
Lecture 12

More on strings
Member functions

I’m back

• Was in the hospital Sat morning until
Monday night
– All is well.
– Thought I had a heart attack, just inflammation

of the heart sack.
• Not a health issue. �

• I am now way behind on some things.
– Will be caught up by Sunday morning.

Things to know

• First off, homework 3 is now due Tuesday
the 8th at 5pm in the homework box
– Or class on Monday, as you wish.

• Exam is Thursday Feb 10th 6:30-8:30pm
Rooms will be announced on Monday.

• Don’t forget P2 is due Monday at 11:59pm.

Characters

• Until Monday we only had dealt with two
data types
– Doubles and ints
– Both were for representing numbers

• Another data type is “char” for character
– Used to represent a single letter.

• Groups of characters are called strings

C++ and strings

• It turns out C++ has two different ways of
representing strings
– One is “C strings”

• This is just an array of characters terminated by a
special character (called `/0’)

• This is the way the C programming language does
strings.

– One is C++ strings
• A “smart” array of characters
• Has a lot of functions and other wackiness

associated with them.

More on the two

• C++ strings are much more powerful and
handy, but various older bits of code use
only C strings.
– In general we will use C++ strings in this class.

• But as time allows I will come back to C strings
later. A C++ programmer needs to be okay with C
strings.

C++ strings and you

• C++ strings have a large number of
“function members” associated with them.
– A member function is a function associated

with a data type
– You access them just like a “data member” of a

struct.
– So if “a” is a string

• a.size() would be calling the fail() “member
function” associated with C++ strings.

C++ member functions (1/4)

• length() or size()
– Returns the number of characters in the string

• c_str()
– Converts the C++ string into a C string

• insert()
– Inserts a string into the current string, starting at the

specified position.
string str12 = "0123";
str12.insert (1,"XYZ");
cout << str12 << endl;
// "0XYZ123"

C++ member functions (2/4)

• erase()
– Delete a substring from the current string.

string str13 = "abcdefghi";
str12.erase (5,3);
cout << str12 << endl; // "abcdei"

• replace()
– Delete a substring from the current string, and replace it

with another string.
string str14 = "abcdefghi";
string str15 = "XYZ";
str14.replace (4,2,str15);
cout << str14 << endl; // "abcdXYZghi"

C++ member functions (3/4)

• find(), rfind()
– Search for the first occurrence of the substring

str in the current string, starting at position pos.
If found, return the position of the first
character. If not, return a special value (called
string::npos). The member function rfind does
the same thing, but returns the position of the
last occurrence of the specified string.

C++ member functions (4/4)

• substr()
– Returns a substring of the current string,

starting at position pos and of length n:
string str18 = "abcdefghi"

string str19 = str18.substr (6,2);
cout << str19 << endl; // "gh"

Other things you can do with
strings

• “=“
– Assign. Right side can be C or C++ string

• +
– Concatenates.

• ==, !=, >, <, etc.
– Compare strings. > and < use alphabetic order

• []
– Treats the string as an array of characters.
– Returns a character, not a string!

while (i< input.size())
{

thischar = input[i];
thischar = toupper(thischar);
roman_numeral_index = roman_numerals.find(thischar);
if (roman_numeral_index == roman_numerals.npos)
{

cerr << " Error " << thischar << " invalid" << endl;
}
new_roman_numeral_value = roman_values[roman_numeral_index];
if (new_roman_numeral_value <= last_roman_numeral_value)
{

total = total + new_roman_numeral_value;
}
else // handle IV and IX
{

total= total + new_roman_numeral_value –
2*last_roman_numeral_value;

}
last_roman_numeral_value = new_roman_numeral_value;
i = i+1;

}

while (i< input.size())
{

thischar = input[i];
thischar = toupper(thischar);
romanNumeralIndex = romanNumerals.find(thischar);
if (romanNumeralIndex == romanNumerals.npos)
{

cerr << " Error " << thischar << " invalid" << endl;
}
newRomanNumeralValue = romanValues[romanNumeralIndex];
if (newRomanNumeralValue <= lastRomanNumeralValue)
{

total = total + newRomanNumeralValue;
}
else // handle IV and IX
{

total= total + newRomanNumeralValue -
2*lastRomanNumeralValue;

}
lastRomanNumeralValue = newRomanNumeralValue;
i = i+1;

}

