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1. OBJECTIVE 
Them has been cxtensivc work in query optimization since the 
enrly ‘70s. It is hard to capture the breadth and depth of this large 
body of work in a short article. Therefore, I have decided to focus 
primarily on the optimization of SQL queries in relational 
dntnbasc systems and present my biased and incomplete view of 
this licld, The goal of this article is not to be comprehensive, but 
ratbcr to explain the foundations and present samplings of 
significant work in this area. I would like to apologize to the many 
contributors in this area whose work I have failed to explicitly 
ncknowlcdge due to oversight or lack of space. I take the liberty of 
trndlng tcchnicnl precision for ease of presentation. 
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Rclntional query languages provide a high-level “declarative” 
lntcrfnce to access data stored in relational databases. Over time, 
SQL [41] has emerged as the standard for relational query 
languages, Two key components of the query evaluation 
component of a SQL database system are the query optimizer and 
the qrrery execrrtiort engine. 

Figure 1. Operator Tree 

The query cxccution engine implements a set of physical 
operators, An operator takes as input one or more data streams 
and produces an output data stream. Examples of physical 
operators nrc (external) sort, sequential scan, index scan, nested- 
loop join, nnd sort-merge join. I refer to such operators as 
physical operators since they are not necessarily tied one-to-one 
with relntionnl operators, The simplest way to think of physical 
operntors is ns pieces of code that are used as building blocks to 
mnkc possible the execution of SQL queries. An abstract 
representation of such nn execution is a physical operator tree, as 
lllustrntcd in Figure I. The edges in an operator tree represent the 
data flow among the physical operators. We use the terms 
physical operator tree and executbt plan (or, simply plan) 
lnterchnngenbly. The execution engine is responsible for the 
execution of the plan that results in generating answers to the 
query. Therefore, the capabilities of the query execution engine 
dctcrminc the structure of the operator trees that are feasible. We 
rcfcr the reader to [20] for an overview of query evaluation 
techniques, 

The query optimizer is responsible for generating the input for the 
execution engine. It takes a parsed representation of a SQL query 
as input and is responsible for generating an eflcient execution 
plan for the given SQL query from the space of possible execution 
plans. The task of an optimizer is nontrivial since for a given SQL 
query, there can be a large number of possible operator trees: 
. The algebraic representation of the given query can be 

transformed into many other logically equivalent algebraic 
representations: e.g., 
Join(Join(A,B),C)= Join(Join(B,C),A) 

. For a given algebraic representation, there may be many 
operator trees that implement the algebraic expression, e.g., 
typically there are several join algorithms supported in a 
database system. 

Furthermore, the throughput or the response times for the 
execution of these plans may be widely different. Therefore, a 
judicious choice of an execution by the optimizer is of critical 
importance. Thus, query optimization can be viewed as a difficult 
search problem. In order to solve this problem, we need to 
provide: 
. A space of plans (search space). 

. A cost estimation technique so that a cost may be assigned to 
each plan in the search space. Intuitively, this is an 
estimation of the resources needed for the execution of the 
ph. 

. An enumeration algorithm that can search through the 
execution space. 
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A dcsirabic optimizer is one where (1) the search space includes 
plans that have low cosr (2) the costing technique is accurure (3) 
the cnumcration algorithm is efjcienr. Each of these three tasks is 
nontrivial and that is why building a good optimizer is an 
enormous undertaking, 

WC begin by discussing the System-R optimization framework 
since this was a remarkably elegant approach that helped fuel 
much of the subsequent work in optimization. In Section 4, we 
will discuss the search space that is considered by optimizers. 
This section will provide the forum for presentation of important 
algebraic transformations that are incorporated in the search 
space In Section 5, we address the problem of cost estimation. In 
Section 6, WC take up the topic of enumerating the search space. 
This completes the discussion of the basic optimization 
framework, In Section 7, we discuss some of the recent 
developments in query optimization. 

3. AN EXAMPLE: SYSTEM-R OPTIMIZER 
The System-R project significantly advanced the state of query 
oplimization of relational systems. The ideas in [55] have been 
Incorporated in many commercial optimizers continue to be 
remarkably relevant. I will present a subset of those important 
ideas hem in the context of Select-Project-Join (SPJ) queries. The 
class of SPJ queries is closely related to and encapsulates 
co~$rncrivc queries, which are widely studied in Database Theory. 

The search space for the System-R optimizer in the context of a 
SPJ query consists of operator trees that correspond to linear 
scqucncc of join operations, e.g., the sequence 
JOin (Join (Join (A, B) , C) , D) is illustrated in Figure 
2w Such sequences are logically equivalent because of 
associative and commutative properties of joins. A join operator 
can USC either the nested loop or sort-merge implementation. Each 
scan node can use either index scan (using a clustered or non- 
clustered index) or sequential scan. Finally, predicates are 
evaluated as early as possible. 

The cost model assigns an estimated cost to any partial or 
complete plan in the search space. It also determines the estimated 
size of the data stream for output of every operator in the plan. It 
relies on: 

(4 
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A set of statistics maintained on relations and indexes, e.g., 
number of data pages in a relation, number of pages in an 
index, number of distinct values in a column 

Formulas to estimate selectivity of predicates and to project 
the size of the output data stream for every operator node. 
For example, the size of the output of a join is estimated by 
taking the product of the sizes of the two relations and then 
applying the joint selectivity of all applicable predicates. 

Formulas to estimate the CPU and 110 costs of query 
execution for every operator. These formulas take into 
account the statistical properties of its input data streams, 
existing access methods over the input data streams, and any 
available order on the data stream (e.g., if a data stream is 
ordered, then the cost of a sort-merge join on that stream may 
be significantly reduced). In addition, it is also checked if the 
output data stream will have any order. 

cost model uses (a)-(c) to compute and associate the 
following information in a bottom-up fashion for operators in a 
plan: (1) The size of the data stream represented by the output of 

the operator node. (2) Any ordering of tuples created or sustained 
by the output data stream of the operator node. (3) Estimated 
execution cost for the operator (and the cumulative cost of the 
partiaI plan so far). 
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I Figure 2. (a) Linear and (b) bushy join I 
The enumeration algorithm for System-R optimizer demonstrates 
two important techniques: use of dynamic programming and use 
of interesting orders. 

The essence of the dynamic programming approach is based on 
the assumption that the cost model satisfies the principle of 
optimality. Specifically, it assumes that in order to obtain an 
optimal plan for a SPJ query Q consisting of k joins, it suffices to 
consider only the optimal plans for subexpressions of Q that 
consist of (k-l) joins and extend those plans with an additional 
join. In other words, the suboptimal plans for subexpressions of Q 
(also called subqueries) consisting of (k-l) joins do not need to be 
considered further in determining the optimal plan for Q. 
Accordingly, the dynamic programming based enumeration views 
a SPJ query Q as a sef of relations (RI, . .R,) to be joined. The 
enumeration algorithm proceeds bottom-up. At the end of the j-th 
step, the algorithm produces the optimal plans for all subqueries 
of size j. To obtain an optimal plan for a subquery consisting of 
(j+l) relations, we consider all possible ways of constructing a 
plan for the subquery by extending the plans constructed in the j- 
th step. For example, the optimal plan for (RI, Rz, R3, R4) is 
obtained by picking the plan with the cheapest cost from among 
the optimal plans for: (1) Joint {RI, R2, R31, R4) (2) 

Join(fRl,R2,%1,R3) (3) Join ((RlrR3,R41,R2) (4) 
Join(CRz,Ra,%l, RI). The rest of the plans for 
(RI, R2, Rx, &} may be discarded. The dynamic programming 
approach is significantly faster than the ndive approach since 
instead of O(n!) plans, only O(n2”“) plans need to be enumerated. 

The second important aspect of System R optimizer is the 
consideration of interesting orders. Let us now consider a query 
that represents the join among (Rt , RZ , R3) with the predicates 
RI _ a = R2 _ a = R3. a. Let us also assume that the cost of the 
plans for the subquery (RI, Rz) are x and y for nested-loop and 
sort-merge join respectively and x c y. In such a case, while 
considering the plan for {RI, R2, R,), we will not consider the 
plan where RI and Rz are joined using sort-merge. However, note 
that if sort-merge is used to join RI and R2, the result ofthe join is 
sorted on a. The sorted order may significantly reduce the cost of 
the join with R3. Thus, pruning the plan that represents the sort- 
merge join between RI and R2 can result in sub-optimality of the 
global plan. The problem arises because the result of the sort- 
merge join between RI and R2 has an ordering of tuples in the 
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output stream that is useful in the subsequent join. However, the 
ncstcd-loop join does not have such ordering. Therefore, given a 
query, System R identified ordering of tuples that are potentially 
consequential to execution plans for the query (hence the name 
interesting orders), Furthermore, in the System R optimizer, two 
plans arc compared only if they represent the same expression as 
well as have the same interesting order. The idea of interesting 
order was later generalized to physical properties in [22] and is 
used cxtensivcly in modem optimizers. Intuitively, a physical 
property is any characteristic of a plan that is not shared by all 
plans for the same logical expression, but can impact the cost of 
subscqucnt operations. Finally, note that the System-R’s approach 
of taking into account physical properties demonstrates a simple 
mechanism to handle any violation of the principle of optimality. 
not ncccssarily arising only from physical properties. 

Despite the elegance of the System-R approach, the framework 
cannot be easily extended to incorporate other logical 
transformations (beyond join ordering) that expand the search 
space, This led to the development of more extensible 
optimization architectures. However, the use of cost-based 
optimization, dynamic programming and interesting orders 
strongly influenced subsequent developments in optimization. 

4. SEARCH SPACE 
As mentioned in Section 2, the search space for optimization 
depends on the set of algebraic transformations that preserve 
cquivalcnce and the set of physical operators supported in an 
optimizer. In this section, I will discuss a few of the many 
important algebraic transformations that have been discovered. It 
should be noted that trunsfonnations do not necessarily reduce 
cost arrd therefore mwt be applied in a cost-based manner by the 
errwrtcrulior~ algorirhm to ensure a positive benejit. 

The optimizer may use several representations of a query during 
the llfccyclc of optimizing a query. The initial representation is 
often the parse tree of the query and the final representation is an 
operator tree. An intermediate representation that is also used is 
that of logical operator trees (also called query trees) that captures 
an algebraic expression. Figure 2 is an example of a query tree. 
Often, nodes of the query trees are annotated with additional 
Information. 

Some systems also use a “calculus-oriented” representation for 
analyzing the structure of the query. For SPJ queries, such a 
structure is often captured by a qlrery graph where nodes 
represent relations (correlation variables) and labeled edges 
represent join predicates among the relations (see Figure 3). 
Although conceptually simple, such a representation falls short of 
rcprcsenting the structure of arbitrary SQL statements in a number 
of ways. First, predicate graphs only represent a set of join 
prcdlcatcs and cannot represent other algebraic operators, e.g., 
union. Next, unlike natural join, operators such as outerjoin are 
asymmetric and arc sensitive to the order of evaluation. Finally, 
such a representation does not capture the fact that SQL 
statements may have nested query blocks. In the QGM structure 
used in the Starburst system [26], the building block is an 
cnhanccd query graph that is able to represent a simple SQL 
statcmcnt that has no nesting (“single block” query). Multi block 
qucrics are rcprcscntcd as a set of subgraphs with edges among 
subgraphs that represent predicates (and quantifiers) across query 
blocks, In contrast, Exodus [22] and its derivatives, uniformly use 
query trees and operator trees for all phases of optimization. 
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Figure 3. Query 

4.1 Commuting Between Operators 
A large and important class of transformations exploits 
commutativity among operators. In this section. we see examples 
of such transformations. 

4.1 .I Generalizing Join Sequencing 
In many of the systems, the sequence of join operations is 
syntactically restricted to limit search space. For example, in the 
System R project, only linear sequences of join operations are 
considered and Cartesian product among relations is deferred until 
after all the joins. 

Since join operations are commutative and associative, the 
sequence of joins in an operator tree need not be linear, In 
particular, the query consisting of join among relations 
RI, R2, R3, Rq can be algebraically represented and evaluated as 
Join(Join(A,B),Join(C,D) ). Suchquerytrees arecalled 
bushy, illustrated in Figure 2(b). Bushy join sequences require 
materialization of intermediate relations. While bushy trees may 
result in cheaper query plan, they expand the cost of enumerating 
the search space considerably’. Although there has been some 
studies of merits of exploring the bushy join sequences, by and 
large most systems still focus on linear join sequences and only 
restricted subsets of bushy join trees. 

Deferring Cartesian products may also result in poor performance. 
In many decision-support queries where the query graph forms a 
star, it has been observed that a Cartesian product among 
appropriate nodes (“dimensional” tables in OLAP terminology 
[7]) results in a significant reduction in cost. 

In an extensible system, the behavior of the join enumerator may 
be adapted on a per query basis so as to restrict the “bushy’-ness 
of the join trees and to allow or disallow Cartesian products [46]. 
However, it is nontrivial to determine a priori the effects of such 
tuning on the quality and cost of the search. 

4.1.2 Outerjoin and Join 
One-sided outerjoin is an asymmetric operator in SQL that 
preserves all of the tuples of one relation. Symmetric outerjoins 
preserve both the operand relations. Thus, (R LOJ S). where LOJ 
designates left outerjoin between R and S, preserves all tuples of 
R. In addition to the tuples from natural join, the above operation 
contains all remaining tuples in R that fail to join with S (padded 
with NULLs for their S attributes). Unlike natural joins. a 

’ It is not the cost of generating the syntactic join orders that is 
most expensive. Rather, the task of choosing physical operators 
and computing the cost of each alternative plan is 
computationally intensive. 
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scqucncc ofoutcrjoins and joins do not freely commute. However, 
when the join predicate is between (R.S) and the outer-join 
predicate is between (ST), the following identity holds: 

Join(R, S LOJ T) = Join (R,S) LOJ T 

If the above associative NIC can be repeatedly applied, we obtain 
nn equivalent expression where evaluation of the “block of joins” 
prcccdcs the “block of outerjoins”. Subsequently, the joins may be 
I-WAY reordered among themselves, As with other 
transformations, use of this identity needs to be cost-based. The 
identities in [53] define a class of queries where joins and 
outcrjoins may be reordered. 

4,1,3 Group-By and Join 

I Figure 4. Group By and Join I 

In traditional execution of a SPJ query with group-by, the 
evaluation of the SPJ component of the query precedes the group- 
by, The set of transformations described in this section enable the 
group by operation to precede a join. These transformations are 
npplicablc to queries with SELECT DISTINCT since the latter is 
a special case of group-by, Evaluation of a group-by operator can 
potentially result in a significant reduction in the number of 
tupics, since only one tuple is generated for every partition of the 
relation induced by the group-by operator. Therefore, in some 
cases, by tirst doing the group-by, the cost of the join may be 
significantly reduced, Moreover, in the presence of an appropriate 
index, a group-by operation may be evaluated inexpensively. A 
dun1 of such transformations corresponds to the case where a 
group-by operator may be pulled up past a join. These 
trnnsformations arc described in [5,60,25,6] (see [4] for an 
overview). 
In thls section, we briefly discuss specific instances where the 
transformation to do an early group-by prior to the join may be 
npplicablc. Consider the query tree in Figure 4(a). Let the join 
bctwccn RI and RZ be a foreign key join and let the aggregated 
columns of G bc from columns in Rl and the set of group-by 
columns be a superset of the foreign key columns of R1. For such 
R query, Ict us consider the corresponding operator tree in Fig. 
4(b), where Gl=G. In that tree, the final join with RZ can only 
climinatc a set of potential partitions of Rl created by Gl but will 
not affect the partitions nor the aggregates computed for the 
partitions by G1 since every tuple in Rl will join with at fnost one 
tuple in Rs. Therefore, we can push down the group-by, as shown 
in Fig. 4(b) and preserve equivalence for arbifrury side-effect free 
nggrcgatc functions, Fig. 4(c) illustrates an example where the 
transformation irrfrohccs a group-by and represents a class of 
useful cxnmplcs where the group-by operation is done in sruges. 
For example, assume that in Fig. 4(a), where all the columns on 

which aggregated functions are applied are from Rl. In these 
cases, the introduced group-by operator Gl partitions the relation 
on the projection columns of the RI node and computes the 
aggregated values on those partitions. However, the true partitions 
in Fig 4(a) may need to combine multiple partitions introduced by 
G1 into a single partition (many to one mapping), The group-by 
operator G ensures the above. Such staged computation may still 
be useful in reducing the cost of the join because of the data 
reduction effect of Gl. Such staged aggregation requires the 
aggregating function to satisfy the property that Agg (S U S ’ ) 
can be computed from Agg (Sl and Agg (S ‘ 1. For example, in 
order to compute total sales for all products in each division, we 
can use the transformation in Fig. 4(c) to do an early aggregation 
and obtain the total sales for each product. We then need a 
subsequent group-by that sums over all products that belong to 
each division. 

4.2 Reducing Mu&Block Queries to Single- 
Block 
The technique described in this section shows how under some 
conditions, it is possible to collapse a multi-block SQL query into 
a single block SQL query. 

4.2.1 Merging Views 
Let us consider a conjunctive query using SELECT ANY. If one 
or more relations in the query are views, but each is defined 
through a conjunctive query, then the view definitions can simply 
be “unfolded” to obtain a single block SQL query. For example, if 
aqueryQ = Join(R,V) andviewV = Join(S,T),thenthe 
query Q can be unfolded to Join(R, Join(S,T) ) and may be 
freely reordered. Such a step may require some renaming of the 
variables in the view definitions. 

Unfortunately, this simple unfolding fails to work when the views 
are more complex than simple SPJ queries. When one or more of 
the views contain SELECT DISTINCT, transformations to move 
or pull up DISTINCT need to be careful to preserve the number 
of duplicates correctly, [49]. More generally, when the view 
contains a group by operator, unfolding requires the ability to 
pull-up the group-by operator and then to freely reorder not only 
the joins but also the group-by operator to ensure optimality. In 
particular, we are given a query such as the one in Fig. 4(b) and 
we are trying to consider how we can transform it in a form such 
as Fig. 4(a) so that R1 and RZ may be freely reordered. While the 
transformations in Section 4.1.3 may be used in such cases, it 
underscores the complexity of the problem [6]. 

4.2.2 Merging Nested Sabqueries 
Consider the following example of a nested query from [I31 
where Emp# and Depth are keys of the corresponding relations: 
SELECT Emp . Name 
FROM Emp 
WEERE Emp.Dept# IN 

SELECT Dept.Dept# FRON Dept 
WHERE Dept.Loc=‘Denver’ 
AND Emp.Emp* = Dept.Mgr 

If tuple iteration semantics are used to answer the query, then the 
inner query is evaluated for each tuple of the Dept relation once. 
An obvious optimization applies when the inner query block 
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contains no variables from the outer query block (uncorrelufed). 
In such cases, the inner query block needs to be evaluated only 
once I-lowcver, when there is indeed a variable from the outer 
block, WC say that the query blocks are correlated. For example, 
in the query above, Emp.Emp# acts as the correlated variable. 
Kim [35] and subsequently others [16,13&j have identified 
techniques to unnest a correlated nested SQL query and “flatten” 
it to n single query. For example, the above nested query reduces 
to: SELECT E *Name 

FROM Emp E, Dept D 
WHERE E.Dept# = D.Dept# 
AND D.Loc = ‘Denver’ AND E.Emp# = D.Mgr 

Dayal [ 131 was the first to offer an algebraic view of unnesting. 
The complexity of the problem depends on the structure of the 
nesting, i.e., whether the nested subquery has quantifiers (e.g., 
ALL, EXISTS), aggregates or neither. In the simplest case, of 
which the above query is an example, [ 131 observed that the tuple 
semantics ctm be modeled as Semijoin(Emp,Dept, 
Emp, Dopull = Dept. Dept#)*. Once viewed this way, it is 
not hard to see why the query may be merged since: 
Somijoin(Emp,Dept,Emp.Dept# = Dept. Dept#) = 
Project(Join(Emp,Dept), Emp.*) 

Whcrc Join (Emp, Dept) is on the predicate Emp.Dept# = 
Dopt . Dept# , The second argument of the Project opemto? 
indicates that all columns of the relation Emp must be retained. 

The problem is more complex when aggregates are present in the 
ncslcd subquery, as in the example below from [44] since merging 
query blocks now requires pulling up the aggregation without 
violating the semantics of the nested query: 
SELECT Dept. name 
FRON Dept 
WHERE Dept,num-of-machines 2 
(SELECT coum (Emp . * ) ~~01~ Emp 
WHERE Dep t , name= Emp . Dep t-name ) 

It is especially tricky to preserve duplicates and nulls. To 
nppreclate the subtlety, observe that if for a specific value of 
Dopb .name (say d), there are no tuples with a matching 
Emp,Dept:,name, i.e., even if the predicate Dept -name= 
Emp. dept,name fails, then there is still an output tuple for the 
Dept tuple d. However, if we were to adopt the transformation 
used in the first query of this section, then there will be no output 
tuplc for the dept d since the join predicate fails. Therefore, in 
the presence of aggregation, we must preserve all the tuples of the 
outer query block by a left metjoin. In particular, the above 
query can be correctly transformed to: 
SELECT Dept , name FROM Dept LEFT OUTER JOIN Emp 
ON (Dcpt,name= Emp.dept,name ) 
GROUP BY Dept.name 
HAVING Dept. num-of-machines c COUNT @rap.*) 

Thus, for this class of queries the merged single block query has 
outcrjoins. If the nesting structure among query blocks is linear, 
then this approach is applicable and transformations produce a 

’ Semijoin(A,B,P) stands for semijoin between A and B that 
prcservcs attributes of A and where P is the semijoin predicate. 

3 I assume that the operator does not remove duplicates. 

single block query that consists of a linear sequence of joins and 
outer-joins. It turns out that the sequence of joins and outer-joins is 
such that we can use the associative rule described in Section 
4.1.2 to compute all the joins first and then do all the outerjoins in 
sequence. Another approach to unnesting subqueries is to 
transform a query into one that uses table-expressions or views 
(and therefore, not a single block query). This was the direction of 
Kim’s work (3.51 and it was subsequently refined in [44]. 

4.3 Using Semijoin Like Techniques for 
Optimizing Multi-Block Queries 
In the previous section, I presented examples of how multi-block 
queries may be collapsed in a single block. In this section, 1 
discuss a complementary approach. The goal of the approach 
described in this section is to exploit the selectivity of predicates 
across blocks4 It is conceptually similar to the idea of using 
semijoin to propagate from a site A to a remote site B information 
on relevant values of A so that B sends to A no unnecessary 
tuples. In the context of multi-block queries, A and B are in 
different query blocks but are parts of the same query and 
therefore the transmission cost is not an issue. Bather, the 
information “received from A” is used to reduce the computation 
needed in B as well as to ensure that the results produced by B are 
relevant to A as well. This technique requires introducing new 
table expressions and views. For example, consider the following 
query from [56]: 
CREATE VIEW DepAvgSal As ( 

SELECT E-did, Avg(E.Sal) AS avgsal 
FROM Emp E 
GROUP BY E-did) 

SELECT E.eid, E-Sal 
FROM Emp E, Dept D, DepAvgSal V 
WHERE E-did = D-did AND E-did = V.did 
AND E-age c 30 AND D-budget > 100k 
AND E.sal > V.avgsal 

The technique recognizes that we can create the set of relevant 
E.did by doing only the join between E and D in the above 
query and projecting the unique E. did. This set can be passed to 
the view DepAvgSal to restrict its computation. This is 
accomplished by the following three views. 
CREATE VIEW partialresult AS 
(SELECT E-id, E.sal, E-did 
FROM Emp E, Dept D 
WHERE E.did=D.did AND E-age c: 30 
AND D-budget > lOOk) 

CREATE VIEW Filter AS 
(SELECT DISTINCT P-did FROM PartialResult P) 
CREATE VIEW LimitedAvgSal AS 
(SELECT E-did, Avg(E.Sal) AS avgsal 
FROM Emp E, Filter F 
WHERE E-did = F-did GROUP BY E.did) 

The reformulated query on the next page exploits the above views 
to restrict computation. 

’ Although this technique historically developed as a derivative of 
Magic Sets and sideways inforrnation passing [2], 1 find the 
relationship to semijoin more intuitive and less magical. 
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SELECT P,ei.d, P.sal 
FRO14 PartlalResult P, LimitedDepAvgSal V 
V!HERE P,did = V.did AND P.sal > V.avgsal 

The above technique can be used in a multi-block query 
containing view (including recursive view) definitions or nested 
subqueries [42,43,56,57]. In each case, the goal is to avoid 
redundant computation in the views or the nested subqueries. It is 
also important to recognize the tradeoff between the cost of 
computing the views (the view PartialResult in the example 
above) and USC of such views to reduce the cost of computation. 

The formal relationship of the above transformation to semijoin 
has rcccntiy been presented in [56] and may form the basis for 
integration of this strategy in a cost-based optimizer. Note that a 
dgcncratc application of this technique is passing the predicates 
across query blocks instead of results of views. This simpler 
technique has been used in distributed and heterogeneous 
databases and generalized in [36]. 

5. STATISTICS AND COST ESTIMATION 
Given a query, there arc many logically equivalent algebraic 
cxprcssions and for each of the expressions, there are many ways 
to impicment them as operators, Even if we ignore the 
computational complexity of enumerating the space of 
posdbilities, there remains the question of deciding which of the 
operator trees consumes the least resources. Resources may be 
CPU time, J/O cost, memory, communication bandwidth, or a 
combination of these. Therefore, given an operator tree (partial or 
complete) of a query, being able to accurately and efficiently 
cvnluatc its cost is of fundamental importance. The cost 
estimation must be accurate because optimizurion is only as good 
as its cost cs~brrat~~~ Cost estimation must be efficient since it is 
In the inner loop of query optimization and is repeatedly invoked. 
The basic estimation framework is derived from the System-R 
approach: 

I, Collect statistical summaries of data that has been stored. 

2, Given an operator and the statistical summary for each of its 
input data streams, determine the: 

(a) Statistical summary of the output data stream 

(b) Estimated cost of executing the operation 

Step 2 can be applied iteratively to an operator tree of arbitrary 
depth to derive the costs for each of its operators. Once we have 
the costs for each of the operator nodes, the cost for the plan may 
bc obtained by combining the costs of each of the operator nodes 
in the tree, In Section 5.1, we discuss the statistical parameters 
for the stored data that are used in cost optimization and efficient 
ways of obtaining such statistical information. We also discuss 
how to propagate such statistical information. The issue of 
estimating cost for physical operators is discussed in Section 5.2. 

It is important to recognize the differences between the nature of 
the statistical property and the cost of a plan. The statistical 
property of the output data stream of a plan is the same as that of 
any other plan for the same query, but its cost can be different 
from other plans. In other words, statistical summary is a logical 
property but the cost of a plan is a physical property. 

5.1 Statistical Summaries of Data 
51.1 Statistical Information on Base Data 
For every tabIe, the necessary statistical information includes the 
number of tuples in a data stream since this parameter determines 
the cost of data scans, joins, and their memory requirements, In 
addition to the number of tupIes, the number of physical pages 
used by the table is important. Statistical information on columns 
of the data stream is of interest since these statistics can be used to 
estimate the selectivity of predicates on that column. Such 
information is created for columns on which there are one or more 
indexes, although it may be created on demand for any other 
column as well. 

In a large number of systems, information on the data distribution 
on a column is provided by histograms. A histogram divides the 
values on a column into k buckets. In many cases, k is a constant 
and determines the degree of accuracy of the histogram. However, 
k also determines the memory usage, since while optimizing a 
query, relevant columns of the histogram are loaded in memory. 
There are several choices for “bucketization” of values. In many 
database systems, equi-depth (also called equi-height) histograms 
are used to represent the data distribution on a column. If the table 
has n records and the histogram has k buckets, then an equi-depth 
histogram divides the set of values on that column into k ranges 
such that each range has the same nrtmber of values, i.e., n/k. 
Compressed histograms place frequently occurring values in 
singleton buckets. The number of such singleton buckets may be 
tuned. It has been shown in [52] that such histograms are effective 
for either high or low skew data. One aspect of histograms 
relevant to optimization is the assumption made about values 
within a bucket. For example, in an equi-depth histogram, values 
within the endpoints of a bucket may be assumed to occur with 
uniform spread. A discussion of the above assumption as well as a 
broad taxonomy of histograms and ramifications of the histogram 
structures on accuracy appears in 1521. In the absence of 
histograms, information such as the min and mar of the values in 
a column may be used. However, in practice, the second lowest 
and the second highest values are used since the min and mar 
have a high probabitity of being outlying vaIues. Histogram 
information is complemented by information on parameters such 
as number of distinct values on that column 

Although histograms provide information on a single column, 
they do not provide information on the correfufions among 
columns. In order to capture correlations, we need the joint 
distribution of values. One option is to consider 2-dimensional 
histograms [45,51]. UnfortunateIy. the space of possibilities is 
quite large. In many systems, instead of providing detailed joint 
distribution, only summary information such as the number of 
distinct pairs of values is used. For example, the statistical 
information associated with a multi-column index may consist of 
a histogram on the leading column and the total count of distinct 
combinations of column values present in the data. 

5.1.2 Estimating Statistics on Base Data 
Enterprise class databases often have large schema and also have 
large volumes of data. Therefore, to have the flexibility of 
obtaining statistics to improve accuracy, it is important to be able 
to estimate the statistical parameters accurately and efficiently, 
Sumphg data provides one possibIe approach. However, the 
challenge is to limit the error in estimation. In [48]. Shapiro and 
Connell show that for a given query, only a small sample is 



needed to estimate a histogram that has a high probability of being 
nccuratc@ //IC given query. However, this misses the point since 
the goal is to build a histogram that is reasonably accurate for a 
lurgc class oi qmzries, Our recent work has addressed this 
problem [I I]. We have also shown that the task of estimating 
distinct values is provably error prone, i.e., for any estimation 
schcmc, there exists a database where the error is significant. This 
result explains the past difficulty in estimation of the number of 
distinct values [50,27]. Recent work has also addressed the 
problem of maintaining statistics in an incremental fashion [18]. 

5.1.3 Propagation of Statistical Information 
It is not sufticient to use information only on base data because a 
query typically contains many operators. Therefore, it is important 
to be able to propagate the statistical information through 
operators, T!tc simplest case of such an operator is selection. If 
there is a histogram on a column A and the query is a simple 
selection on column A, then the histogram can be modified to 
reflect the effect of the selection. Some inaccuracy results in this 
step due to assumptions such as uniform spread that needs to be 
made within a bucket. Moreover, the inability to capture 
correlation is a key source of error. In the above example, this will 
bc rcflcctcd in ltor modifying the distribution of other attributes 
on the table (except A) and thus incurring potentially significant 
errors in subsequent operators, Likewise, if multiple predicates are 
prcscnt, then the independence assumption is made and the 
product of the selectivity is considered. However, some systems 
only USC the selectivity of the most selective predicate and can 
nlso Identify potential correlation [17]. In the presence of 
histograms on columns involved in a join predicate, the 
histograms may be “joined”. However, this raises the issue of 
aligning the corresponding buckets. Finally, when histogram 
information is not available, then ad-hoc constants are used to 
estimate selectivity, as in [55]. 

5.2 Cost Computation 
The cost estimation step tries to determine the cost of an 
operation, The costing module estimates CPU, I/O and, in the 
cast of parallel or distributed systems, communication costs. In 
most systems, these parameters are combined into an overall 
metric that is used for comparing alternative plans. The problem 
of choosing an appropriate set of to determine cost requires 
considerable care, An early study [40] identified that in addition 
to the physical and statistical properties of the input data streams 
nnd the computation of selectivity, modeling buffer utilization 
plnys a key role in accurate estimation. This requires using 
different buffer pool hit ratios depending on the levels of indexes 
as well as adjusting buffer utilization by taking into account 
properties of join methods, e.g., a relatively pronounced locality 
of rcfcrcnce in an index scan for indexed nested loop join [17]. 
Cost models take into account relevant aspects of physical design, 
c,g,, co-location of data and index pages. However, the ability to 
do nccuratc cost estimation and propagation of statistical 
information on data streams remains one of the difficult open 
issues in query optimization. 

6. ENUMERATION ARCHITECTURES 
An enumeration algorithm must pick an inexpensive execution 
plan for a given query by exploring the search space. The System- 
R join enumerator that we discussed in Section 3 was designed to 
choose only an optimal linear join order. A software engineering 

consideration is to build the enumerator so that it can gracefully 
adapt to changes in the search space due to the addition of new 
transformations, the addition of new physical operators (e.g., a 
new join implementation) and changes in the cost estimation 
techniques. More recent optimization architectures have been 
built with this paradigm and are called extensible optimizers. 
Building an extensible optimizer is a tall order since it is more 
than simply coming up with a better enumeration algorithm. 
Rather, they provide an infrastructure for evolution of optimizer 
design. However, generality in the architecture must be balanced 
with the need for efficiency in enumeration. 

We focus on two representative examples of such extensible 
optimizers: Sturburst and VolcunolCuscudes briefly. Despite their 
differences, we can summarize some of the commonality in them: 
(a) Use of generalized cost functions and physical properties with 
operator nodes. (b) Use of a rule engine that allows 
transformations to modify the query expression or the operator 
trees. Such rule engines also provide the ability to direct search to 
achieve efficiency. (c) Many exposed “knobs” that can be used to 
tune the behavior of the system. Unfortunately, setting these 
knobs for optima! performance is a daunting task 

6.1 Starburst 
Query optimization in the Starburst project [26] at IBM Almaden 
begins with a structural representation of the SQL query that is 
used throughout the lifecycle of optimization. This representation 
is called the Query Graph Model (QGM). In the QGM, a box 
represents a query bIock and labeled arcs between boxes represent 
table references across blocks. Each box contains information on 
the predicate structure as well as on whether the data stream is 
ordered. In the query rewtite phase of optimization [49]. rules are 
used to transform a QGM into another equivalent QGM. Rules are 
modeled as pairs of arbitrary functions. The first one checks the 
condition for applicability and the second one enforces the 
transformation. A forward chaining rule engine governs the rules. 
Rules may be grouped in rule classes and it is possible to tune the 
order of evaluation of rule classes to focus search. Since any 
appIication of a rule results in a valid QGM. any set of rule 
applications guarantee query equivalence (assuming rules 
themselves are valid). The query rewrite phase does not have the 
cost information available. This forces this module to either retain 
ahematives obtained through rule application or to use the rules in 
a heuristic way (and thus compromise optimality). 
The second phase of query optimization is called plan 
optimization. In this phase, given a QGM. an execution plan 
(operator tree) is chosen. In Starburst, the physical operators 
(called LOLEPOPs) may be combined in a variety of ways to 
implement higher level operators. In Starburst, such combinations 
are expressed in a grammar production-like language [37]. The 
realization of a higher-level operation is expressed by its 
derivation in terms of the physical operators. In computing such 
derivations, comparable plans that represent the same physical 
and logical properties but have higher costs, are pruned. Each 
plan has a relational description that corresponds to the algebraic 
expression it represents, an estimated cost, and physicuf properties 
(e.g.. order). These properties are propagated as plans are built 
bottom-up. Thus, with each physical operator, a function is 
associated that shows the effect of the physical operator on each 
of the above properties. The join enumerator in this system is 
similar to System-R’s bottom-up enumeration scheme. 
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6.2 Volcano/Cascades 
The Volcano [23] and the Cascades extensible architecture [21] 
evolved from Exodus [22]. In these systems, rules are used 
universally to represent the knowledge of search space. Two kinds 
of rules are used. The transformation rules map an algebraic 
cxprcssion into another, The implementation rules map an 
algebraic expression into an operator tree. The rules may have 
conditions for applicability. Logical properties, physical 
properties and costs are associated with plans. The physical 
properties and the cost depend on the algorithms used to 
implement operators and its input data streams. For efficiency, 
Volcano/Cascades uses dynamic programming in a top-down way 
(“memoization”), When presented with an optimization task, it 
checks whether the task has already been accomplished by 
looking up its logical and physical properties in the table of plans 
that have been optimized in the past. Otherwise, it will apply a 
logical transformation rule, an implementation rule, or use an 
enforcer to modify properties of the data stream. At every stage, it 
uses the promise of an action to determine the next move. The 
promise parameter is programmable and reflects cost parameters. 

The Volcano/Cascades framework differs from Starburst in its 
approach to enumeration: (a) These systems do not use two 
distinct optimization phases because all transformations are 
algebrnlc and cost-based. (b) The mapping from algebraic to 
physical operators occurs in a single step. (c) Instead of applying 
rules in a forward chaining fashion, as in the Starburst query 
rcwrltc phase, Volcano/Cascades does goal-driven application of 
rules, 

7. BEYOND THE FUNDAMENTALS 
So far I have covered the basics of the software components of the 
optimizer. In this section, I discuss some of the more advanced 
issues, Each of these issues is of considerable importance in 
commercial systems. 

7.1 Distributed and Parallel Databases 
Distributed databases introduce issues of communication costs 
and an expanded search space due to the fact that it is possible to 
move data and choose sites for intermediate operations in 
optimlzlng a query, While some of the early work focused almost 
cxclusivcly on reducing communication costs [I,31 (e.g., using 
scmijoins), results from System R* pointed out the dominant role 
of local processing [39] (See [38] for an overview). Over time, 
distributed database architectures have evolved into either 
rcpllcnted databases to handle physical distribution or to parallel 
databases for scale-up. In replicated architectures, maintaining 
consistency across replicas is an important issue but is beyond the 
scope of this article. 

Unlike distributed systems, Parallel databases behave as a single 
system but exploit multiple processing elements to reduce the 
response the5 of queries. Benefits of parallelism may be 
harnessed in several ways. For example, physical data 
distribution, where a table (in general, a data stream) is partitioned 
or replicated among nodes, enables processors to work on 

/ ’ In single processor systems, the key focus has been reducing 

I 
total work, Parallel execution attempts to reduce response rather 
than work, Indeed, in many cases , although not necessarily, 

, , parallel execution increases total work. 
, 

I 
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independent data sets. Parallelism may also be harnessed for 
independent operation or pipelined operation (by placing the 
producer and the consumer nodes on different processors). The 
advantages of parallelism are counteracted by the need for 
communication among the processors to exchange data, e.g., 
when data needs to be repartitioned after an operation. 
Furthermore, effective scheduling of physical operators on 
processors brings a new dimension to the optimization problem. 
The XPRS project [31,32] advocated a two-phase approach where 
traditional single processor query optimization is used to generate 
an execution plan in the first phase. In the second phase, 
scheduling of processors was determined. The query optimization 
work in XPRS did not study the effects of processor 
communication. Work by Hasan 1281 demonstrated the 
importance of taking communication costs into account. Hasan 
retained the two-phase optimization framework used in XPRS, 
but incorporated the cost and benefits of data repartitioning in the 
first phase of the optimization to determine the join order and the 
access methods used. The partitioning attribute of a data stream 
was treated as a physical property of the data stream. The output 
of the first phase is a physical operator tree that exposes 
precedence constraints (e.g., for sorting) and pipelined execution. 
For the second phase of optimization, he proposed scheduling 
algorithms that take into account communication costs [28]. 

7.2 User-Defined Functions 
Stored procedures (also called user-defined functions) have 
become widely avaiIable in relational systems. While their support 
varies from one product to another, they provide a powerful 
mechanism to reduce client-server communication and provide 
the means for incorporating application semantics in querying. 
New optimization questions arise when such stored procedures 
are treated as first-order citizens in the query. The problem of 
determining the cost model of user-defined functions remains a 
difficult problem. Interesting issues also arise in the context of the 
enumeration algorithm. For example, consider the case when the 
stored procedure acts as a user-defined predicate in the WHERE 
clause of a query. Unlike other predicates, such predicates may be 
expensive (e.g., since they may be predicates on a BLOB such as 
an image) and therefore it is no longer a sound heuristic to 
evaluate such predicates as early as possible. The problem of 
optimizing queries with user-defined predicates was posed in 
[12,29]. The approach taken in [ 121 has been to treat the user- 
defined predicates as a relation from the point of view of dynamic 
query optimization. The approaches in 129,301 exploit the 
observation that if there are no joins, then the expensive 
predicates may be ordered efficiently by their ranks, computed 
from their selectivity and per tuple cost of evaluation. 
Unfortunately, their attempt to extend the use of ranks for queries 
with joins may result in suboptimal plans. This shortcoming is 
resolved in [8] by representing the application of user-defined 
predicates like a physicaI property of a plan so that the dynamic- 
programming-based enumeration algorithm guarantees optimality. 
Moreover, for realistic assumptions of the cost model, it is shown 
that the probIem is polynomial in the number of user-defined 
predicates. 

Solving the problem of optimizing user-defined predicates is only 
a first step in the broader problem of representing the semantics of 
ADTs in a query system and optimizing queries over ADTs. This 
problem is also intimately tied to the area of semantic query 
optimization. 



7.3 Materialized Views 
Materialized views are results of views (i.e., queries) that are 
cached by the querying subsystem and used by the optimizer 
transparently. The optimization problem is as follows: Given a set 
of materialized views and a query, the goal is to optimize the 
query while taking into account the materialized views that are 
present, This problem introduces two fundamental challenges. 
First, the problem of reformulating the query so that it can use one 
or more of the materialized views must be addressed. ‘The general 
problem is undecidable and even determining effective sufficient 
conditions are nontrivial due to the complexity of SQL. This 
problem has been addressed in the context of single block SQL 
queries only [l&61,59,9] and must be extended for complex 
queries, Next, approaching the optimization problem as a two step 
process, where all logically equivalent expressions are generated 
and each one of them is individually optimized, may increase the 
cost of optimization since subexpressions are not pruned in a cost- 
based way. In [9], we showed how the steps of enumerating and 
generating cquivalcnt expressions in the presence of materialized 
views may be overlapped. 

7.4 Other Optimization Issues 
In this paper, I have been able to touch only on some of the 
foundational issues in query optimization. There are many 
importnnt areas that I have not discussed. One interesting 
direction is that of being able to defer generation of complete 
plans subject to availability of nmtime information [19,33]. Also, 
the problem of considering other resources, especially memory, in 
determining execution plans remains an open issue. The work in 
[SS] addresses the issue of optimizing the use of order in query 
optimization. Optimizer technology in Object-Oriented Systems is 
an important area that is worthy of a separate discussion. 
Furthermore, as database systems get used in multimedia and web 
context, being able to address fuzzy (imprecise) queries is an 
interesting direction of work [14,10]. Recent emphasis on 
decision support systems has also sparked work in SQL 
extensions, Such work, as in CUBE [24], is not motivated by the 
need for expressive power, but rather seeks to extend the language 
so that the optimizer can use the constructs to optimize decision 
support systems better, 

8. CONCLUSION 
Optimization is much more than transformations and query 
equivalence. The infrastructure for optimization is significant. 
Designing effective and correct SQL transformations is hard, 
developing a robust cost metric is elusive, and building an 
extensible enumeration architecture is a significant undertaking. 
Despite many years of work, significant open problems remain. 
However, an understanding of the existing engineering framework 
is necessary for making effective contribution to the area of query 
optimization, 
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