
Engin 100 (section 250), Winter 2015, Technical Lecture 9 Page 1 of 8

Last time
 Introduced assembly code

o Spent a fair bit of time on labels and how they work.

o Looked at writing “if” statements

o Started in on functions.

 Discussed how assembly code is translated to machine code.

o How could write a program with just “.data” instruction (if needed, it wouldn’t be fun).

Today
 Loops

 Function calls

 Discuss midterm

 Start on I/O devices

 Maybe get to 2D arrays (“arrays of arrays”)

E100 assembly
 Describe how you would write a loop in assembly.

 Let’s write a program that sums the first “N” integers (so 1 to N) using a loop.

o In C

o In e100 assembly

Engin 100 (section 250), Winter 2015, Technical Lecture 9 Page 2 of 8

Function calls
Functions are fundamental to programming.

 They provide modularity

 The allow code reuse

Machine code must support functions. After all, our high-level languages use them all the time and

those languages all get translated into machine code.

Let’s take our “diff” code from before and write a function which returns the difference of two numbers

(always positive as before).

We are going to make a few changes now.

1. Because all labels have “global scope,” we need to make sure each label is unique. So we follow

a convention of having all labels in a function start with the function name and then an

underscore. So instead of “x” we will have “diff_x” in a function named “diff”

2. Rather than ending in a halt, we will end with a “ret” instruction.

3. We need to know where to pass values in and where to get the return value(s).

Let’s convert the code “diff” into the function “diff”

 blt less x y

 sub result x y

 be end 0 0

less sub result y x

end halt

result .data 0

x .data 0

y .data 0

Now, how would we call it? Say we want the diff of two values: “M” and “N” and get the result into “P”.

Question: Do functions help performance?

Engin 100 (section 250), Winter 2015, Technical Lecture 9 Page 3 of 8

Assembly function writing—practice with bits!
Write a function which returns the “Nth” bit of a number. So if our number is 010001 the rightmost bit is

the “0th” bit (an so is a 1) while the “1st” bit is the next rightmost (so is a 0). The function should be

named “bs” (bit select) and it takes two arguments: bs_X (the number) and bs_N (the bit number). Its

return value is to be in “bs_result”.

Let’s talk about how to do this from an algorithmic viewpoint first.

 Probably the easiest way is to right shift the value “N” bits and then “AND” it with 1.

o So if I want the 4th right-most bit of 010001 (where we start counting at 0…) we could

right shift by 4 (so 000001) and then AND it with 1 getting 000001. If we went for the

2nd bit, what would happen?

So write that code!

Administration
 This week’s lab is all about implementing the missing instructions from the e100.

o You would really like to have time to start on lab 7. So try to be done with something

you think works before your lab starts.

 Saturday I will hold a review/Q&A session

o 5-6:30pm in 2311 EECS

 Sunday I will hold another one

o 3-4:30 in 2311 EECS

 Those that are meeting me on Sunday will need to call to get

let up to my office

o 734 764 0525 is my office number.

 Monday’s lecture will be split by the two instructors

o Making up for the snow day…

 Wednesday is the exam

o EWRE 185 during our normal class time.

o Be sure you can find it!

 Next week’s lab is the hard one.

o Be ready for it. Read and try to get something up and running first. ASE100 works, or

come to office hours!

Engin 100 (section 250), Winter 2015, Technical Lecture 9 Page 4 of 8

I/O devices
Speaking to I/O devices isn’t something we worry too much about when programming a computer. You

might be writing to the screen with “cout” and reading from the keyboard with “cin”. And maybe you

are doing some file I/O (reading and writing files). But that’s generally about all you’d do.

But there is a lot of “magic” (opaque level of abstraction if you prefer…) that is going on. So we’ll

explore how this works on the e100. As you’ll see, the e100 has some fairly sophisticated I/O

capabilities.

Memory-mapped I/O
This is a bit of a weird notion, so hang on. We need a way to talk to our I/O devices. The way it is

generally done is “memory-mapped I/O”. What this means is that certain memory locations are

reserved for talking to certain I/O devices. We’ll talk about two different types of devices, the “trivial”

ones and the standard ones.

“Trivial” I/O devices

There are a number of devices you can just read or write to directly from the e100. They include the

switches, LEDs, and HEX displays.

Address Allowed access Definition Use

0x80000000 read bits 17-0: SW[17:0] binary input

0x80000001 write bits 17-0: LED_RED[17:0] binary output

0x80000002 write bits 7-0: LED_GREEN[7:0] binary output

0x80000003 write bits 15-0: HEX3-HEX0 hexadecimal output

0x80000004 write bits 15-0: HEX7-HEX4 hexadecimal output

0x80000005 read bits 31-0: real-time clock measure time

If you want to turn on LED_RED[0] and turn the rest off, you just write a “1” to location 0x80000001.

Practice: Write e100 assembly code that turns on LED_RED[4] and LED_RED[5] turning the rest off.

http://www.eecs.umich.edu/courses/eng100/lab7/timer.html

Engin 100 (section 250), Winter 2015, Technical Lecture 9 Page 5 of 8

Other I/O devices (text from lab 7)

At first glance, it seems easy to send data to/from an I/O device. For example, one could send a sample
to the speaker simply by copying data to the speaker_sample device register. However, this is not quite
enough to send a sequence of values. One problem is that the speaker controller doesn't know when
the program has sent the next value to thespeaker_sample device register. Another problem is that the
program doesn't know when the speaker controller has read the last sample and is ready to receive the
next sample. These problems are addressed by an I/O device protocol.

A protocol is used to guide the interaction between two parties. In the context of I/O devices, an I/O
protocol is used to guide the interaction between an E100 program and an I/O device. A protocol
defines the steps involved in the interaction and includes how each party knows when the current step
is complete. We will use a protocol to send commands to an I/O device and receive the response from
that device.

The part of an E100 program that implements the E100's side of an I/O protocol is called a device driver.
The I/O protocol uses four types of signals to allow an E100 program to send commands to a device and
receive the response from that device.

 command parameters: These signals carry the data that the E100 program wants to send to the
device as part of the command. These signals are set by the E100 program.

 command: The value of this signal is set by the E100 program. When it is 1, it tells the device
that the E100 program is done setting the command parameters and is ready for the device to
carry out the command.

 response parameters: These signals carry the data that the device wants to send to the E100
program as part of its response. These signals are set by the device.

 response: The value of this signal is set by the device. When it is 1, it tells the E100 program that
the device has executed the command and is sending its response to that command.

The steps involved in sending data to an output device are:

command response Description

0 0 System is idle.

1 0

E100 program sets the command parameters to describe the desired command,
then sets command to 1 to ask the device to execute the command. After
setting command to 1, the E100 program waits for device to execute the
command.

1 1

After the device executes the command, it sets the response parameters for the
command, then sets response to 1 to tell the E100 program that it has executed
the command and is sending back the response. After setting response to 1, the
device waits for the E100 program to set command to 0.

0 1
E100 program sets command to 0 to tell the device that the program has seen the
device's response. After this state, the device sets response back to 0, and the
system returns to the Idle state.

Engin 100 (section 250), Winter 2015, Technical Lecture 9 Page 6 of 8

List of devices and their interfaces

Address Allowed access Definition Use

0x80000010 write bit 0: lcd_command

LCD display

0x80000011 read bit 0: lcd_response

0x80000012 write bits 3-0: lcd_x[3:0]

0x80000013 write bit 0: lcd_y

0x80000014 write bits 7-0: lcd_ascii[7:0]

0x80000020 write bit 0: ps2_command

PS/2 keyboard

0x80000021 read bit 0: ps2_response

0x80000022 read bit 0: ps2_pressed

0x80000023 read bits 7-0: ps2_ascii[7:0]

0x80000030 write bit 0: sdram_command

SDRAM memory

0x80000031 read bit 0: sdram_response

0x80000032 write bit 0: sdram_write

0x80000033 write bits 24-0: sdram_address[24:0]

0x80000034 write bits 31-0: sdram_data_write

0x80000035 read bits 31-0: sdram_data_read

0x80000040 write bit 0: speaker_command

speaker 0x80000041 read bit 0: speaker_response

0x80000042 write bits 31-0: speaker_sample

0x80000050 write bit 0: microphone_command

microphone 0x80000051 read bit 0: microphone_response

0x80000052 read bits 31-0: microphone_sample

0x80000060 write bit 0: vga_command

VGA monitor

0x80000061 read bit 0: vga_response

0x80000062 write bit 0: vga_write

0x80000063 write bits 9-0: vga_x1[9:0]

0x80000064 write bits 9-0: vga_y1[9:0]

0x80000065 write bits 9-0: vga_x2[9:0]

0x80000066 write bits 9-0: vga_y2[9:0]

0x80000067 write bits 14-0: vga_color_write[14:0]

0x80000068 read bits 14-0: vga_color_read[14:0]

http://www.eecs.umich.edu/courses/eng100/lab7/lcd.html
http://www.eecs.umich.edu/courses/eng100/lab7/ps2.html
http://www.eecs.umich.edu/courses/eng100/lab7/sdram.html
http://www.eecs.umich.edu/courses/eng100/lab7/speaker.html
http://www.eecs.umich.edu/courses/eng100/lab7/microphone.html
http://www.eecs.umich.edu/courses/eng100/lab7/vga.html

Engin 100 (section 250), Winter 2015, Technical Lecture 9 Page 7 of 8

0x80000070 write bit 0: mouse_command

USB mouse/touchscreen

0x80000071 read bit 0: mouse_response

0x80000072 read bits 31-0: mouse_deltax

0x80000073 read bits 31-0: mouse_deltay

0x80000074 read bit 0: mouse_button1

0x80000075 read bit 0: mouse_button2

0x80000076 read bit 0: mouse_button3

0x80000080 write bit 0: sd_command

SD card

0x80000081 read bit 0: sd_response

0x80000082 write bits 0: sd_write

0x80000083 write bits 29-0: sd_address[29:0]

0x80000084 write bits 31-0: sd_data_write

0x80000085 read bits 31-0: sd_data_read

0x80000090 write bit 0: serial_receive_command

serial communication
(wired and wireless)

0x80000091 read bit 0: serial_receive_response

0x80000092 read bits 7-0: serial_receive_data[7:0]

0x800000a0 write bit 0: serial_send_command

0x800000a1 read bit 0: serial_send_response

0x800000a2 write bits 7-0: serial_send_data[7:0]

0x800000b0 write bit 0: camera_command

camera

0x800000b1 read bit 0: camera_response

0x800000b2 write bits 9-0: camera_x[9:0]

0x800000b3 write bits 9-0: camera_y[9:0]

0x800000b4 write bits 1-0: camera_scale[1:0]

0x800000b5 write bit 0: camera_mirror

0x800000c0 write bit 0: fft_send_command

Fast Fourier Transform

0x800000c1 read bit 0: fft_send_response

0x800000c2 write bits 31-0: fft_send_real

0x800000c3 write bits 31-0: fft_send_imaginary

0x800000c4 write bits 0: fft_send_inverse

0x800000c5 write bit 0: fft_send_end

0x800000d0 write bit 0: fft_receive_command

0x800000d1 read bit 0: fft_receive_response

0x800000d2 read bits 31-0: fft_receive_real

0x800000d3 read bits 31-0: fft_receive_imaginary

http://www.eecs.umich.edu/courses/eng100/lab7/mouse.html
http://www.eecs.umich.edu/courses/eng100/lab7/sd.html
http://www.eecs.umich.edu/courses/eng100/lab7/serial.html
http://www.eecs.umich.edu/courses/eng100/lab7/serial.html
http://www.eecs.umich.edu/courses/eng100/lab7/camera.html
http://www.eecs.umich.edu/courses/eng100/lab7/fft.html

Engin 100 (section 250), Winter 2015, Technical Lecture 9 Page 8 of 8

Keyboard example

From lab 7:

ps2_command and ps2_response implement the standard I/O protocol. There are no command

parameters. The response parameters are ps2_pressed and ps2_ascii[7:0]. The response

parameters represent a keyboard event, describing which key was acted on (ps2_ascii) and

whether the action was a key press or key release (ps2_pressed). Ifps2_pressed is 1, the event

was a key press. If ps2_pressed is 0, the event was a key release. ps2_ascii contains the ASCII

value for the key that was pressed or released.

ase100 simulates the PS/2 keyboard controller accurately enough to test your device driver and

to run assembly-language programs. ase100 sees keyboard events when the mouse is in the

VGA window.

Consider the following code:

LEDTEST

 cp 0x80000020 one

wait bne wait 0x80000021 one

 cp 0x80000001 one

 halt

one .data 1

What happens when you run this?

http://www.eecs.umich.edu/courses/eng100/lab7/index.html#protocol

