
Lecture 21

2’s complement numbers
C++ additions

Complexity

Admin

• I’ll have office hours from 12:45-4:30.
– I’ll be leaving at 4:30 sharp

• Brad’s hours moved to 3:30-5:30pm
• Office hours don’t restart until the Monday 

after break.
– I’ll likely be around Friday afternoon during 

break.

Today

• 2’s complement numbers
– How to compute sign and magnitude
– How to negate.

• Additional C++ syntax
– Unsigned, switch statements, bool

• Algorithm complexity

2’s complement numbers

• A way to represent signed (+/-) numbers.
– Leftmost bit is a sign bit.
– For its value, treat as a binary number, but the 

last place (MSB) is negated.

1 0 1 0 1 0

-32 16 8 4 2 1

So the above value is -32 + 8 + 2 = -22 



2’s complement

• To negate a 2’s complement number you 
can just invert all the bits and add 1.
– 101010 � 010101+1 = 010110 =16+4+2=22

• Practice
– Find the values of the following 6-bit 2’s 

complement numbers:
• 101000
• 001010
• 111111

Sign extension

• If you want to convert an n-bit 2’s complement 
number to a larger representation you can’t just 
tack on zeros to the end.
– That would change sign.

• It turns out you can just “extend” the MSB.
– 000 � 00000
– 111 � 11111
– 010 � 00010
– 100 � 11100

• Why does this work?

Misc. C++ syntax

• First of all, some variables can be 
declared as unsigned
– Char and int
– This means the 8 or 32 bits aren’t treated as a 

2’s complement number
• Instead just a normal binary number.

– This can be useful if you are playing with bits 
or if you have values that can’t be negative.

– It does extend the range of representation a 
bit, but that usually isn’t too helpful.

Examples of unsigned

• unsigned int bob;
• unsigned char mary;



Switch
switch(number)
{

case 1:
case 2:
case 3:

cout << "Low ball" << endl;
break;

case 4:
cout << "Nice number" << endl;
break;

case 5:
cout << "A bit high or ";

case 6:
cout << "Maybe way high" << endl;
break;

default:
cout << "I think not" << endl;

}

Rules of the switch

• The labels must be constants.
• The code continues until a break.

Other switch stuff

• I personally dislike switch statements
– Because the don’t handle ranges or variables 

they are only occasionally useful.
– If you forget a break things get broken quickly.
– Nested if/else statements can do the same 

thing.

• I use them, but only rarely.

Algorithm complexity

• I’ve been emphasizing that computers are 
generally “fast enough”
– To an extent, this is a lie.  

• Think about how often you are waiting for a 
computer to do something.  

• Maybe logging in, compiling, whatever.

– Further, bad algorithms can lead to code that 
is much slower than it should be



Input size

• In general it will take longer to perform an 
algorithm if there is more data as part of 
the input.
– As such we generally measure complexity in 

terms of input size.

• Consider a sorting algorithm.
– The size of the input is the number of 

elements to be sorted.

Algorithm complexity

• In general we measure an algorithm’s 
complexity by how the run time is related 
to the input size.
– Consider selection sort.

• For i=I to n
– Find smallest
– Copy it to new array
– Mark old array element as used

– What is the complexity in terms of n? 

Again

• How about bubble sort?

More examples: match from HW2

• This function takes two sorted lists, both of 
which have exactly “size” elements. The 
lists have the following properties:
– They are sorted with the smallest value found 

at index 0.
– Neither list will have repeated values. (The 

same value can’t occur twice in the same list)

• The function is to return the number of 
elements shared by the two lists.



A tale of two algorithms

• Compare all pairs
• Walk both lists

So who cares?

• As engineers you will often be working 
with very large data sets
– Say 20,000,000 elements.
– Say for match you can do a comparison in 1 

billionth of a second (which is about right on a 
good day)

• The smart algorithm will take around 2x107/1x109

seconds or 0.02 seconds
• The n squared algorithm will take (2x107)2/1x109 or 

4x105 seconds which is a bit more than 4 days.

Consider Google

• 8,058,044,651 web pages.
– Algorithms better be sub-linear…


