
Engin 100 (section 250), Winter 2015, Technical Lecture 6 Page 1 of 6

Last time
 Introduced and explained the “MAX” circuit.

 Introduced the idea of a computer

o “If you had one wish you’d wish for more wishes. If you can have only one hardware design,

you’d want one that can solve any problem.”

 A hardware algorithm that can implement any other algorithm.

 That’s what a computer is!

 Started on a specific computer—the E100.

o Looked at three instructions so far: add, multiply and halt. Mentioned that other similar

ones exist.

Instruction name Opcode Effect

halt 0
PC = PC+4

stop executing instructions

add 1
PC = PC+4

memory[arg1] = memory[arg2] + memory[arg3]

sub 2
PC = PC+4

memory[arg1] = memory[arg2] - memory[arg3]

mult 3
PC = PC+4

memory[arg1] = memory[arg2] * memory[arg3]

div 4
PC = PC+4

memory[arg1] = memory[arg2] / memory[arg3]

o Instructions laid out in 4 memory addresses.

 First contains the opcode.

 Next three contain arg1, arg2 and arg3.

 Also discussed resource for projects.

o Monitor, keyboard, speaker, mouse, etc.

Review questions
 Consider the following chunk of memory. What would memory look like after this code

completes?

mem[0] 1
mem[1] 100
mem[2] 101
mem[3] 102
mem[4] 0 (HALT opcode)
mem[5] 0
mem[6] 0
mem[7] 0
mem[100] 0
mem[101] 22
mem[102] 33

 What are the distinquishing characteristics that make a computer a computer (as opposed to,

say, a “max” circuit or a “rot13” circuit?

Engin 100 (section 250), Winter 2015, Technical Lecture 6 Page 2 of 6

More instructions in the e100 instruction set
There is more to a computer than arithmetic. In this section we’ll discuss the rest of the instruction set.

Logical operations (and copy)

Instruction name Opcode Effect

cp 5
PC = PC+4

memory[arg1] = memory[arg2]

and 6
PC = PC+4

memory[arg1] = memory[arg2] & memory[arg3]

or 7
PC = PC+4

memory[arg1] = memory[arg2] | memory[arg3]

not 8
PC = PC+4

memory[arg1] = ~memory[arg2]

The above instructions allow us to do logical operations (and, or, not) on the data or to copy it.

 “cp” stands for copy (cp is the standard Unix/Linux command to copy a file) and it just move

data from one location to another.

 “and”, “or” and “not” each do a bitwise logical operation on the data. So for example, the not

of 0000111100110101 is 1111000011001010. Likewise, “and” is a bitwise and where each bit of

the two arguments are ANDed together (so 1100 & 1010 is 1000) and “or” is a bitwise or (so

1100 | 1010 is 1110).

Shift operations

Instruction name Opcode Effect

sl 9
PC = PC+4

memory[arg1] = memory[arg2] << memory[arg3]

sr 10
PC = PC+4

memory[arg1] = memory[arg2] >> memory[arg3]

The shift operation is just another type of logical operation. But I’ve separated it out because

sometimes it causes people grief. A shift left just shifts the bits in the number over one way or the other

and fill in with zeros where new values are needed. So if you shift 0100 to the right by 1 you get 0010. If

you shift it to the left by one you get 1000.

 What do you get if you shift 1001001 to the right by 2? If you shift it to the left by 2?

Branches
So what’s missing? Are their programs you can’t write? Think about writing a program that computes

absolute value. What do we need?

We also are lacking loops—the ability to go back and do things a number of times.

Aside: Most computers don’t have a “cp” instruction. What else could they use instead? Assume

there is a memory location known to hold a zero.

Engin 100 (section 250), Winter 2015, Technical Lecture 6 Page 3 of 6

First, let’s talk about the PC. So far, all of our instructions have incremented it by 4. That should make

sense because what we want to do is get the PC to point to the next instruction after the one we are

doing. Each instruction is 4 words, so we want the PC to increment to end up pointing to the next

instruction. Think of the PC as where you are reading in a recipe for something you are baking. If the

recipe says “if you have already boiled the water you can skip to step 4” that direction is telling you

where to go next for the next instruction. Normally, you just go to the instruction below the one you

just did (so step 1, step 2, step 3, etc.) The PC just tells us which “step” we are on.

Branches give us a way to change to some other step of the recipe. And in fact they give us a conditional

way to do that. So “be” (branch equal) says we change the PC to arg1 if memory[arg2]==memory[arg3].

It’s a conditional goto!

Instruction name Opcode Effect

be 13

if (memory[arg2] == memory[arg3]) {

 PC = arg1

} else {

 PC = PC+4

}

bne 14

if (memory[arg2] != memory[arg3]) {

 PC = arg1

} else {

 PC = PC+4

}

blt 15

if (memory[arg2] < memory[arg3]) {

 PC = arg1

} else {

 PC = PC+4

}

Comparisons take into account the sign of the

number. E.g., 32'hffffffff (-1) is less than 32'h00000000 (0).

So what we’ve got are “conditional goto” statements. Each says to jump to a specific part of memory to

get the next instruction if a certain condition is true. Otherwise just do the next instruction (PC=PC+4)

 What do you suppose bne and blt stand for?

 Write a program which finds the absolute value of the data in memory location 100 and halts

once that data is in memory location 100.

mem[0] mem[12]

mem[1] mem[13]

mem[2] mem[14]

mem[3] mem[15]

mem[4] mem[]

mem[5] mem[]

mem[6] mem[]

mem[7] mem[]

mem[8] mem[]

mem[9] mem[]

mem[10] mem[]

mem[11] mem[]

Engin 100 (section 250), Winter 2015, Technical Lecture 6 Page 4 of 6

Arrays
There is really only one thing we lack—we don’t have a good way to deal with arrays. All of the

instructions we’ve used only read from fixed memory locations and only write to a fixed memory

location. Writing something like “max” is just not very reasonable. So we need a way to index into an

array.

Instruction name Opcode Effect

cpfa 11
PC = PC+4

memory[arg1] = memory[arg2 + memory[arg3]]

cpta 12
PC = PC+4

memory[arg2 + memory[arg3]] = memory[arg1]

Do you think you could find the maximum value in an array from memory location 200 to 215? How

would you do it (at a high level)? We won’t have time to finish this in class, but it’s a good exercise to

try to work through.

Hardware Algorithms
Thus far, we have implemented two hardware algorithms. MAX (in class) and rot13 (in lab).

 // max task (algorithm described as C++ program)

 max = 0; /* assume no negative numbers */

 i = 0;

 while (i != 16) {

 if (memory[i] > max) {

 max = memory[i];

 }

 i++;

 }

 // rot13 task (algorithm described as C++ program)

 i = 0;

 while (1) {

 element = memory[i]

 if (element == 0) {

 break;

 }

 if (element < 110) {

 element = element + 13;

 } else {

 element = element - 13;

 }

 memory[i] = element;

 i++;

 }

Let’s use those two as a starting point and consider a new data path.

Engin 100 (section 250), Winter 2015, Technical Lecture 6 Page 5 of 6

E100 Data path and control

 while (1) {
 opcode = memory[PC];

 arg1 = memory[PC+1];

 arg2 = memory[PC+2];

 arg3 = memory[PC+3];

 if (opcode == 0) {

 PC = PC + 4;

 break;

 } else if (opcode == 1) {

 PC = PC + 4;

 memory[arg1] = memory[arg2] + memory[arg3];

 ...

 } else if (opcode == 13) {

 if (memory[arg2] == memory[arg3]) {

 PC = arg1;

 } else {

 PC = PC + 4;

 }

 }

 ...

 }

Engin 100 (section 250), Winter 2015, Technical Lecture 6 Page 6 of 6

With a bit of work, we can rewrite this as:

 while (1) { | keep executing next instruction

 | (until you execute a halt

 | instruction)

 opcode = memory[PC]; PC++ |

 arg1 = memory[PC]; PC++ | This is called "fetch"

 arg2 = memory[PC]; PC++ |

 arg3 = memory[PC]; PC++ |

 if (opcode == 0) {

 break;

 } else if (opcode == 1) { | This is called "decode"

 memory[arg1] = memory[arg2] + memory[arg3]; | This is called

 | "execute"

 ...

 } else if (opcode == 13) {

 if (memory[arg2] == memory[arg3]) {

 PC = arg1;

 }

 }

 ...

 }

Can you create a table that implements our “fetch”?

state

n
e

xt_state

 p
c_w

rite

p
c_d

rive

p
lu

s1
_d

rive

o
p

co
d

e
_w

rite

arg1
_w

rite

arg2
_w

rite

arg3
_w

rite

ad
d

re
ss_w

rite

m
e

m
_d

rive

reset

fetch1

fetch1

fetch2

fetch2 fetch3

fetch3 fetch4

fetch4 fetch5

fetch5

fetch6

fetch6 fetch7

fetch7 fetch8

fetch8 decode

See http://www.eecs.umich.edu/courses/eng100/lab5/control.pdf for an answer...

http://www.eecs.umich.edu/courses/eng100/lab5/control.pdf

