
By Adam Goodman

 For any sort of group coding project
(for a class, for work, or just for fun), it
is absolutely essential to use some sort
of version control system. You’ve
probably heard this before from you
instructors, but believe it! Using one of
these systems can prevent you from
messing up in any number of ways: for
example, you won’t overwrite your
groupmates’ changes unless you really
try, and if you make a huge mistake in
coding, you can revert to a previous

version...

 If you’ve taken a group-coding course
here at Michigan, it’s likely that your
instructors provided you with some
quick instructions on setting up either
CVS or Subversion. If they told you to
use Subversion, then you might already
know much (but maybe not all) of what
is presented in this article. If they told
you to use CVS, don’t. I mean it. Of all
the version control systems with wide-
spread use, CVS is probably the worst.
Linus Torvalds would rather send diff’s
back and forth through email than use
CVS, and would probably laugh you out
of whatever room you were in if you
admitted to him that you used it.
(Though, he’s not that much of a fan of
Subversion either.) I won’t bother get-
ting into the reasons why Subversion is
better than CVS, but trust me when I

say that they are numerous.

 Instead of further expounding upon
the virtues of version control, I’ll just
proceed by telling you how to get
started using Subversion in the Univer-
sity of Michigan’s computing environ-
ment. If you follow these instructions
properly, then you’ll be able to access
the repository from anywhere – not just

computers within the U-M network!

 First, a quick bit of terminology: a
repository is the central storage location
for your code. A working copy is, well, a
copy you can work out of, and periodi-
cally sync up with the central reposi-
tory (in a few different ways; we’ll get
to that later). Note that you cannot
work directly out of the repository: it is
simply impossible, due to the storage
format used by the repository, and it

would be a bad idea anyway.

Creating a Subversion Repository
 Since ITD now provides more storage
space than CAEN, you’ll probably want

to create the repository in your ITD
space. Because of some complicated
version-incompatibility issues, you need
to login to the ITD servers to create

the repository initially:

 First, use your favorite SSH client to
connect to “sftp.itd.umich.edu” and in
your home directory, create a direc-

tory to hold your repository:

$ mkdir svn_repo

 Next, give your groupmates permis-
sion to access the directory (where
uniqname1, uniqname2, etc. are the

uniqnames of your groupmates):

$ fs setacl svn_repo uniqname1 rlidwk

$ fs setacl svn_repo uniqname2 rlidwk

 Then, create the repository:

$ svnadmin create svn_repo

Getting a Working Copy

 You can create as many working cop-
ies of a repository as you want, but you
should probably make at least one per
group member. That is, multiple people
should not work out of the same work-
ing copy (unless you’re doing pair-
programming) as this defeats one of the

major reasons to use version control.

 To get a working copy on a CAEN
linux machine, first make sure you’ve
run “gettokens” to get access to your

ITD space. Then, run:

$ svn checkout file:///afs/umich.edu/user/
letter1/letter2/uniqname/svn_repo

 Where letter1 and letter2 are the first
and second letters of your uniqname,
respectively. So, if your uniqname was

“superman” this command would be:

$ svn checkout file:///afs/umich.edu/user/
s/u/superman/svn_repo

To get a working copy on a non-U-M
linux machine (first make sure you have
subversion and ssh installed), you can

run:

svn+ssh://uniqname@sftp.itd.umich.edu/
afs/umich.edu/u/letter1/letter2/uniqname/
svn_repo

 You’ll have to enter your ITD pass-
word a few times; that’s just the way of
it. Note that any of your group mem-
bers should be able to run any of these
commands under their own user ac-
counts (but the repository path still
needs to include your uniqname, since

it’s stored in your home directory).

Adding and Modifying Files

 When you check out a working copy
of a newly-created repository, it will be
empty. Say you create a file called
“hello.txt” in the working copy, and
you want to add it to the repository.
You can do so by running the following

commands:

$ svn add hello.txt

$ svn commit –m “commit message”

 Whenever you add a file, you need to
explicitly tell Subversion that you have
done so, as above. If you modify a file,

you need only commit it.

 The most important thing to keep in
mind when using subversion is that no
changes are applied to the repository
unless you use the “svn commit” com-
mand. So if you add, delete, or modify
files in your working copy (even with
SVN commands), don’t forget to com-
mit. When you commit, you need to
enter a message describing the changes
you made; these messages appear in a

log you can query later.

 When and how often you commit
changes is up to you. With real, pro-
duction code, people often institute
rules saying that you should only com-
mit code that will compile and run
successfully, but if you’re in the middle
of building a project from the ground
up, such a restriction might not make
much sense. Also, remember that more
-frequent commits will give you more
points to which you can revert later,
should it become necessary (you could
think of it a little like Windows’

“System Restore” feature).

 If you want to undo local, uncommit-

ted changes, you can run:

$ svn revert file

Updating

 To copy new changes from the re-
pository to your working copy, you can

run:

$ svn update

 If you have made local changes to a
file that was updated in the repository,
then subversion will attempt to merge
the changes. If this cannot be done
easily, however, then it will place the

Using Subversion on your ITD AFS space

Page 4 EECSpeaks: 100% Real Publication, Just Add Readers

pmchen
Text Box
EECSpeaks, Volume 39, Issue 2, October 2007http://hkn.eecs.umich.edu/pdfs/EECSpeaks/vol39_issue2.pdf

By Sushil Gupta

Sushil Answers a Really Hard Question

oxygen do to cells? Whatever it

is, I bet Wolverine could just

heal it out. I mean in Season 4

of the cartoon, Wolverine heals

out radiation. Radiation is way

worse than a little water in the

lung. More important to all of

this is, can Wolverine swim? I

can imagine he weighs a lot with

all that metal on his bones.

Pretty much Wolverine is awe-

some and I wish I could be him.

Minus the haircut. I’m not sure

how that got popular, but him

and Beast need to get that gar-

bage taken care of.

This issue’s hard question for

which Sushil has an answer is:

Can Wolverine drown?

This question was heavily dis-

cussed in the old, old office by

me and Zach for a while one

time. It was awesome. I

watched all the Xmen movies

and all 5 seasons of the cartoon

again just to get a good answer

for this one.

Dictionary.com lists drowning as

to die under water or other

liquid of suffocation. One can

assume that dying by drowning is

caused by a lack of oxygen to the

brain. But do Wolverine’s cells

even need oxygen? In X2, Pro-

fessor X gets mad at Wolverine

for smoking in Cerebro, and

Wolverine extinguishes his cigar

on his own hand, while appearing

to hold his breath. I can imagine

this would be painful, but the

hand heals, so it can be assumed

that Wolverine does not require

oxygen, but does it so that there

is less air for the rest of us,

which fits perfectly with his his-

tory of badassery and no-

nonsense. Even if he does need

oxygen, what does the lack of

“Pretty much Wolverine
is awesome and I wish I
could be him”

file in a “conflicted” state and you will
have to edit it manually. Subversion will
place markers around “conflicted ar-
eas” and show the state of your work-
ing copy, and the current state of the
repository. It will be up to you to en-
sure the correct code ends up in that

area; when you have done so, run:

$ svn resolved file

 To tell subversion that you have fixed
the problem (it will not let you commit
otherwise).

Viewing Status

 You often might want to view the
current status of your working copy
(what files have changed, etc. with re-
gard to the working copy). To do this,

run:

$ svn status

 If you want to see what changes have
been made to a particular file in your

working copy, you can run:

$ svn diff file

If you do not provide a file to the com-
mand, it will show you all of the

changes against the working copy.

Viewing History

To view the log of commit messages,

run:

$ svn checkout –r revision svn_repo_path

File Management

 If you want to copy, move, or delete a

file, use SVN commands:

$ svn copy source destination

$ svn move source destination

$ svn delete file

 These will preserve the revision his-

tory of the files involved.

Further Resources

 There’s way more to Subversion than
what I’ve mentioned here, though
hopefully I’ve provided enough informa-
tion to get started. If you want to learn
more, you can check out the official

documentation at:

http://svnbook.red-bean.com/

 Also, if you use windows, you might
want to check out TortoiseSVN, a
really well-done graphical interface to
subversion that integrates with Win-
dows Explorer. (I won’t try to explain
how to use it here, but all the com-
mands should line up reasonably well.)

You can find it at:

http://tortoisesvn.tigris.org/

$ svn log file

 Again, the file parameter is optional –
if provided, the command will only
show commits relevant to a certain
file; otherwise, it will show everything

pertaining to your current directory.

 You can also view differences across
revisions. To see what changed be-

tween two revisions:

$ svn diff –r rev1:rev2 file

 You can specify “HEAD” as rev2 to
refer to the most recent revision, and

file is optional yet again.

Reverting to a Previous Revision

 If you really mess something up, you

can revert your working copy to the

state of a previous revision:

$ svn merge –r HEAD:rev1 .

 This will compute a backwards diff
between the current revision and the
specified one, and then apply it as a
patch to the current working copy.
You’ll need to commit for this to take

effect in the repository, as always.

 If you merely want to see the con-
tents of your repository at a previous
version, you can checkout a new
working copy at that revision (you
probably shouldn’t try to make any

changes to it, however):

Page 5 Volume 39, Issue 2

