
Engin 100 (section 250), Winter 2015, Technical Lecture 7 Page 1 of 6

Last time
 Introduced most of the e100 assembly language (all but call and ret).

Instruction name Opcode Effect

halt 0
PC = PC+4

stop executing instructions

add 1
PC = PC+4

memory[arg1] = memory[arg2] + memory[arg3]

sub 2
PC = PC+4

memory[arg1] = memory[arg2] - memory[arg3]

mult 3
PC = PC+4

memory[arg1] = memory[arg2] * memory[arg3]

div 4
PC = PC+4

memory[arg1] = memory[arg2] / memory[arg3]

cp 5
PC = PC+4

memory[arg1] = memory[arg2]

and 6
PC = PC+4

memory[arg1] = memory[arg2] & memory[arg3]

or 7
PC = PC+4

memory[arg1] = memory[arg2] | memory[arg3]

not 8
PC = PC+4

memory[arg1] = ~memory[arg2]

sl 9
PC = PC+4

memory[arg1] = memory[arg2] << memory[arg3]

sr 10
PC = PC+4

memory[arg1] = memory[arg2] >> memory[arg3]

cpfa 11
PC = PC+4

memory[arg1] = memory[arg2 + memory[arg3]]

cpta 12
PC = PC+4

memory[arg2 + memory[arg3]] = memory[arg1]

be 13

if (memory[arg2] == memory[arg3]) {

 PC = arg1

} else {

 PC = PC+4

}

bne 14

if (memory[arg2] != memory[arg3]) {

 PC = arg1

} else {

 PC = PC+4

}

blt 15

if (memory[arg2] < memory[arg3]) {

 PC = arg1

} else {

 PC = PC+4

}

Comparisons take into account the sign of the

number. E.g., 32'hffffffff (-1) is less than 32'h00000000 (0).

call 16
memory[arg2] = PC+4

PC = arg1

ret 17 PC = memory[arg1]

 Wrote “absolute value” in machine code.

Engin 100 (section 250), Winter 2015, Technical Lecture 7 Page 2 of 6

 Started in on how to implement the e100 processor. Looked at the data path and started on

fetch.

E100 Data path and control

We didn’t quite finish this last time, so let’s try to get fetch done now.

state

n
e

xt_state

p
c_d

rive

p
lu

s1
_d

rive

ad
d

_d
rive

arg1
_d

rive

arg2
_d

rive

arg3
_d

rive

m
e

m
_d

rive

p
c_w

rite

o
p

1
_w

rite

o
p

2
_w

rite

o
p

co
d

e
_w

rite

arg1
_w

rite

arg2
_w

rite

arg3
_w

rite

ad
d

re
ss_w

rite

m
e

m
_w

rite

reset

fetch1

fetch1

fetch2

fetch2 fetch3

fetch3 fetch4

fetch4 fetch5

fetch5

fetch6

fetch6 fetch7

fetch7 fetch8

fetch8 decode

See http://www.eecs.umich.edu/courses/eng100/lab5/control.pdf for an answer to these problems…

http://www.eecs.umich.edu/courses/eng100/lab5/control.pdf

Engin 100 (section 250), Winter 2015, Technical Lecture 7 Page 3 of 6

Decode and execute
So we’ve managed to “fetch” the instruction. We need to now figure out what instruction we’ve got

and for each instruction do whatever that instruction needs to have done. That sounds like a lot. And it

is. For now, let’s just look at “add”.

state

o
p

co
d

e
_o

u
t

e
q

u
al_o

u
t

n
e

xt_state

p
c_d

rive

p
lu

s1
_d

rive

ad
d

_d
rive

arg1
_d

rive

arg2
_d

rive

arg3
_d

rive

m
e

m
_d

rive

p
c_w

rite

o
p

1
_w

rite

o
p

2
_w

rite

o
p

co
d

e
_w

rite

arg1
_w

rite

arg2
_w

rite

arg3
_w

rite

ad
d

re
ss_w

rite

m
e

m
_w

rite

decode add1

And finally, let’s do “be”

state

o
p

co
d

e
_o

u
t

e
q

u
al_o

u
t

n
e

xt_state

p
c_d

rive

p
lu

s1
_d

rive

ad
d

_d
rive

arg1
_d

rive

arg2
_d

rive

arg3
_d

rive

m
e

m
_d

rive

p
c_w

rite

o
p

1
_w

rite

o
p

2
_w

rite

o
p

co
d

e
_w

rite

arg1
_w

rite

arg2
_w

rite

arg3
_w

rite

ad
d

re
ss_w

rite

m
e

m
_w

rite

decode be1

Engin 100 (section 250), Winter 2015, Technical Lecture 7 Page 4 of 6

Context time—levels of abstraction
We have done a lot in class so far.

 Learned basic combinational logic (and, or, not, etc.)

o And not-so-basic combinational logic (tri-states)

 Learned basic sequential logic

o Registers, memories

 Learned basic finite state machines with a data path (that’s what we’ve been doing)

 Learned Verilog

 Learned how to build a device in hardware (max, rot13)

 Learned a “simple” instruction set for a computer (e100)

 Started to learn how to build a processor (e100 again)

One useful question a few of you have asked is “how does all this fit together”. As I mentioned at the

start of class, there is an idea of “levels of abstraction” in engineering—we work at one level and largely

ignore the rest. What levels do we have and how do they interact? Let’s start at the “top” and work

down (more-or-less the opposite way we’ve learned things)

Assembly/machine language.

 We can write code in assembly to implement an algorithm. So far the only ones we’ve done are:

o Find a2+b2

o Find the absolute value.

Hardware design

 We can create hardware algorithms (max, rot13).

 We are working on building a computer—a generic hardware algorithm.

o We will be able to run our machine language code on this hardware.

Combinational logic and sequential logic

 When we write Verilog code to implement the above hardware designs, we are specifying gates,

registers and memories.

o All of our combinational logic blocks (say equal16) are just a bit truth table. We specify

the truth table in Verilog. And the tools create them and create them on the FPGA.

o We more clearly request registers and memory (in your top.v files) by just instantiating

a register or memory.

When we work at one level, we can largely focus on that level and may be worrying a bit about the level

above and below. But we shouldn’t need to be worrying about things more than one level away at all!

So when writing assembly we really don’t need to worry how it is implemented (how our hardware

design was done) and we certainly don’t need to worry about what gates/registers/memory were used.

Engin 100 (section 250), Winter 2015, Technical Lecture 7 Page 5 of 6

Programming the E100
We have two instructions left to examine:

Instruction name Opcode Effect

call 16
memory[arg2] = PC+4

PC = arg1

ret 17 PC = memory[arg1]

Call is used to call a function. It just jumps to the location of arg1 (wherever the function is) and it keeps

track of what the next instruction would have been. That’s so when the function it called finishes, it can

return to the next instruction (just like a C++ program would…)

Return is how we return from the function. It just has arg1 be equal to whatever arg2 was for the call.

So if the call wrote its return address in location 100, return should use that same location.

Mem[20] call 500 100 0

Mem[24] //next instruction

Mem[100] 0

Mem[500] //start of function

Mem[???] ret 100

Don’t worry too much about the call and return for now. There is quite a bit involved in getting a

function call to work in assembly (how do I pass arguments? How do I return values?) We’ll tackle all

that next time. I just wanted to finish off the instruction set before proceeding.

Engin 100 (section 250), Winter 2015, Technical Lecture 7 Page 6 of 6

Example code
Let’s write “Max”. That is, let’s write a program in assembly that finds the largest value in an array of 16

elements. For this program, let’s assume

 The array starts at location 500 (so where is the last entry?)

 The “max” value should end up in location 499.

Go…

