Introduction to C++ classes

Lecture 22

Practical #1

» The first (of two) practical assignments.

— The goal is to have you work on code in a
way that is likely in future classes or the real
world.

* You get a specification, you are asked to write a
program to do the task.

— You may not ask for programming help.

» GSls and | will not answer coding questions
related to the project.

» We will answer specification questions

Practical #1

» Project is to generate a histogram of
grades.
— We provide sample input and output values.
— The project write-up explains how to use “diff”’
to compare your output to the right answer.
 Due this Sunday at noon

— There is also an exira credit part that is
probably a lot more work than it is worth.
+ But if the practical was easy...

Coming Soon

HW 4 due Wednesday 3/9 (noon)
Practical 1 due Sunday 3/13 (noon)
Quiz 2 on Wednesday 3/16 (in class)
— Covers material since Exam 1.

Project B due Friday 3/25 (9pm)

— Assigned this Wednesday




Plan

» Today:

— C++ classes, an introduction
» Wednesday

— Project B overview

— C++ classes continued
 Friday (& probably Monday)

— More on using C++ classes

Classes/
Object oriented programming

» The basic idea is that as programs get
large, they become difficult to organize
and manage.

— The traditional attack against this type of
complexity is to group things into
understandable blocks.

« In fact, that is what we do when we use “functional
decomposition”. That is, breaking a problem into
parts which we solve separately.

More on OOP

» As programs get very large functional
decomposition doesn’t cut it.

— The problem is there are so many functions
you just have too much to keep track of at
once.

— So the basic idea is to organize things by data
structures (structs, arrays, or whatever).

* You then write functions which manipulate those
data structures.

Example: Complex numbers

« Say you are writing an electrical circuit
simulation tool.
— Such simulations involve complex numbers

« What you would like to do is write a bunch of
functions that can perform the various complex
number operations.
— Say, add, subtract, divide, multiply, and

exponentiation

» Soin C (or Fortran or BASIC or...) what you
would do is write a bunch of functions which do
those operations
— Say CpxAdd(a,b), CpxMult(a,b) etc.




Without Classes

By tradition (and generally good style)
what we would do in C is:

— Write the structure definition and all the
relevant code in one file.

— Ask that the user not manipulate our structure
directly.
* Instead they should use the supplied functions.

* This allows us to potentially do some extra work to
be sure all is well.

— For example, checking array bounds.

const int SIZE=30;
int readA(int array[], int loc)
{
if (loc>=0 && loc <SIZE)
return (array[loc]);
else
{
cerr << "Read access out of bounds\n";
exit (1);

}

void writeA(int array[], int loc, int value)
{
if (loc>=0 && loc <SIZE)
array|[loc]=value;
else
{
cerr << "Write access out of bounds\n";
exit (1);

Problems?

» Well, for one, the functions are obviously
bound to an array of a fixed size but...

— There is really no association between the
data structure and the functions
—You'd have to go searching for those
functions that work on that fixed size array.
 In general, you want the data structure
and the functions tightly bound.

Other problems

« Wonky naming
—readA(), writeA()

* Don’t want these to be too big, too hard to type.

» But readA and writeA are really not descriptive and
someone else on the project might have used that
name!

» Constant declared separate from functions

—Just annoying.
» Would like to group stuff together.




Solution?

» Make functions and data elements all a
member of the same group

#include<iostream>
using namespace std;

const int SIZE=30;
struct SIarray
{
int array[SIZE];
int read(int loc);
void write(int loc, int wvalue);

};

» Now functions are grouped with their data structure.

» Because functions are now members of the structure we
can use names of “read” and “write”

» Const is still outside of structure for now. We will fix that
later.

int SIarray::read(int loc)
{
if (loc>=0 && loc <SIZE)
return (array[loc]);
else
{
cerr << "Read access out of bounds\n";
exit (1);

}

void SIarray::write(int loc, int value)
{
if (loc>=0 && loc <SIZE)
array|[loc]=value;
else
{
cerr << "Write access out of bounds\n";
exit (1);




