
Working in base 2

• Consider the number 4,567.  
– The value is: 4*1000+5*100+6*10+7*1.
– Back in grade school we’d have said that the 

6 is “in the 10s place”

4,567

1000s       100s  10s  1s

4,56710

1000s      100s  10s     1s
(103)        (102)  (101)  (100)

10102

8s    4s  2s  1s
(23) (22) (21) (20)

Adding

1001
+ 0010
======

1001
+ 0011
======

1111
+ 0011
======

Subtracting

1001
- 0010
======

1001
- 0011
======

1111
- 0011
======



Negative numbers

• Say I want to use 8 bits to represent positive and 
negative numbers.
– One solution is to use the “Most Significant Bit” (MSB 

– the one on the far left) as a “sign bit”
• If it is 1 the number is negative.
• What would be the value of:

– 1000 0110
– 0000 1000

• Now what is the smallest and largest number we could 
represent?

• This scheme is called “signed magnitude”

More on negative numbers

• It turns out using signed-magnitude is pretty icky 
on a computer.
– So instead they use “two’s complement”

• If the MSB is 1 the number is negative
• To get the magnitude of a negative flip all bits and add 1 

– 1111 1111 would be  0000 0000 +1 = 1.  So 1111 1111 is 
negative 1.

– 1000 0000 is an exception. That would be -128.

– We use two’s complement because it turns out 
adding those numbers and adding unsigned numbers 
is really the same thing.

– With 8 bits can represent 27-1 to -27 (127 to -128)

Consider adding
1001   abcd

+ 0010   efgh
======   ====
1011   wxyz

• Notice that 
– z= (d and !h) or (!d and h)
– c1=d and h

• Who cares?
– It turns out we can build an 

adder out of “and”, “or” and “not”
operations.  

– We can also build subtractors, 
multipliers, etc.

• We can use these simple 
“ands”, “ors” and “nots” to 
build a computer.  But we 
pretty much are stuck with 
base 2.
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