EECS 100 Final Exam
Fall 2010, Engineering Part

Name: unique name:

Sign the honor code:

| have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:
Page # Points
2 /10
3 /10
4 /15
S| /15
6 /10
7 /10
Total /70
NOTES:
e Closed notes. You may have a calculator and a writing implement. That’s it.

e Be aware that there are two reference sheets at the end of the exam you may wish to rip out.
e Be sure to show work and explain what you’ve done when asked to do so. Getting partial credit
without showing work will be rare.

Page | 1

For purposes of this section you are to assume ‘+" is “OR”, ‘“* is “AND” and ‘!’ is NOT.

1) Logic
a) Fillin the following truth table for the function !(A+B)*IC. [3]

A|B|c[1(A+B)*IC
0|0]|O0
0|01
0|1]|0
o|1]|1
1(0(0
1(0(1
1(11(0
11111

b) Write a logic equation which corresponds to the following truth table. [4]

A/B|C|OUT
ojojo] 1
ojoj1] O
0oj1]0] O
0j1]1] 1
1/0/0] 1
1/0]1] O
1/1]0] O
1/1]1] o0

c) Draw gates which correspond to the logic equation !(A+B)*(A+C)*D. [3]

Page | 2

2) The following is code that is supposed to interface with an 1/0 device called BOB.

BOB driver in 200 BOB a
bne BOB driver BOB a BOB one
in 201 BOB c
out 202 BOB one

BOB wait in 200 BOB a
bne BOB wait BOB a BOB zero
out 202 BOB zero
ret BOB ra

BOB a .data 10

BOB b .data 20

BOB c .data 30

BOB one .data 1

BOB zero .data 0

BOB ra .data 0

a. Isthis aninput device (receiving data from the e100 program) or an output device (sending data to the
€100 program)? [3]

b. Which ports in the above code are associated with valid, ack, and data? [3]

valid =
ack =

data =

c. Depending on whether BOB is an input/output device, write a sequence of no more than three
instructions to properly call BOB_driver and to send/retrieve data to/from the driver. If BOB is an input
device, copy the data into a variable called “data_bob”. If BOB is an output device, copy the data from
“data_bob”. [4]

Page | 3

3) The unit step function u(x) returns a 1 if x is zero or more and otherwise returns a 0. Write an E100
assembly function which implements this unit step function. The function is to be named “U” and it takes
one argument, U_x, and returns one value, U_rv. The return address should be placed in U_ra. All variables

used by this function should be declared in the function and should follow our standard naming conventions.
[15]

Page | 4

4) Write an e100 assembly program which turns all of the green LEDs on if dipswitch 4 (DPDT_SWI[4]) is a “1”
and turns them off that switch is a ”0”. As long as the program is running any change in dipswitch 4 should

cause the green LEDs to update appropriately. The other dipswitches could have any value and should be
ignored. [15]

Page | 5

5) Using no more than 12 transistors draw a three-input OR gate in CMOS logic. [5]

6) Using only AND, OR and NOT gates, draw a circuit which implements a three-input XOR gate. [5]

Page | 6

7) Short answer
a) One debate in the e-waste field is if we should use lead-based solder in our electronics. Provide one
good reason to use lead-based solder and one good reason not to use it. [2]

Reason to use it:

Reason not to use it:

b) When programming the E100, all values are kept in memory. In a real computer we instead use
registers, loading and storing values from memory into and out of the registers. What are some
advantages of doing this? [3]

8) Provide the 6-bit two-complement representation for the following values. If the value can’t be represented
write “no such representation” instead. [5]

a) -12

b) 55

d) 16

Page | 7

Instrnm'nn name I'Dptndt I Effect
PZ = FC+4
halt o 3tTop eXecuting instructicns
add PZ = FC+4
mory [addrd] = memory[addrl] + memcry[addri]
<ub 2 PZ = FC+4
mory [addrd] = memory[addrl] - memcry[addri]
ol PZ = FC+4
mory [addrd] = memory[addrl] * memcry[addri]
div PZ = FC+4
mory [addrd] = memory[addrl] / memcry[addri]
- PZ = FC+4
P mory [addrd] = memory[addrl]
and PZ = FC+4
mory [addrd] = memory[addrl] & memcry[addri]
7 PZ = FC+4
or mory [addrd] = memory[addrl] | memcry[addri]
¢ 3 PZ = FC+4
e mory [addrd] = ~memory [addrl]
) 9 PZ = FC+4
mory [addrd] = memory[addrl] << memory[addrz]
ar 10 PZ = FC+4
mory [addrd] = memory[addrl] >> memory[addrz]
1 PZ = FC+4
cpia mory [addrd] = memory[addrl + memory[addri]]
a 12 PZ = FC+4
P mory[addrl + memory[addrZ]] = memcry[addrd]
if (memory([addrl] == memcryl[addrZ]) |
PC = addrd
be 13 } elze |
PC = PC+4
}
if (memory([addrl] !'= memcryl[addrZ]) |
PC = addrd
e 14 |} =132 |
BZ = FC+4
}
if (memory[addrl] < memory[addrZ]) |
PC = addrd
} else |
blt 15 } BZ = FC+4
Comparisons take into account the sign of the
[mumber. E. g 16 (-1) iz less than 16W0000 (0},
mory [addrl] = PC+4
call 16 IJ;E = addr0
| ret 17 |PC = memory[addr0]
in 18 PZ = EFC + 4
mory[addrl] = data from I70 port addrl
PZ = EFC + 4
out 19 L!ﬂ port addrl = memory[addrl]

Page | 8

F‘nﬂnnmhtr |Pncrttyp!| Definiion I Tse

| 0 | i [bits 15-0: DEDT_SW[15:0] | binary input
| 1 | out |bats 15-0: LED_RED[15:0] | bmary output
| 2 | out |bats 7-0: LED_GREEN[7:0] | bmary output
| 3 | out |bits 15-0: displayed on HEX3-HEX0 [hexadecimal output
| 4 | out |[bits 15-0: displayed on HEX7-HEX4 hexadecimal output
| 3 | m |bits 15-0: real-time clock | measurs time
| 1 | out |bit0:led vahid

| | m |betO:led ack

|12 | out |bts 3-0: led_x[3:0] LCD display
I 13 | out lert 0:led v

| 14 | out |[bit 7-0: lod_ascii[7:0]

| 20 | m bt 0:psd_valid

| 2 | uu: [lnt 0:ps2_ack PS/2 keyboard
I 2 | m lelt 0 p=2_pressed

| B | m [bts 7-0: ps2_aseii[7-0]

I 30 | out I'lxrt 0: sdram_valid

ED | m |bet 0 sdram_ack

| = | out |bat0:sdram write

| | out |bats 10-0: sdram x[10:0] SDEAM memory
R | out |bits 10-0: sdram_{10:0]

| 35 | out |[bit 15-0: sdram_data_writa[15:0]

| 3 | m |bet 15-0: sdram_data_read[15:0]

I 40 | out I'lxrt 0: speaker_wvahd

|4 | m |batO: speaker_ack speaker

| o# | out |bits 15-0: speaker_sample[15:0]

I 50 | m lert 0 mecrophone valid

| 51 | out |bit (- microphone_ack microphone
| 52 | m |bits 15-0: micvophone_sample[15:0]

| 60 | out |bit0:vza_valid

I &l | m Il}:l't 0:wvza_ack

I 62 | out lelt 0 vza_wiite

I 63 | out lerts 90: vga_=x1[9:0]

I 64 | out I'lxrts 8-0: wga_vI1[8:0] VGA monitor
| 65 | out |[bits 9-0: vea_x2[9:0]

| 66 | out |bts 8-0: vea_v2[8:0]

I &7 | out lelt T-0:vza_color_write]7-0]

I [| m lert T-0:vza_color_read[7:0]

I T0 | m I'lxrt 0: mouse_wvalid

I 71 | out I'lxrt 0: meuse_ack

| m | m |bats 15-0: mouse_deltax

I 73 | m leﬂs 150 mouze_deltay USB mouse
I 74 | m lelt 0 mouse_buttenl

I 75 | m I'lxrt 0: mouss_button?

I 76 | m I'lxrt 0: mense_buttond

| 8 | m |bit0 sd valid

| a8 | out |bat0:sd ack 5D card

| ®= | m|bets 1540 sd_dasa[15:0]

Page | 9

