. Implementation of Magic Sets in a
Relational Database System. In Proc. of ACM SIGMOD.
Montreal, 1994.

[44] Muralikrishna, M. Improved Unnesting Algorithms for Join
Aggregate SQL Queries. In Proc. of VLDB, Vancouver, 1992.

[45] Muralikrishna M., Dewitt D.J. Equi-Depth Histograms for
Estimating Selectivity Factors for Multi-Dimensional Queries,
Proc. of ACM SIGMOD. Chicago. 1988.

1461 Ono. K.. Lohman, G.M. Measuring the Complexity of Join
Enumeration in Query Optimization. In Proc. of VLDB.
Brisbane, 1990.

[47] Ozsu M.T., Valduriez, P. Principles of Distributed Database
Systems. Prentice-Hall, 1991.

[48] Piatetsky-Shapiro. G., Connell. C. Accurate Estimation of the
Number of Tuples Satisfying a Condition. In Proc. of ACM
SIGMOD, 1984.

[49] Pirahesh, H., Hellerstein J.M., Hasan. W. Extensible/Rule Based
Query Rewrite Optimization in Starburst. In Proc. of ACM
SIGMOD 1992.

[SO] Poosala. V.. Ioannidis. Y.. Harts, P., Shekita. E. Improved
Histograms for Selectivity Estimation. In Proc. of ACM
SIGMOD, Montreal, Canada 1996.

[Sl] Poosala, V., Ioannidis, Y.E. Selectivity Estimation Without the
Attribute Value Independence Assumption. In Proc. of VLDB,
Athens, 1997.

[.52] Poosala. V., Ioannidis, Y.E.. Haas. P.J.. Shekita. E.J. Improved
Histograms for Selectivity Estimation of Range Predicates In
hoc. of ACM SIGMOD, Montreal, 1996.

[53] Rosenthal, A., Galindo-Legaria, C. Query Graphs, Implementing
Trees, and Freely Reorderable Outerjoins. In Proc. of ACM
SIGMOD. Atlantic City, 1990.

[54] Schneider, D.A. Complex Query Processing in Multiprocessor
Database Machines. Ph.D. thesis, University of Wisconsin,
Madison, Sept. 1990. Computer Sciences Tech;lical Report 965.

[55] Selinger, P.G., Astrahan, M-M., Chamberlin. D.D., Lorie. R.A.,
Price T.G. Access Path Selection in a Relational Database
System. In Readings in Database Systems. Morgan Kaufman.

[56] Seshadri P., et al. Cost Based Optimization for Magic: Algebra
and Implementation. In Proc. of ACM SIGMOD, Montreal.
1996.

[57] Seshadri, P.. Pirahesh, H., Leung. T.Y.C. Decorrelating complex
queries. In Proc. of the IEEE International Conference on Data
Engineering, 1996.

I.581 Simmen, D., Shekita E.. Malkemus T. Fundamental Techniques
for Order Optimization. In Proc. of ACM SIGMOD. Montreal.
1996.

[59] Srivastava D.. Dar S., Jagadish H.V.. Levy A.: Answering
Queries with Aggregation Using Views. Proc. of VLDB.
Mumbai, 1996.

[60] Yan. Y.P.. Larson P.A. Eager aggregation and lazy aggregation.
In Proc. of VLDB Conference, Zurich, 1995.

[61] Yang. HZ.. Larson P.A. Query Transformation for PSJ-Queries.
In Proc. of VLDB. 1987.

43

