Last time

e Introduced tri-state devices. C ¢ in out
0 | 0 | Not connected
0 | 1 | Notconnected
in— out 1(0 0
1)1 1
e Introduced registers. They output their data at all Register
times. You can make Data_out become Data_in if 5|0ata_in
you set “Write=1" and then have a rising edge on Daa_out 5y
Wit
clock (0 changing to a 1). 7|E
> Clock

e Introduced memories. Basically an array where a register is a variable. You set the Memory
Address Register to the index you

want to read or write. Writing is Register 0 Memory
. . . . i Add Memon
otherwise done just like a register. Reg!ster 1 ——>{\ddressin Address
Register 2 Sladdress write Register
Register 3
Register 4 o
- 2{Data_in
Register 5 Data_ouf——3
Register 6 ——>Mem_write
Register 7 ———>> Clock

Questions:
1. Fill in “Data_out” for a 8-entry memory, where each entry is 4 bits. Assume all memory
addresses are currently set so memory[x]=2x (e.g., location 4 has initially has a value of 8).
Address starts as 2.

Clock

Address_in 3’b101 3’b111 3’b001 3’b101

Address write I__I I l__

Data_in o 4'h5 4'h7 &'he

Mem_write |__| |

Data_out

2. Can you make an AND gate using only “0s” and “1s”, tri-state devices, and inverters? (This is tricky...)

Finite State Machines

So we have combinational logic and a way of storing state (registers/memory). What we want to do
now if find a way to combine these to be able to implement an algorithm. Doing a step-by-step process
in hardware involves something called a finite state machine (FSM).

Baking a cake

Let’s say we want to bake a cake. We could break that down into a few steps:
Reset (begin)

Pour ingredients into a pan

Mix ingredients in oven

Bake until done

End

PWNPEO

If we write a truth table, what should the next step (state) be given the current state?
state | next_state
Reset Pour
Pour
Mix
Bake
End

This is just a truth table. We can do it in Verilog.

module compute_ next state(
input wire [2:0] state,
output reg [2:0] next_state);

always @* begin
next state = state_reset;

case (state)
state_reset: begin
next_state = ;
end

state_pour: begin
next_state = ;
end

state _mix: begin
next_state = ;
end

state_bake: begin
next_state = ;
end

state_end: begin
next_state = ;
end
endcase
end
endmodule

So how is it we can use terms like “state_bake”? Simple, we define those terms to be numbers, just like

one might use a #define in C/C++.

parameter state_reset = 3'hO0;
parameter state_pour 3'hl;
parameter state mix = 3'h2;
parameter state_bake 3'h3;
parameter state_end 3'h4;

Now we can use the terms freely. In general, just like C++ programming, you don’t want to use “magic
numbers” when you can use a more descriptive term (i.e., it’s better to use state_pour than 3’h1 in your

code).

Now, we want to be in each state for a fixed amount of time. Let’s say one clock tick. All we need to do
is run this through a register. So here’s a register:

module state_ register(
input wire clock,
input wire reset;
input wire [2:0] data_in,
output reg [2:0] data_out);

always @ (posedge clock) begin
if (reset == 1'bl) begin
data_out <= state_reset;
end else begin
data_out <= data_in;
end
end
endmodule

We can take the two modules and build our finite state machine:

module top(
input wire reset,
input wire clock) ;

wire [2:0] next_state;
wire [2:0] state;

state_register ul (clock, reset, next_ state, state);
compute_next_state u2 (state, next_state);

endmodule

'The parameter is mighty close to a #define, but Verilog has something that is even closer, “*define”. We don’t
tend to use it because it has some syntax issues that are a bit annoying.

Now let’s make it a bit more realistic (at least for how | cook). It is going to take a while to cook the
cake. Using the Brehob Patented Cooking Method™, we will simply wait until the smoke detector goes
off (yes I've done that more than once).

So we will end up with the following:

state smoke | next_state

reset 0 | pour

reset 1 | pour
I

pour 0 | mix

pour 1 | mix
I

mix 0 | bake

mix 1 | bake
|

bake 0 | bake

bake 1 | end
|

end 0 | end

end 1 | end

We can reduce that by only having two listings for the case where smoke matters.

module compute_next state(
input wire [2:0] state,
input wire smoke,
output reg [2:0] next_state);

always @* begin

next_state = state_reset; // default. This is needed,
// so we define next state even
// when state is not one of
// the defined values.

case (state)
state_reset: begin
next_ state = state_pour;
end

state_pour: begin
next_state = state mix;
end

state _mix: begin
next_state = state_bake;
end

state_bake: begin
if (smoke == 1'b0) begin
next_state = state_bake;
end else begin
next_state = state_end;
end
end

state_end: begin
next_state = state_end;
end
endcase
end
endmodule

High-level Finite State Machine picture:

Outputs

Having states is all well-and-good, but it doesn’t help us do anything. What we want are outputs. So in
our case, let’s say we have three things we are controlling: the pourer, mixer and oven. In that case, we
can indicate what outputs we want in each state easily:

With very little effort, we can combine the next_state and output logic. For brevity, only write “1”s
where needed and leave out the “0s”.

state smoke | next state pourer mixer oven

bake 0

I

I

|

I

mix |
I

|

bake 1 |
|

|

end

Now, let’s do it in Verilog!

always @* begin
next state = state_reset;

case (state)
state_reset: begin

end

pourer = 1'b0;

mixer = 1'b0;

oven = 1'b0;

next_state = state_pour;

state_pour: begin

end

pourer = 1'bl;

mixer = 1'b0;

oven = 1'b0;

next_state = state_mix;

state _mix: begin

end

pourer = 1'b0;

mixer = 1'bl;

oven = 1'b0;

next state = state_bake;

state_bake: begin

end

pourer = 1'b0;

mixer = 1'b0;

oven = 1'bl;

if (smoke == 1'b0) begin

next state = state_bake;

end else begin

next_state = state_end;

end

state_end: begin

end
endcase
end

pourer = 1'b0;

mixer = 1'b0;

oven = 1'b0;

next_state = state_end;

It is generally best to provide default values for
everything when in a combinational logic block.
So that anything that gets assigned anywhere in
the block has a default. Fill that in now...

You can also take advantage of having the
defaults by only assigning things when they
aren’t the default. _Cross out all the lines you
don’t need once you’ve got the default values...

A bit more realistic example

Let’s take our memory that we did last time (and reviewed at Memory
the start of class) and take a shot at building an interface for it ~———>}Address_in ;:’:;’Tg;
so we can just ask for a read or write and it works—we don’t Sihddress write Register
need to change the address and then data when writing.
=———{Data_in
Of course, the memory still requires that we change the _ Data_ouf——
address and then the data. So what we are going to do is build |em-wrke
an FSM that does it for us. Let’s have our system have the 7P Clock
following inputs:

e Address_in

e Data_in

e Type (read or write, we’ll have read be a 0 and write be a 1)
e Start (Indicates we want to do a read or a write)

We wait until start goes high. Once it does we either just want to read (type=0) or write (type=1) the
memory at the address specified. We’ll assume Address_in and Data_in are tied to the memory’s
Address_in and Data_in. So all we need to do is drive Address_write and Mem_write at the right times.

state start type | next_state address_write mem write

decide 0 |

decide 1 0 |
decide 1 1 |
readl |
writel |
write2 |

Now let’s do the Verilog!

Engin 100 (section 250), Winter 2015, Technical Lecture 4 Page 9 of 9

