
Engineering 100 Final Exam

Microprocessors and Music

Fall 2007

Name: ____________________________________ unique name: _______________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

Points

1 /25

2 /25

3 /25

4 /25

5 /20

Total /120

Extra

Credit

/10

NOTES:

 Closed book, closed notes

 There are 9 pages including this one The last 2 are handouts, you may rip them out!

 Calculators are allowed, but no PDAs, Portables, Cell phones, etc. You may not store any

information in your calculator relevant to this class.

 You have 60 minutes for this exam.

 Be sure to show work and explain what you’ve done when asked to do so. Getting partial

credit without showing work will be rare.

 The extra credit is very hard. We’d suggest you don’t start on it unless you have

everything else done and checked over.

1. The VGA controller specification includes the following description:

The VGA controller maintains a 2-dimensional array of 8-bit values in video memory.

The width of the array is 640 (0-639), and the height of the array is 480 (0-479). Each

value represents the color of a pixel: bits 5-4 specify the amount of red; bits 3-2 specify

the amount of green; and bits 1-0 specify the amount of blue (bits 7-6 have no effect on

the color displayed on the screen).

You are to write an E100 assembly function, called mergeC where you are passed three

arguments mergeC_red, mergeC_green, and mergeC_blue. These will each be values

between 0 and 3. Your function is to merge these three colors into one variable for use as the

VGA_color_write value (port number 67). The return value should be called mergeC_rv.

The call(s) to this function look like this:

 call mergeC mergeC_ra

Color merge: 25 points

2. Say in version 2.0 of the E100 the SD card functionality were improved to allow the

specification of an address (though it remains read only).

80 in bit 0: sd_valid

SDRAM memory

81 out bit 0: sd_ack

82 out bits 15-0: sd_x[15:0]

83 out bits 15-0: sd_y[15:0]

84 in bit 15-0: sd_data [15:0]

Which SD card word is being read is specified by an (x,y) coordinate. x and y are each 16

bits. The SD card controller handles the low-level details of communicating with SD card.

E100 programs interact with the SD card controller via I/O ports 80-84. These ports provide

the following signals listed above.

sd_valid and sd_ack implement a protocol similar to the standard input protocol. The data

being transferred from the SD card controller to the E100 program is sd_read and the

location is specified a unique sd_x and sd_y.

You are to write a device driver function in the E100 assembly language for this device. The

caller will pass in two arguments SDriver_X and SDriver_Y and you are to return the value

located at that xy location in a variable called SD_rv. The call(s) to this function look like

this:

 call SDriver SDriver_ra

SD card driver: 25 points

3. Digital logic

a. To the left of this truth table, write a logic equation which generates the same output

as this truth table. [10 points]

A B C Out

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

Out=

b. Draw a CMOS circuit that implements the equation A&B&C using 12 or fewer

transistors. [15 points]

Digital Logic: 25 points

4. Say I want a device that counts to 3 (from 0) 2 bits and after it gets to 3 it goes back to 1 (so

0,1,2,3,1,2,3,1,2,3, etc.) Fill in the following templates to complete a Verilog module called

“counter” which accomplishes this task. The top module takes a clock as in input and outputs

the current count. Where a line is only partly completed a blank is specifically drawn, in

addition you need to fill in any other needed code.

module add(

 input wire [1:0] in,

 output reg [1:0] out);

 always @* begin

 end

endmodule

module register(

 input wire clock,

 input wire write,

 input wire [1:0] data_in,

 output reg [1:0] data_out);

 always ____________

endmodule

module counter(

 input wire clock,

 output _______________

);

endmodule

Verilog: 25 points

5. Answer the following questions

a. For a large server farm (where 1000s of computers might be housed) the power consumption

of the processors not only matters because of the electric bill and wiring

for those servers, but also because of the cost to

___ [4]

b. For a single high-performance computer (say a high-end gaming machine where cost isn’t

too much of an issue) the power consumption of the processor matters mainly

because __ [4]

c. In no more than 50 words, explain how power consumption issues have led to multi-core

processors (more than one processor on a single chip) becoming common. [6]

d. Someone has proposed that the speaker driver should play at a 40 KHz sampling rate rather

than a 8 KHz sampling rate. In no more than 50 words, explain the advantages and

disadvantages of doing this. [6]

Notes:

1. Type in verilog code and test

2. Change transistor question to fill-in-the-table and get points right.

Short answer: 20 points

Main call fact fact_ra

 out 3 fact_rv

 halt

fact blt done fact_arg two

 cp push_arg fact_ra

 call push push_ra

 sub fact_arg fact_arg one

 cp push_arg fact_arg

 call push push_ra

 call fact fact_ra

 call pop pop_ra

 cp push_arg fact_rv

 call push push_ra

 sub fact_arg pop_rv two

 call fact fact_ra

 call pop pop_ra

 add fact_rv pop_rv fact_rv

 call pop pop_ra

 cp fact_ra pop_rv

 ret fact_ra

done cp fact_rv one

 ret fact_ra

fact_ra .data 0

fact_rv .data 0

fact_arg .data 5

push cpta push_arg stack index

 add index index one

 ret push_ra

push_ra .data 0

push_rv .data 0

push_arg .data 0

pop sub index index one

 cpfa pop_rv stack index

 ret pop_ra

pop_ra .data 0

pop_rv .data 0

pop_arg .data 0

one .data 1

two .data 2

index .data 0

stack .data

a. What’s with all the calls to push and pop? Why

are they needed? [2 points]

b. What value is displayed to the HEX display? You

must explain your answer. [4 points]

c. The program on the side is supposed to compute

the Fibonacci sequence (that’s where f(n)=f(n-

1)+f(n-2), and f(0)=1 and f(1)=1). It doesn’t. To

fix it you may change up to three lines of code,

Explain why you made those changes. [4 points]

Extra Credit: 10 points

Port number Port type Definition Use

0 in bits 15-0: DPDT_SW[15:0] binary input

1 out bits 15-0: LED_RED[15:0] binary output

2 out bits 7-0: LED_GREEN[7:0] binary output

3 out bits 15-0: displayed on HEX3-HEX0 hexadecimal output

4 out bits 15-0: displayed on HEX7-HEX4 hexadecimal output

5 in bits 15-0: real-time clock measure time

10 out bit 0: lcd_valid

LCD display

11 in bit 0: lcd_ack

12 out bits 3-0: lcd_x[3:0]

13 out bit 0: lcd_y

14 out bit 7-0: lcd_ascii[7:0]

20 in bit 0: ps2_valid

PS/2 keyboard
21 out bit 0: ps2_ack

22 in bit 0: ps2_pressed

23 in bits 7-0: ps2_ascii[7:0]

30 out bit 0: sdram_valid

SDRAM memory

31 in bit 0: sdram_ack

32 out bit 0: sdram_write

33 out bits 10-0: sdram_x[10:0]

34 out bits 10-0: sdram_y[10:0]

35 out bit 15-0: sdram_data_write[15:0]

36 in bit 15-0: sdram_data_read[15:0]

40 out bit 0: speaker_valid

speaker 41 in bit 0: speaker_ack

42 out bits 15-0: speaker_sample[15:0]

50 in bit 0: microphone_valid

microphone 51 out bit 0: microphone_ack

52 in bits 15-0: microphone_sample[15:0]

60 out bit 0: vga_valid

VGA monitor

61 in bit 0: vga_ack

62 out bit 0: vga_write

63 out bits 9-0: vga_x1[9:0]

64 out bits 8-0: vga_y1[8:0]

65 out bits 9-0: vga_x2[9:0]

66 out bits 8-0: vga_y2[8:0]

67 out bit 7-0: vga_color_write[7:0]

68 in bit 7-0: vga_color_read[7:0]

70 in bit 0: mouse_valid

USB mouse

71 out bit 0: mouse_ack

72 in bits 15-0: mouse_deltax

73 in bits 15-0: mouse_deltay

74 in bit 0: mouse_button1

75 in bit 0: mouse_button2

76 in bit 0: mouse_button3

80 in bit 0: sd_valid

SD card 81 out bit 0: sd_ack

82 in bits 15-0: sd_data[15:0]

nstruction name Opcode Effect

halt 0
PC = PC+4

stop executing instructions

add 1
PC = PC+4

memory[addr0] = memory[addr1] + memory[addr2]

sub 2
PC = PC+4

memory[addr0] = memory[addr1] - memory[addr2]

mult 3
PC = PC+4

memory[addr0] = memory[addr1] * memory[addr2]

div 4
PC = PC+4

memory[addr0] = memory[addr1] / memory[addr2]

cp 5
PC = PC+4

memory[addr0] = memory[addr1]

and 6
PC = PC+4

memory[addr0] = memory[addr1] & memory[addr2]

or 7
PC = PC+4

memory[addr0] = memory[addr1] | memory[addr2]

not 8
PC = PC+4

memory[addr0] = ~memory[addr1]

sl 9
PC = PC+4

memory[addr0] = memory[addr1] << memory[addr2]

sr 10
PC = PC+4

memory[addr0] = memory[addr1] >> memory[addr2]

cpfa 11
PC = PC+4

memory[addr0] = memory[addr1 + memory[addr2]]

cpta 12
PC = PC+4

memory[addr1 + memory[addr2]] = memory[addr0]

be 13

if (memory[addr1] == memory[addr2]) {

 PC = addr0

} else {

 PC = PC+4

}

bne 14

if (memory[addr1] != memory[addr2]) {

 PC = addr0

} else {

 PC = PC+4

}

blt 15

if (memory[addr1] < memory[addr2]) {

 PC = addr0

} else {

 PC = PC+4

}

Comparisons take into account the sign of the

number. E.g., 16'hffff (-1) is less than 16'h0000 (0).

call 16
memory[addr1] = PC+4

PC = addr0

ret 17 PC = memory[addr0]

in 18
PC = PC + 4

memory[addr1] = data from I/O port addr0

out 19
PC = PC + 4

I/O port addr0 = memory[addr1]

