
Introduction to C++ classes

Lecture 22

Practical #1

• The first (of two) practical assignments.
– The goal is to have you work on code in a

way that is likely in future classes or the real
world.

• You get a specification, you are asked to write a
program to do the task.

– You may not ask for programming help.
• GSIs and I will not answer coding questions

related to the project.
• We will answer specification questions

Practical #1

• Project is to generate a histogram of
grades.
– We provide sample input and output values.
– The project write-up explains how to use “diff”

to compare your output to the right answer.

• Due this Sunday at noon
– There is also an extra credit part that is

probably a lot more work than it is worth.
• But if the practical was easy…

Coming Soon

• HW 4 due Wednesday 3/9 (noon)
• Practical 1 due Sunday 3/13 (noon)
• Quiz 2 on Wednesday 3/16 (in class)

– Covers material since Exam 1.

• Project B due Friday 3/25 (9pm)
– Assigned this Wednesday

Plan

• Today:
– C++ classes, an introduction

• Wednesday
– Project B overview
– C++ classes continued

• Friday (& probably Monday)
– More on using C++ classes

Classes/
Object oriented programming

• The basic idea is that as programs get
large, they become difficult to organize
and manage.
– The traditional attack against this type of

complexity is to group things into
understandable blocks.

• In fact, that is what we do when we use “functional
decomposition”. That is, breaking a problem into
parts which we solve separately.

More on OOP

• As programs get very large functional
decomposition doesn’t cut it.
– The problem is there are so many functions

you just have too much to keep track of at
once.

– So the basic idea is to organize things by data
structures (structs, arrays, or whatever).

• You then write functions which manipulate those
data structures.

Example: Complex numbers

• Say you are writing an electrical circuit
simulation tool.
– Such simulations involve complex numbers

• What you would like to do is write a bunch of
functions that can perform the various complex
number operations.
– Say, add, subtract, divide, multiply, and

exponentiation
• So in C (or Fortran or BASIC or…) what you

would do is write a bunch of functions which do
those operations
– Say CpxAdd(a,b), CpxMult(a,b) etc.

Without Classes

• By tradition (and generally good style)
what we would do in C is:
– Write the structure definition and all the

relevant code in one file.
– Ask that the user not manipulate our structure

directly.
• Instead they should use the supplied functions.
• This allows us to potentially do some extra work to

be sure all is well.
– For example, checking array bounds.

const int SIZE=30;
int readA(int array[], int loc)
{

if(loc>=0 && loc <SIZE)
return(array[loc]);

else
{

cerr << "Read access out of bounds\n";
exit(1);

}
}

void writeA(int array[], int loc, int value)
{

if(loc>=0 && loc <SIZE)
array[loc]=value;

else
{

cerr << "Write access out of bounds\n";
exit(1);

}
}

Problems?

• Well, for one, the functions are obviously
bound to an array of a fixed size but…
– There is really no association between the

data structure and the functions
– You’d have to go searching for those

functions that work on that fixed size array.

• In general, you want the data structure
and the functions tightly bound.

Other problems

• Wonky naming
– readA(), writeA()

• Don’t want these to be too big, too hard to type.
• But readA and writeA are really not descriptive and

someone else on the project might have used that
name!

• Constant declared separate from functions
– Just annoying.

• Would like to group stuff together.

Solution?

• Make functions and data elements all a
member of the same group

#include<iostream>
using namespace std;

const int SIZE=30;
struct SIarray
{

int array[SIZE];
int read(int loc);
void write(int loc, int value);

};

• Now functions are grouped with their data structure.
• Because functions are now members of the structure we

can use names of “read” and “write”
• Const is still outside of structure for now. We will fix that

later.

int SIarray::read(int loc)
{

if(loc>=0 && loc <SIZE)
return(array[loc]);

else
{

cerr << "Read access out of bounds\n";
exit(1);

}
}

void SIarray::write(int loc, int value)
{

if(loc>=0 && loc <SIZE)
array[loc]=value;

else
{

cerr << "Write access out of bounds\n";
exit(1);

}
}

