
Engin 100 (section 250), Winter 2015, Technical Lecture 3 Page 1 of 5

 Use pencil!

Last time
 Introduced basic logic and some terms including “bus”, “word”, register” and “combinational

logic”.

 Talked about schematic representation.

 Introduced Verilog.
o Basics of Verilog including @*, wire, reg, etc.

o Discussed how to connect components.

Review Questions
1. If I have a * and + box, how would I use schematic representation to draw A*B+C*D?

2. What does @* mean?

3. In binary, how would you write 6’d14?

4. Write a “top” module which uses mult and add to find “(A+B)*(C+D)”

5. What are u1, u2, etc?

6. At the end of lecture, I claimed I could reorder the mults and add. Why doesn’t order matter

here?

module top(

 input wire [3:0] A,

 input wire [3:0] B,

 input wire [3:0] C,

 input wire [3:0] D,

 output wire [3:0] result);

 wire [3:0] mult1_out;

 wire [3:0] mult2_out;

 mult u1 (A, B, mult1_out);

 mult u2 (C, D, mult2_out);

 add u3 (mult1_out, mult2_out, result);

endmodule

Engin 100 (section 250), Winter 2015, Technical Lecture 3 Page 2 of 5

Tri-state devices
One other thing that will be useful to us is a “tri-state device”. Basically,

what this is, is a device that let’s us “disconnect” a wire—it’s in effect a

switch. The standard symbol can be seen to the right. Basically speaking, if

C is a “1” then out=in. If C is a “0” then out is connected to nothing at all. The truth table is seen below.

Draw a schematic which uses tristate devices and a NOT to implement the following:

if(X=1)

 Y=A

else

 Y=B

Administrative break…

 Your TC2 assignment is due on January 26th. It’s a memo about ideas on educational toys.

 Class grade comments
o You may have noticed that the class is graded out of 1000 points total (230 for the

project, 200 for the final, 10 for lab 1, 20 for your TC2 memo, etc.)
o It is worth noting that there isn’t a limit on how many people can get each grade. We

will grade straight-scale. So if you are in the 90s you’ll get an A of some sort (A+, A, A-).

If you are in the 80s, you’ll get at least a B of some sort, etc.

 It’s possible we’ll be more generous than straight scale, but not less generous.
 Do recall that you need a C (not a C-) to pass.

 A brief discussion on why TC is important…

 I need to get everyone’s pictures I didn’t get the first time.
o Still working on names. I’m slow…

C in out

0 0 Not connected

0 1 Not connected

1 0 0

1 1 1

C

in out

Engin 100 (section 250), Winter 2015, Technical Lecture 3 Page 3 of 5

Sequential Logic
So far, we’ve only used “combinational” logic. To remind you, that means that the output of the device

is determined solely by the current inputs. Look at the tri-state truth table above. If you know the

inputs, you know the output.

Sequential logic allows for “memory”. That is, we can store data and the output of the device depends

upon what is being stored. As we discussed before, we generally use the term “register” to indicate a

device that stores data.

This device will output (on Data_out) the last value written to it. So how do you write to it? It requires

two things to happen.

1. Write must be a 1

2. Clock must be a “rising edge”

Say that Data for the above register is 4 bits in size (both Data_in and Data_out). Say Data_out starts at

4’b0101. What would Data_out be?

There are a lot of things going on here.

 The above is a “timing diagram”. It shows how things change over time. Generally the x-axis

would have some amount of time listed (maybe 1ns per dashed line)

 We are seeing a clock for the first time. Generally speaking clocks will be periodic (as shown

above) with some frequency. Your home computer probably uses a 2 to 3 GHz clock for the

logic in its processor. Generally speaking, registers will only change on the rising edge of clock.

 I’m showing a 4-bit bus here in a fairly typical way. When the data changes, I just show the new

value.

Register

Data_in
 Data_out
Write

 Clock

Clock

Data_in

Write

Data_out

4’b1111 4’b0000 4’b1001

Engin 100 (section 250), Winter 2015, Technical Lecture 3 Page 4 of 5

Memories
If you think about a register as a variable (which is a fine analogy) then memories are arrays. You can

select which register you want (called the address) and that’s the one that you can read or change.

What’s going on here is that I have two separate devices: the memory address register and the memory

itself. If I want to read from register 3, I first have to write a “3” to the memory address register (using

Address_in, Address_write, and clock). Until I again change the memory address register, I’ll be reading

and writing only from register 3.

1. If there are 8 registers in this memory, how many bits do I need for Address_in?

2. If each register were 6 bits wide, how many bits do I need for data_in and data_out?

3. Assuming both of the above are true, how many bits of storage (not including the Memory Address

Regsiter) does this memory need?

 What if I included the memory address register in that calculation?

And…
That’s it. Amazingly, that’s all the building blocks we’ll need to implement any general algorithm—

including a computer. Just combinational logic (including tri-states), registers, memories (which is really

just an array of registers and a way to select an element) and wires!

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Memory

Address_in

Address_write

Data_in

Data_out
Mem_write

 Clock

Memory
Address
Register

Engin 100 (section 250), Winter 2015, Technical Lecture 3 Page 5 of 5

 (Bonus page) Adding numbers as an example of combinational logic1
Below, in figures 1 and 2, we have a LOT of things going on at once. We’ve designed a circuit which we

claim will add two 4-bit numbers. We’ll use the notation A[3:0] to indicate the bus that is made up of A3,

A2, A1, and A0. We’ll use B[3:0], S[3:0] and C[4:0] in a similar way. Let’s assume C0=0, A[3:0]=0100 and

B[3:0]=0110. That is we are performing:

 0100

+ 0110 +

======= =======

For the above addition, what are the values of:

 S[3:0]

 C[4:0]

Here we are working at a number of levels of abstraction. We’ve built a 1-bit full adder out of gates and

then built a 4-bit adder out of those 1-bit adders. We could just use a 4-bit adder and not worry at all

about how the adder was built (in fact there are better ways to build an adder!). Instead we just need

to know how the device works. In Verilog, we could just use a “+” instead, but sometimes we want to

control the implementation and so we might do it this way.

Can you create the full adder and 4-bit ripple carry adder in Verilog as we did the multiply-add circuit

above?

1
 Figure for full adder from http://robey.lag.net/2012/11/07/how-to-add-numbers-1.html. Figure for RCA from

https://en.wikipedia.org/wiki/Adder_(electronics)

Figure 1: Full adder

Figure 2: Ripple Carry Adder.
S is Sum and C is Carry!

What is the base-10 equivalent of

the addition on the left?

4-bit adder

A[3:0]

B[3:0]

C0

S[3:0]

Figure 3: 4-bit adder

http://robey.lag.net/2012/11/07/how-to-add-numbers-1.html
https://en.wikipedia.org/wiki/Adder_(electronics)

