
Working in base 2

• Consider the number 4,567.
– The value is: 4*1000+5*100+6*10+7*1.
– Back in grade school we’d have said that the

6 is “in the 10s place”

4,567

1000s 100s 10s 1s

4,56710

1000s 100s 10s 1s
(103) (102) (101) (100)

10102

8s 4s 2s 1s
(23) (22) (21) (20)

Adding

1001
+ 0010
======

1001
+ 0011
======

1111
+ 0011
======

Subtracting

1001
- 0010
======

1001
- 0011
======

1111
- 0011
======

Negative numbers

• Say I want to use 8 bits to represent positive and
negative numbers.
– One solution is to use the “Most Significant Bit” (MSB

– the one on the far left) as a “sign bit”
• If it is 1 the number is negative.
• What would be the value of:

– 1000 0110
– 0000 1000

• Now what is the smallest and largest number we could
represent?

• This scheme is called “signed magnitude”

More on negative numbers

• It turns out using signed-magnitude is pretty icky
on a computer.
– So instead they use “two’s complement”

• If the MSB is 1 the number is negative
• To get the magnitude of a negative flip all bits and add 1

– 1111 1111 would be 0000 0000 +1 = 1. So 1111 1111 is
negative 1.

– 1000 0000 is an exception. That would be -128.

– We use two’s complement because it turns out
adding those numbers and adding unsigned numbers
is really the same thing.

– With 8 bits can represent 27-1 to -27 (127 to -128)

Consider adding
1001 abcd

+ 0010 efgh
====== ====
1011 wxyz

• Notice that
– z= (d and !h) or (!d and h)
– c1=d and h

• Who cares?
– It turns out we can build an

adder out of “and”, “or” and “not”
operations.

– We can also build subtractors,
multipliers, etc.

• We can use these simple
“ands”, “ors” and “nots” to
build a computer. But we
pretty much are stuck with
base 2.

c3c2c1

