
Last of “how computers work”

Lecture 18
Machine code and more

Admin

• Exam scores
– I still don’t have scores from all of the GSIs.
– It looks like the median and average are around

70, but I really can’t tell yet.
– I expect to have them all today, so I should be

able to post the numbers and graphs later today.
– Answers will be posted over the weekend.

Until break

• Our plans are as follows:
– Monday and Wednesday will be an introduction

to Matlab.
• Matlab reading will be posted on the website.

– Friday will cover some additional C++
language constructs and perhaps finish up
Matlab (as needed)

– The Monday we get back the next project will
be discussed.

Last of “How a Computer works”

• We’ve covered some basics, but I felt a lot
of you were lost.
– So today I’m going to give a very detailed

example of the execution of a computer.
– The goal is to get you all to have some

appreciation for what a computer is doing
– The example is very simplistic, but at the same

time does provide an accurate view of what a
computer does.

Disclaimer

• This is an example of a very simplified
computer. A real computer might have
100s of different instructions and around a
billion bytes of memory. This one has 4
instructions and 64 bytes of memory.
– Still, while simplified it does illustrate the

basics of computer operation.

• Each computer instruction takes up 16 bits
(2 bytes) of memory. The instructions are
encoded as follows:

Instruction opcode [15:14] memA[13:8] B[7:0]
add 00 memA memB
addi 01 memA immediate
beq 10 memA target
print 11 memA unused

Instruction opcode [15:14] memA[13:8] B[7:0]
add 00 memA memB
addi 01 memA immediate
beq 10 memA target
print 11 memA unused

add: Mem[memA]=Mem[memA]+Mem[memB]
addi: Mem[memA]=Mem[MemA]+immediate
beq: if(Mem[memA]==0) PC=target
print: print Mem[memA] and halt.

So 0000 0000 0000 0000 says to add the byte at memory
location 0 to itself and store the result in memory location zero.

Memory

• Memory is just a big array
– Well not-so-big in our case.

• Each address contains a single byte (8 bits)
• The “memory address” is an index into the

array.
– Note that with 64 bytes of memory we need

log2(64) or 6 bits to address the memory.
– 6 bits can represent 0 to 63.

PC

• The program counter, or “PC” points to the next
instruction to be fetched.
– It is just a special 6-bit memory location, separate from

“memory”
• Recall that an instruction takes up 16 bit, so an

instruction will use 2 memory addresses, PC and
PC+1.

• When an instruction finished executing, it sets the
PC = PC+2.
– Branches will sometimes be an exception to this!

OK, let’s look at an example:

• The algorithm
sum=sum+x
y=y-1
if(y=0) done

start: add sum, x
addi y, –1
beq y, done
beq z, start

done: print sum
sum: 0
y: 3
x: 4
z: 0

add: Mem[memA]=Mem[memA]+Mem[memB]
addi: Mem[memA]=Mem[MemA]+immediate
beq: if(Mem[memA]==0) PC=target
print: print Mem[memA] and halt.

Instruction opcode [15:14] memA[13:8] B[7:0]
add 00 memA memB
addi 01 memA immediate
beq 10 memA target
print 11 memA unused

add: Mem[memA]=Mem[memA]+Mem[memB]
addi: Mem[memA]=Mem[MemA]+immediate
beq: if(Mem[memA]==0) PC=target
print: print Mem[memA] and halt.

Address Data
0 00001010
1 00001100
2 01001011
3 11111111
4 10001011
5 00001000
6 10001101
7 00000000
8 11001010
9 00000000
10 00000000
11 00000011
12 00000100
13 00000000

