
Engin 100 (section 250), Winter 2015, Technical Lecture 8                                                               Page 1 of 6 
 

Last time 
 Looked again at the datapath for the e100. 

 Started in on the state machine 

o Finished the “fetch” part of the state machine 

o Designed the “add” instruction 

o Designed the “be” instruction 

 Started on the “Max” assembly function 

o Mike finished up in lab 

 

 

 

 

 

 

Review 
Write a program which finds the absolute value of the data in memory location 100 and halts once that 

data is in memory location 100. (yes, we’ve done this before—it’s review!) 

mem[0]             mem[12]            

mem[1]      mem[13]     

mem[2]          mem[14]         

mem[3]          mem[15]         

mem[4]            mem[         ]  

mem[5]             mem[         ]  

mem[6]            mem[         ]  

mem[7]             mem[         ]  

mem[8]           mem[         ]  

mem[9]           mem[         ]  

mem[10]           mem[         ]  

mem[11]   mem[         ]  
 

 

  

state
 

n
e

xt_state
 

p
c_d

rive
 

p
lu

s1
_d

rive
 

ad
d

_d
rive

 

arg1
_d

rive
 

arg2
_d

rive
 

arg3
_d

rive
 

m
e

m
_d

rive
 

p
c_w

rite
 

o
p

1
_w

rite
 

o
p

2
_w

rite
 

o
p

co
d

e
_w

rite
 

arg1
_w

rite
 

arg2
_w

rite
 

arg3
_w

rite
 

ad
d

re
ss_w

rite
 

m
e

m
_w

rite
 

reset 
 

fetch1                 

fetch1 
 

fetch2                 

fetch2 fetch3                 

fetch3 fetch4                 

fetch4 fetch5                 

fetch5 
 

fetch6                 

fetch6 fetch7                 

fetch7 fetch8                 

fetch8 decode                 

 



Engin 100 (section 250), Winter 2015, Technical Lecture 8                                                               Page 2 of 6 
 

Assembly 
What we wrote above is machine code.  It is data intended to be directly run by the computer.  

However, it’s really annoying to work with.  In the real world, we generally program in high-level 

languages that get translated to machine code.  But sometimes, we want to have complete control of 

what the computer does, but don’t want to write in machine code.  So, as you saw in lab, we use 

assembly.   

Let’s consider the following program written in assembly: 

blt 12 21 22 

  sub 20 21 22 

    be 16 0 0      (unconditional branch) 

sub 20 22 21 

halt 

 

 

 

 

 

That is clearly a lot better than writing things in memory.  We are using the instruction name and writing 

the whole instruction on one line.  But the numbers get old real fast.  We could instead do something 

like this: 

              blt less 21 22 

        sub result 21 22 

        be end 0 0       (unconditional branch) 

less    sub result 22 21 

end   halt 

 

Using “less” in place of the number “12” is really helpful.  Not only does it make it a lot more readable, 

but it also makes it easier to make changes.  Before, if we added an instruction between the blt and the 

sub, we’d need to adjust the value of the location we were branching to (to a 16).  But now, we just 

branch to “less”.  We can also do something similar for the data. 

   blt less x y 

     sub result x y 

       be end 0 0       (unconditional branch) 

less    sub result y x 

end    halt 

result   .data 0 

x        .data 0 

y        .data 0 

 

Now we can refer to the data locations by name also.  And adding more instructions or data is easy. 

  

Question: What does that code do?  How would you describe the algorithm? 

 



Engin 100 (section 250), Winter 2015, Technical Lecture 8                                                               Page 3 of 6 
 

Formal description   
The e100 assembly language format is as follows: 

    [label]     opcode  arg1    arg2    arg3 

Fields are separated by white space (spaces or tabs).   

 label associates a name with the (first) address for this line of code 

o Labels are optional. 

o Labels must start in column 0 (left justified) 

o If there is no label the line should start with white space otherwise the opcode will 

look like a label. 

 opcode is one of: halt, add, sub, and, or, not, cp, sl, sr, mult, cpfa, cpta, be, bne, blt, call, ret 

 arg1, arg2, arg3 can each be a decimal number, a hexadecimal number (prefixed with 

0x), or a label. 

 Comments are marked by // (rest of line ignored) 

 Blank lines are ignored 

 unspecified locations initialized with 0 

 We can initialize a location by using the “.data” directive.   

o .data followed by a number puts that number in the location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question: Translate the following (nonsense) program into machine code (in decimal) 

   be bob x y 

     mult tmp x y 

bob    halt 

result   .data 156 

x        .data 0x12 

 

mem[0]             mem[8]            

mem[1]      mem[9]     

mem[2]          mem[10]         

mem[3]          mem[11]         

mem[4]            mem[         ]  

mem[5]             mem[         ]  

mem[6]            mem[         ]  

mem[7]             mem[         ]  
 



Engin 100 (section 250), Winter 2015, Technical Lecture 8                                                               Page 4 of 6 
 

Review questions/problems 
 So what is a program? 

o A program is just how memory is initialized! 

 A program that converts assembly to machine code is called an “assembler”.  Describe the 

process of writing an assembler. 

 

 

 

 

 

 Describe how you would write an “if” statement in assembly. 

 

 

 

 Describe how you would write a loop in assembly. 

 

 

 

 

 

Assembly programming practice 
 Let’s write a program that sums the first “N” integers (so 1 to N) using a loop. 

 

 

 

 

 

 

 

 

 

 

 



Engin 100 (section 250), Winter 2015, Technical Lecture 8                                                               Page 5 of 6 
 

Function calls 
Functions are fundamental to programming. 

 They provide modularity 

 The allow code reuse 

Machine code must support functions.  After all, our high-level languages use them all the time and 

those languages all get translated into machine code.   

Let’s take our “diff” code from before and write a function which returns the difference of two numbers 

(always positive as before). 

We are going to make a few changes now. 

1. Because all labels have “global scope,” we need to make sure each label is unique.  So we follow 

a convention of having all labels in a function start with the function name and then an 

underscore.  So instead of “x” we will have “diff_x” in a function named “diff” 

2. Rather than ending in a halt, we will end with a “ret” instruction. 

3. We need to know where to pass values in and where to get the return value(s). 

Let’s write the function “diff” 

 

 

 

 

 

 

 

 

 

 

Now, how would we call it? 

 

 

 

 

Question: Do functions help performance? 

 



Engin 100 (section 250), Winter 2015, Technical Lecture 8                                                               Page 6 of 6 
 

Assembly function writing 
Write a function which returns the “Nth” bit of a number.  So if our number is 100010001 the rightmost 

bit is the “0th” bit (an so is a 1) while the “1st” bit is the next rightmost (so is a 0).  The function should be 

named “bs” (bit select) and it takes two arguments: bs_X (the number) and bs_N (the bit number).  Its 

return value is to be in “bs_result”.    


