
Engin 100 (section 250), Winter 2015, Lecture 1 Page 1 of 6

 Use pencil!

Mark Brehob—Electrical Engineering and Computer Science
Erik Hildinger—Technical Communications

Overview
Welcome to Engineering 100, Microprocessors and Toys!

Today’s class will be broken into a few different parts:

 Introduction to the staff, the class and a general overview of what we’ll be doing.

 Discussion about engineering and abstraction

 Introduction to digital logic

For more technical aspects of the class, there will typically be a handout of some sort and the lecture will primarily be on
the board.

Introduction to Engineering
What’s an engineer? Definition, characteristics, job description etc.

 How does an engineer differ from a tradesperson? Electrical engineer vs. electrician? Mechanical engineer vs.

car mechanic?

 How does an engineer differ from a scientist?

One definition:

Scientific and mathematical principles
Applies...to practical ends
Design, manufacture, test and operate (In other words different phases of a system’s lifetime.)

Engin 100 (section 250), Winter 2015, Lecture 1 Page 2 of 6

Different types of engineers

What are some types?

What makes them different?

What do you suppose computer engineering is?

Class overview
Goal: experience the life cycle of a substantial computer engineering project

Microprocessor-based educational toy

 microprocessor: general-purpose, programmable computer

 device drivers for I/O devices

 educational toy (runs as application on your microprocessor).

 User interacts with toy via input/output devices.

 Toy responds according to custom algorithm, computed on your microprocessor.

 Examples:
o music synthesizers, interactive stuffed animals, video communicators, rhythm/music games, talking

globes, interactive audio books, ...

Project done on development board: Altera DE2 FPGA (field-programmable gate array)

 SRAM, SDRAM

 LEDs

 switches and buttons

 PS/2 keyboard

 USB mouse

 audio interface (speaker, microphone)

 VGA interface

 LCD display

 secure digital card

 serial port

 video camera

 also infrared, Ethernet, Flash RAM

Course will introduce you to basics of many parts of compute engineering

 digital logic

 implementing algorithms in hardware

 implementing a computer in hardware

 programming a computer in assembly language

 interfacing to I/O devices

 digital audio

 operating systems

Workload

 4 credits ==> 12 hours/week

 lecture (3 hours)

 lab (2 hours)

 discussion (1 hour)

Engin 100 (section 250), Winter 2015, Lecture 1 Page 3 of 6

 group meeting (1 hour)

 CSE work outside lab (2-3 hours)

 TC work (2-3 hours)

Levels of abstraction
 applications and operating system (high-level language, e.g. C++)

 applications and operating system (machine-level language)

 ------------------------- hardware/software boundary---------------------------

 computer processor

 datapath and control

 combinational and sequential logic

 logic gates

 transistors

Introduction to Digital logic
Say we live in the rather black and white world where things (variables) are either true (T) or false (F). So if S is “Mark is
going to the Store” and C is “Mark likes Computer games” then we’ll assume that each phrase is either true or false (as
opposed only sort of liking computer games). We can then use connectives to combine the variables.

Mark is going to the store AND Mark likes computer games.

The above statement is only true if both phrases are true. Let that sentence be X. We can now draw the “truth table”
for X (we’ll use the other tables in a minute). When is X true?

S C X

F F

F T

T F

T T

AND

S C

F F

F T

T F

T T

S C

F F

F T

T F

T T

C

F

T

What if the statement, Y, were “Mark is going to the store OR Mark likes computer games”? When is
that true? How about Mark does NOT like computer games?

(OR vs. XOR)

Engin 100 (section 250), Winter 2015, Lecture 1
Page 4 of 6

How about having B be “Bob’s house is brown”.

S C B

F F F

F F T

F T F
F T T

T F F
T F T

T T F
T T T

S AND C AND B

S C B

F F F

F F T

F T F
F T T

T F F
T F T

T T F
T T T

S OR C OR B

S C B

F F F

F F T

F T F
F T T

T F F
T F T

T T F
T T T

S OR C OR NOT B

S C B

F F F

F F T

F T F
F T T

T F F
T F T

T T F
T T T

S OR (C AND B)

Representation of Boolean Logic (section 2.6)
Using AND, OR, NOT and XOR gets old. So symbols have been used to represent these notions.

 Electrical/Computer
Engineering

Gate

 Y AND Z

 Y OR Z

NOT Y

Y XOR Z

In digital logic we usually think of “1” as being TRUE and “0” as being “FALSE”…

Engin 100 (section 250), Winter 2015, Lecture 1
Page 5 of 6

And now for something completely different… (maybe)

Binary (and Hex) numbers (1.2)

Consider the number 123

1 2 3

Each place has a value. We normally work in base 10, so each place is 10 times bigger than the last.

In binary we work in base 2. Consider the number 100102 (the subscript indicates the base).

1 0 0 1 0

Now what do you suppose the value of 10.112 is?

1 0 . 1 1

Let’s convert 21 into base 2.

And the payoff
Why is binary

(Time allowing we’ll cover this in class. You need to know it in any case.)

Now consider base 16. We need symbols for 0-15 but only have them for 0-9 in decimal. So we’ll use A=10,

B=11, C=12, D=13, E=14, F=15.

What is 1F16 in decimal? What is 44 in hexadecimal (base 16)?

Converting between base 2 and base 16 is easy. Just group the binary digits into groups of 4 starting at the

decimal point1. So what is 100110012 in hex? We commonly use hex to represent large numbers which we’d

prefer to use binary for just to make it more readable…

Engin 100 (section 250), Winter 2015, Lecture 1
Page 6 of 6

And the payoff…

Why did we do binary numbers on the first day? How are they relevant to digital logic?

The point is that we can represent binary numbers using basic logic. Consider a device that adds two

one-digit binary numbers and outputs a 2 digit binary number. Let the inputs be A and B and the output

be R[1:0].

(The R[1:0] is a way two write that there are two outputs, R1 and R0. We might also write R[7:0]

to indicate that there are 8 outputs: R7, R6, R5, R4, R3, R2, R1, and R0.)

 A

+ B

====

 R1R0

Write the truth table for this adder. R1 is to be the most significant digit (farthest to the left in the 2’s

place in this example) while R0 is to be the least significant digit (farthest to the right, in the 1’s place).

Then draw the logic gates.

A B R1 R0

0 0

0 1

1 0

1 1

The point is that we can do arithmetic using basic logic. You may say “great, I can add two one-bit

numbers”. But it turns out we can use this basic idea of using logic states to represent numbers to do all

kinds of math. A modern computer can easily do 5-10 billion additions of 64-bit numbers in a second!

All based on this basic idea.

Consider adding two 3-digit binary numbers.

If we used the truth table scheme, how many rows would there be?
o What about for a 64-bit addition?

Can we break the problem down in a way that works better?
o How?

Let’s work on it…

