
Lecture 16

Project A &
More on the workings of a

computer

Project A: Minesweeper

00000
01234

0
1
2
3
4

Start of game with all
the spaces covered

00000
01234

0 0001.
1 0012.
2 111..
3
4

User selected 0,0. The
game uncovered the
space and all spaces
adjacent to any
uncovered zero.

00000
01234

0 0001#
1 00122
2 111#1
3 #1111
4 11000

User selected 4,0. This
was a mine, so the
game is over and the
full board is displayed
(# are mines)

So…..

• We’ve supplied some code
– The main
– Display the board
– Read from a file to load a board

• You get to fill in the rest.

Advice

• Read the specification carefully.
• Read the code very carefully

– Think of it like HW2 where you had to answer
questions about the code.

• Write the simpler functions first
– Test each function as best you can.
– Cout or the debugger can be very useful here.
– Consider commenting out the displayMap()

function so you can see your testing output.

Common errors

• I spent a fair amount of time writing this
whole thing. I hit a number of really
annoying bugs.
– Most common was array bounds problems.

• These are really hard to find.

– Some “cut and paste” errors—mainly in my for
loops.

• for(i=0;j<100;i++) can create really annoying
problems.

“tricks”

• Use –Wall a lot!
– Saved me on a x==4 line when I wanted x=4

• If your program is crashing…
– Use gdb (or ddd). Do the following:

• gdb a.out
• run
• bt

– The “bt” stands for backtrace and should tell you
where the program crashed.

• If it is someplace really wacky, look for array bounds
problems.

– Ask for help.

On to computer
representations

Subtracting

1001
- 0010
======

1001
- 0011
======

1111
- 0011
======

Consider adding
1001 abcd

+ 0010 efgh
====== ====
1011 wxyz

• Notice that
– z= (d and !h) or (!d and h)
– c1=d and h

• Who cares?
– It turns out we can build an

adder out of “and”, “or” and “not”
operations.

– We can also build subtractors,
multipliers, etc.

• We can use these simple
“ands”, “ors” and “nots” to
build a computer. But we
pretty much are stuck with
base 2.

c3c2c1

Gates

• We can draw logic
gates AND

OR

NOT

Gates example
1 a

+ 0 + b
====== ====
1 s

c10

char

• A char is an 8-bit 2’s complement number.
– So you can represent -128 to 127.

• But we usually use it to represent an
character.
– We map each of the 256 values to a different

symbol.

Selected parts of the ASCII table
B10 B08 B16 B2
=== === === ========
000 000 000 00000000 NUL (Null char.)
007 007 007 00000111 BEL (Bell)
008 010 008 00001000 BS (Backspace)
009 011 009 00001001 HT (Horizontal Tab)
010 012 00A 00001010 LF (Line Feed)
011 013 00B 00001011 VT (Vertical Tab)
012 014 00C 00001100 FF (Form Feed)
013 015 00D 00001101 CR (Carriage Return)
014 016 00E 00001110 SO (Shift Out)
037 045 025 00100101 % (percent)
038 046 026 00100110 & (ampersand)
039 047 027 00100111 ' (single quote)
040 050 028 00101000 (
048 060 030 00110000 0
049 061 031 00110001 1
050 062 032 00110010 2
051 063 033 00110011 3
072 110 048 01001000 H
073 111 049 01001001 I

Some of the table
Is in your book (p958ish)
Easy to find on the web.

