Working in base 2 4,567,10 1000s 100s 10s 1s • Consider the number 4,567. (10³) (10^2) (10^1) (10^0) - The value is: 4*1000+5*100+6*10+7*1. - Back in grade school we'd have said that the 10102 6 is "in the 10s place" 4,567 4s 2s 1s 8s 100s 10s 1s 1000s (23) (22) (21) (20) Adding Subtracting 1001 1001 1001 1001 1111 1111 + 0010 + 0011 - 0010 - 0011 + 0011 - 0011 ===== ====== ====== ====== ====== =====

Negative numbers

- Say I want to use 8 bits to represent positive and negative numbers.
 - One solution is to use the "Most Significant Bit" (MSB
 - the one on the far left) as a "sign bit"
 - If it is 1 the number is negative.
 - What would be the value of:
 - 1000 0110
 - 0000 1000
 - Now what is the smallest and largest number we could represent?
- This scheme is called "signed magnitude"

More on negative numbers

- It turns out using signed-magnitude is pretty icky on a computer.
 - So instead they use "two's complement"
 - If the MSB is 1 the number is negative
 - To get the magnitude of a negative flip all bits and add 1
 - 1111 1111 would be 0000 0000 +1 = 1. So 1111 1111 is negative 1.
 - 1000 0000 is an exception. That would be -128.
 - We use two's complement because it turns out adding those numbers and adding unsigned numbers is really the same thing.
 - With 8 bits can represent 2^{7} -1 to -2^{7} (127 to -128)

Consider adding

1001 + 0010 ===== 1011	<pre>abcd • efgh ==== wxyz •</pre>	 Notice that z= (d and !h) or (!d and h) c₁=d and h Who cares? It turns out we can build an adder out of "and", "or" and "not" operations. We can also build subtractors, multipliers, etc. We can use these simple "ands", "ors" and "nots" to build a computer. But we
---------------------------------	------------------------------------	--