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                                                                                          Use pencil! 

Last time 
In addition to an overview of the class, we discussed a few topics: 

 What is engineering?   
o Didn’t give a complete definition last time, but touched on a few components.  A full 

one I like can be found in the  American Heritage dictionary: 
Someone who applies scientific and mathematical principles to  practical ends 
such as the design, manufacture, test, and  operation of efficient and economical 
structures, machines, processes, and systems. 
 

 And what is computer engineering in particular? 
o The design and low-level use of computers is the definition I generally use.  We 

discussed VLSI, computer architecture, embedded systems and system software. 
 

 The fact that engineering generally involves abstraction.  
o Basic idea is that you can think at one level and largely ignore issues at other levels.  

Probably will be easier to truly understand later in today’s lecture! 
 

 Digital logic 
o We went over truth tables, AND, OR, NOT and XOR functions.  We discussed how to 

represent those logical statements both with symbols (e.g. + for OR and * for AND) and 
gates.   
 

 Number representation in binary 
o I provided some basic coverage of binary numbers and the fact that they can be added 

using digital logic (gates).   
o Mike went into a lot more detail in lab including using 2’s complement numbers and 

how to create an adder of more than 1 bit. 
 

Logic and number representation review questions: 
1. Using 4-bit “unsigned” numbers write 4 and 12 in binary. 

 

2. Using 4-bit two’s complement numbers, write 4, -4, and 12 in binary. 

 

3. Draw gates which implement the following equation: 

 

4. Create a truth table for:  

 

5. If we were to create a truth table for the equation in #3, how many rows would it have? 

 

6. If we were to make a truth table for a 4-bit adder (adds 2 4-bit numbers) how many rows would 

it have? 
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Digital logic and computers 
In a modern digital device, everything is represented by “1s” and “0s”.  Typically we use voltage levels 

(<1 Volt is a zero, >1 is a one would be one scheme…) to specify the 1s and 0s.   As mentioned last time, 

one could use a number of other things to indicate a 0 or 1 (a light being on or off, how full a bucket is, if 

a domino1 is standing or not, etc.)  

Digital circuits are about manipulating bits. We’ve seen the idea of using gates (AND, OR, etc.) to 

compute values.  Three other things we can do with bits are: 

1. Group bits into an array of bits.  If we had a group of 4 bits, we could represent _______ 

different values.  Thinking of them as numbers, we could represent numbers from 0 to 15. 

 

A “word” is an array of bits of the default size for a given circuit.  For example, on most 

computers a word is generally 32 or 64 bits.  In this class, we’ll often use 16-bit words.  Again, 

that’s just the default size in a given circuit/application.   

 

2. We can move a bit value from one place to another with a wire.  Nothing too fancy here, just 

pointing out we can do this.  In the circuit on the next page, each AND gate’s output is 

connected to the OR gate’s input by a wire. 

 

An array of wires can communicate multiple bits.  Such an array of wires is often called a “bus”2. 

 

3. Store a bit to use later.  We call a device that stores one or more bits a “register”. 

Schematic representation 

We can represent a logical function that takes some input and generates some output in a schematic.   

 

 

We’ve seen this before with gates (NOT, AND, etc.), but here we are being more generic.  We could 

think of this as a function B=f(A).  The box if f().  A is an independent variable and B is the dependent 

variable.   

Unlike a mathematical function, there is some delay in a real system—when A changes B will change a 

little later.  This is called “propagation delay”.   

This type of box (oval…), is called “combinational logic”.  The output depends only on the current 

combination of inputs. 

                                                           
1 http://tinyurl.com/DomLogic 

2 I’ll buy a candy bar for the first person who can find why a group of wires is called a bus and provide reasonable evidence (post on Piazza).  No 
submissions before 4:30pm today will be accepted (don’t start searching now…) 

 

A 
(input) 

B 
(output) 

http://tinyurl.com/DomLogic


Engin 100 (section 250), Winter 2015, Lecture 2                                                                                Page 3 of 8 
 
With a truth table we can specify the behavior of the combinational logic.  We aren’t saying how to 

implement it.  We can use a box without knowing how it’s implemented.  That’s what we mean by 

abstraction—we are working at the level of knowing what the box does, but not caring about how it 

does it.  It’s key to note that you have to start at some level of abstraction and leave the implementation 

of that level to someone else!  A carpenter doesn’t need to know how or where a tree grew to be able 

to use a board from the lumber yard. 

Hardware description languages—an introduction to Verilog 
Say you want to use a specific combinational logic box.  So for each input you want a specific output.  

Say you don’t know how to build it, but you have a friend that does know how.  How could you tell your 

friend what you want? 

 You could use a truth table and list all inputs and their outputs.   

o But we’ve seen truth tables can get quite large. 

 You can often find an English description.  So perhaps B=2*A or S=A+B. 

Let’s look at how one could implement “NOT” in 

Verilog.  (And yes it’s very wordy) 

The top part describes the interface.  Basically it 
provides the name, inputs and outputs.   
 

 4’b0101 means a 4-bit number (5 in this case). 

 4’h9 means a 4-bit number in hex (base 16) is 9. 

 What do you think 1’b0 means? 
 

 How would you write the binary number 10010 
in Verilog? 

 
 
We use “begin” and “end” instead of “{“ and “}”.  In 
fact you can leave them out in the same situations 
(though we’ll generally include them even when not 
strictly needed). 
 
The always @* notation means that this block of logic should always be computing its value.  Put 
another way, it’s how we tell Verilog we want combinational logic. 
  

module NOT( 

input wire A, 

output reg B); 

 

always @* begin 

case (A) 

1'b0: begin 

                        B = 1'b1; 

end 

 

1'b1: begin 

                        B = 1'b0; 

end 

endcase 

end 

endmodule 
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Misc. notes about Verilog 
There are a few other facts that you need to know about 

Verilog. 

Only the value at the end matters. 

One very important thing to be aware of is that we are just 

implementing a truth table.  All that matters is that we 

have the right value at the end.  So we can do something 

like the code on the right.  B will be equal to not A by the 

time we finish the module.  And that’s all that matters. 

Reg and wire 

You may have noticed that some values are called “reg” 

and some “wire”.  This is an unfortunate quirk of Verilog.  

The rule you should use is that if a value is assigned in an 

always block it should be a reg.  Otherwise it should be a wire.   

Wow, this feels “wordy” 

I mean we could express NOT as a very simple truth table, but in Verilog we are using a lot of text (25 

“words” actually).  That seems crazy.  But we won’t generally enumerate all cases like this.  After all, that 

would be huge and tedious (an 8-input module would have 256 cases!).  So for now, yes it is very wordy, 

but hopefully you’ll see that its more powerful than a truth table once we start working with more 

complex modules. 

Some more symbols 

Verilog supports most of the symbols you’ll have seen in C and similar languages.  && is AND, || is OR, ! 

is NOT, etc.  Also the operators we use in C for comparison, such as ==, !=. >, >= and the like are also 

supported.  ^ is XOR.  We can also do addition (+), subtraction (-), and multiplication (*).  Numbers will 

be treated as unsigned values where it matters. 

Group example 
Now, given all that, let’s write a function that takes more than one input and see how we do. 

Write a module that models Jim Harbaugh’s raise for next year.  Let’s say he gets a $100,000 raise if 

Michigan beats MSU (unlikely as that may be ) and a $100,000 if he wins a bowl game.  If he does both 

he gets a $300,000 raise.  He goes no raise otherwise.  Let’s create a module which takes two inputs 

(MSU, bowl) and returns a 2 bits value (raise).  Raise will be either 00, 01, or 11.  We can declare a two 

bit output reg as: 

 output reg [1:0] raise 

 and we can do an assignment of “10” to raise as 

raise = 2’b10 

 

module NOT( 

input wire A, 

output reg B); 

always @* begin 

B = 1'b0; 

 

case (A) 

         1'b0: begin 

B = 1'b1; 

end 

endcase 

end 

endmodule 
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A high-level 4-bit adder 
Consider the module on the right.  This is a great 

example of a module where the Verilog is 

considerably simpler than the truth table.   

As a note, this is exactly the same as if I did the 

same thing by using the “truth table” style of 

Verilog we’ve been using.   

if ( in1 == 4'b0000 && in2 == 4'b0000) begin 

out = 5'b00000; 

end else if ( in1 == 4'b0000 && in2 == 4'b0001) begin 

     out = 5'b001; 

(etc., etc., etc.).   

It’s not that we would ever write an add module like that, it’s that the module in the box is exactly the 

same as doing that! 

 

module add(  

input wire [3:0] in1,  

input wire [3:0] in2, 

output reg [4:0] out); 

 

always @* begin 

        out[4:0] = in1[3:0] + in2[3:0]; 

      end 

endmodule 
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Review of combinational logic terminology  
We’ve covered the basics of combinational logic and combinational Verilog!  Let’s review a few things 

quickly. 

 Combinational logic 

 Register 

 Bus 

 Propagation delay 

 

Connecting components 
Let’s say we want to compute A*B + C*D.  If we have an add module and a * module, how would we do 

that?  Let’s just draw the schematic. 

 

 

 

 

Note that all blocks are working at all times.  Unlike a program, where you compute A*B then C*D and 

then add them, here each device is always doing its task!  If you change A, there will be some delay 

before the output changes (that delay is called what again?). 

 

Let’s look at how to build this in Verilog (on the next page) 
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Final thoughts 
In our design, would it work if we changed the order we instantiated the modules?  Say, did the add 

first? 

Yes it would.  Wouldn’t work in a programing language, but here we are describing hardware.   

module mult( 

input wire [3:0] in1, 

input wire [3:0] in2, 

output reg [3:0] out); 

 

always @* begin 

out = in1 * in2; 

end 

endmodule 

 

module add( 

input wire [3:0] in1, 

input wire [3:0] in2, 

output reg [3:0] out); 

 

always @* begin 

out = in1 + in2; 

end 

endmodule 

 

module top( 

 

input wire [3:0] A, 

input wire [3:0] B, 

input wire [3:0] C, 

input wire [3:0] D, 

output wire [3:0] result); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

endmodule 
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(Bonus page) Adding numbers as an example of combinational logic3 
Below, in figures 1 and 2, we have a LOT of things going on at once.  We’ve designed a circuit which we 

claim will add two 4-bit numbers.  We’ll use the notation A[3:0] to indicate the bus that is made up of A3, 

A2, A1, and A0.  We’ll use B[3:0], S[3:0] and C[4:0] in a similar way.  Let’s assume C0=0, A[3:0]=0100 and 

B[3:0]=0110.  That is we are performing: 

 

  0100     

+ 0110    +  

=======    ======= 
 

For the above addition, what are the values of: 

 S[3:0] 

 C[4:0] 

 

 

 

 

 

 

Here we are working at a number of levels of abstraction.  We’ve built a 1-bit full adder out of gates and 

then built a 4-bit adder out of those 1-bit adders.  We could just use a 4-bit adder and not worry at all 

about how the adder was built (in fact there are better ways to build an adder!).  Instead we just need 

to know how the device works.  In Verilog, we could just use a “+” instead, but sometimes we want to 

control the implementation and so we might do it this way. 

Can you create the full adder and 4-bit ripple carry adder in Verilog as we did the multiply-add circuit 

above? 

                                                           
3
 Figure for full adder from http://robey.lag.net/2012/11/07/how-to-add-numbers-1.html.  Figure for RCA from 

https://en.wikipedia.org/wiki/Adder_(electronics) 

Figure 1: Full adder 

Figure 2: Ripple Carry Adder.   
S is Sum and C is Carry! 

What is the base-10 equivalent of 

the addition on the left?  

4-bit adder 

A[3:0] 

B[3:0] 

C0 

S[3:0] 

Figure 3: 4-bit adder 

http://robey.lag.net/2012/11/07/how-to-add-numbers-1.html
https://en.wikipedia.org/wiki/Adder_(electronics)

