
Engin 100 (section 250), Winter 2015, Technical Lecture 4 Page 1 of 9

Last time
 Introduced tri-state devices.

 Introduced registers. They output their data at all

times. You can make Data_out become Data_in if

you set “Write=1” and then have a rising edge on

clock (0 changing to a 1).

 Introduced memories. Basically an array where a register is a variable. You set the Memory

Address Register to the index you

want to read or write. Writing is

otherwise done just like a register.

Questions:
1. Fill in “Data_out” for a 8-entry memory, where each entry is 4 bits. Assume all memory

addresses are currently set so memory[x]=2x (e.g., location 4 has initially has a value of 8).

Address starts as 2.

2. Can you make an AND gate using only “0s” and “1s”, tri-state devices, and inverters? (This is tricky…)

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

C

in out

 C in out

0 0 Not connected

0 1 Not connected

1 0 0

1 1 1

Clock

Address_in

Address write

Data_in

Mem_write

Data_out

3’b101 3’b111 3’b001 3’b101

4’h5 4’h7 4’hf 4’hc

Engin 100 (section 250), Winter 2015, Technical Lecture 4 Page 2 of 9

Finite State Machines
So we have combinational logic and a way of storing state (registers/memory). What we want to do

now if find a way to combine these to be able to implement an algorithm. Doing a step-by-step process

in hardware involves something called a finite state machine (FSM).

Baking a cake
Let’s say we want to bake a cake. We could break that down into a few steps:

0. Reset (begin)
1. Pour ingredients into a pan
2. Mix ingredients in oven
3. Bake until done
4. End

If we write a truth table, what should the next step (state) be given the current state?

state next_state

Reset Pour

Pour

Mix

Bake

End

This is just a truth table. We can do it in Verilog.

module compute_next_state(

 input wire [2:0] state,

 output reg [2:0] next_state);

 always @* begin

 next_state = state_reset;

 case (state)

 state_reset: begin

 next_state = _____________;

 end

 state_pour: begin

 next_state = _____________;

 end

 state_mix: begin

 next_state = _____________;

 end

 state_bake: begin

 next_state = _____________;

 end

 state_end: begin

 next_state = _____________;

 end

 endcase

 end

endmodule

Engin 100 (section 250), Winter 2015, Technical Lecture 4 Page 3 of 9

So how is it we can use terms like “state_bake”? Simple, we define those terms to be numbers, just like

one might use a #define in C/C++.1

Now we can use the terms freely. In general, just like C++ programming, you don’t want to use “magic

numbers” when you can use a more descriptive term (i.e., it’s better to use state_pour than 3’h1 in your

code).

Now, we want to be in each state for a fixed amount of time. Let’s say one clock tick. All we need to do

is run this through a register. So here’s a register:

We can take the two modules and build our finite state machine:

1
 The parameter is mighty close to a #define, but Verilog has something that is even closer, “`define”. We don’t

tend to use it because it has some syntax issues that are a bit annoying.

parameter state_reset = 3'h0;

parameter state_pour = 3'h1;

parameter state_mix = 3'h2;

parameter state_bake = 3'h3;

parameter state_end = 3'h4;

module state_register(

 input wire clock,

 input wire reset;

 input wire [2:0] data_in,

 output reg [2:0] data_out);

 always @(posedge clock) begin

 if (reset == 1'b1) begin

 data_out <= state_reset;

 end else begin

 data_out <= data_in;

 end

 end

endmodule

module top(

 input wire reset,

 input wire clock);

 wire [2:0] next_state;

 wire [2:0] state;

 state_register u1 (clock, reset, next_state, state);

 compute_next_state u2 (state, next_state);

endmodule

Engin 100 (section 250), Winter 2015, Technical Lecture 4 Page 4 of 9

Now let’s make it a bit more realistic (at least for how I cook). It is going to take a while to cook the

cake. Using the Brehob Patented Cooking Method™, we will simply wait until the smoke detector goes

off (yes I’ve done that more than once).

So we will end up with the following:

 state smoke | next_state

 reset 0 | pour

 reset 1 | pour

 |

 pour 0 | mix

 pour 1 | mix

 |

 mix 0 | bake

 mix 1 | bake

 |

 bake 0 | bake

 bake 1 | end

 |

 end 0 | end

 end 1 | end

We can reduce that by only having two listings for the case where smoke matters.

Engin 100 (section 250), Winter 2015, Technical Lecture 4 Page 5 of 9

High-level Finite State Machine picture:

module compute_next_state(

 input wire [2:0] state,

 input wire smoke,

 output reg [2:0] next_state);

 always @* begin

 next_state = state_reset; // default. This is needed,

 // so we define next_state even

 // when state is not one of

 // the defined values.

 case (state)

 state_reset: begin

 next_state = state_pour;

 end

 state_pour: begin

 next_state = state_mix;

 end

 state_mix: begin

 next_state = state_bake;

 end

 state_bake: begin

 if (smoke == 1'b0) begin

 next_state = state_bake;

 end else begin

 next_state = state_end;

 end

 end

 state_end: begin

 next_state = state_end;

 end

 endcase

 end

endmodule

Engin 100 (section 250), Winter 2015, Technical Lecture 4 Page 6 of 9

Outputs
Having states is all well-and-good, but it doesn’t help us do anything. What we want are outputs. So in

our case, let’s say we have three things we are controlling: the pourer, mixer and oven. In that case, we

can indicate what outputs we want in each state easily:

 state | pourer mixer oven

 reset | 0 0 0

 pour | 1 0 0

 mix | 0 1 0

 bake | 0 0 1

 end | 0 0 0

With very little effort, we can combine the next_state and output logic. For brevity, only write “1”s

where needed and leave out the “0s”.

 state smoke | next_state pourer mixer oven

 --

 reset |

 |

 pour |

 |

 mix |

 |

 bake 0 |

 bake 1 |

 |

 end |

Now, let’s do it in Verilog!

Engin 100 (section 250), Winter 2015, Technical Lecture 4 Page 7 of 9

It is generally best to provide default values for

everything when in a combinational logic block.

So that anything that gets assigned anywhere in

the block has a default. Fill that in now…

You can also take advantage of having the

defaults by only assigning things when they

aren’t the default. Cross out all the lines you

don’t need once you’ve got the default values...

always @* begin

 next_state = state_reset;

 case (state)

 state_reset: begin

 pourer = 1'b0;

 mixer = 1'b0;

 oven = 1'b0;

 next_state = state_pour;

 end

 state_pour: begin

 pourer = 1'b1;

 mixer = 1'b0;

 oven = 1'b0;

 next_state = state_mix;

 end

 state_mix: begin

 pourer = 1'b0;

 mixer = 1'b1;

 oven = 1'b0;

 next_state = state_bake;

 end

 state_bake: begin

 pourer = 1'b0;

 mixer = 1'b0;

 oven = 1'b1;

 if (smoke == 1'b0) begin

 next_state = state_bake;

 end else begin

 next_state = state_end;

 end

 end

 state_end: begin

 pourer = 1'b0;

 mixer = 1'b0;

 oven = 1'b0;

 next_state = state_end;

 end

 endcase

end

Engin 100 (section 250), Winter 2015, Technical Lecture 4 Page 8 of 9

A bit more realistic example
Let’s take our memory that we did last time (and reviewed at

the start of class) and take a shot at building an interface for it

so we can just ask for a read or write and it works—we don’t

need to change the address and then data when writing.

Of course, the memory still requires that we change the

address and then the data. So what we are going to do is build

an FSM that does it for us. Let’s have our system have the

following inputs:

 Address_in

 Data_in

 Type (read or write, we’ll have read be a 0 and write be a 1)

 Start (Indicates we want to do a read or a write)

We wait until start goes high. Once it does we either just want to read (type=0) or write (type=1) the

memory at the address specified. We’ll assume Address_in and Data_in are tied to the memory’s

Address_in and Data_in. So all we need to do is drive Address_write and Mem_write at the right times.

 state start type | next_state address_write mem_write

 --

 reset |

 decide 0 |

 decide 1 0 |

 decide 1 1 |

 read1 |

 write1 |

 write2 |

Now let’s do the Verilog!

Engin 100 (section 250), Winter 2015, Technical Lecture 4 Page 9 of 9

