
ENG 101: Day 3

Monday --10/1/05
Functions

Administrative

• GSI office hours updated
– Central campus hours are:

• Monday 6:30pm-8:30pm Alina
– Espresso Royale on State street, she will have a net-

connected portable and a paper sign indicating she is the
101 GSI.

• Wednesday 2:30pm-4:30pm Nadine
– Undergrad. library basement, in or near the CAEN

workstations. She will have a sign.

– Maps on the webpage.

Administrative

• Homework box
– In EECS, directions on the webpage under

“homework”
• Midterms are from 6:30-8:30

– Feb 10 and March 30 (as announced before)
– Make-ups are on the following Saturday at 9:30am.
– Contact Wanda Dobberstein

<wldobber@engin.umich.edu> for make-up exam
requests.

• Requests are due 14 days before the date of the regular
exam!

Administrative

• Notice I’m giving you all “hole-punched” paper
(as much as I can).
– I strongly recommend you keep a 3-ring binder with

all the papers. A ¾” binder should be plenty.
– Keep handouts, returned homework, in-labs, and

exams.
• It is often the case with code that you will want to find an

example you’ve seen before. The binder helps.

• Books are out-of-stock everywhere around here.
– Can find them on-line.
– Stores are claiming “Wednesday” as arrival time.

Review

• You should be comfortable with:
– Assignments

• Including interactions of types double and int

– If/else statements
• Including curly brackets

– While loops
• Including curly brackets

– cout to print
• Can print things in quotes, doubles, ints.

#include<iostream>
using namespace std;

main()
{

int i=1;
int fact=1;
int max;

cout << "Enter a non-negative integer less than 20 ";
cin >> max;

while(i<max)
{

i++;
fact=fact*i;

}
cout << max << " factorial is equal to " << fact << endl;

}

ex0.cc

#include<iostream>
using namespace std;

int factorial (int value)
{

int i=1;
int fact=1;

while(i<value)
{

i++;
fact=fact*i;

}
return(fact);

}

ex1.cc
Part 1

main()
{

int max, a;

cout << "Enter a non-negative integer less than 20 ";
cin >> max;

a=factorial(max);
cout << max << " factorial is equal to " << a << endl;

if(max<19)
{

max=max+1;
a=factorial(max);
cout << max << " factorial is equal to " << a << endl;

}
}

ex1.cc
Part 2

Functions

• A function has a return type, and an
argument list.
– These all must have a type (int or double

for us so far)
– Code is just like main() but now we can get

values from someplace else.
– Return statement is the value that will be

returned.
• It also ends the function.

Using a function

• We “invoke” the function by stating its
name and its arguments.
– So factorial(4) or factorial(a) are both fine.
– In general arguments should be of the same

type.
• So int for int and double for double
• It will convert on the fly, but generally bad idea.

– The function evaluates to whatever the return
value is.

– The arguments don’t change!

Why functions? (1/2)

• Useful if don’t want to write the same code
over and over again.
– So if using factorial a lot in a program, you

don’t want to have to type in the code again.
– Also nice if you need to add a feature (say

you want -1! to be 0 for some reason) as you
only have to change it once.

Why functions? (2/2)

• But a big reason is to make things easier
for the reader and the writer.
– Causes “functional decomposition”

• You can break a problem down into parts.
• Each part can be a function.

– Can write functions first, or write calling code
first.

• Breaking problems into smaller pieces is
perhaps the most important idea in this
whole class!

And some problems with our code

• One icky thing is that we use the value 20 in two
different places without explaination.
– Well really 20 and 19
– These are called “magic values” or “magic numbers”

because the reader has no clue where they came
from or if they are connected.

• The idea was that since the int type can only
represent certain ranges, at some point the
value of n! is too big.
– When is that?

main()
{

const int MAX_FACTORIAL=20;
int max, a;

cout << "Enter a non-negative integer less than " <<
MAX_FACTORIAL << endl;

cin >> max;

a=factorial(max);
cout << max << " factorial is equal to " << a << endl;

if(max<MAX_FACTORIAL-1)
{

max=max+1;
a=factorial(max);
cout << max << " factorial is equal to " << a << endl;

}
}

ex2.cc
Part 2

#include<iostream>
using namespace std;

// Finds the 2 roots of a polynomial. "which" should be
// only 0 or 1. Different values of which give you the
// different roots. Doesn't work if imaginary roots.
double qroot (double a, double b, double c, int which)
{

double inside, top, bottom;

inside=b*b - 4*a*c;
if(which==0)

top=-b + sqrt(inside);
else

top=-b - sqrt(inside);
bottom=2*a;

return(top/bottom);
}

ex3.cc
Part 1

main()
{

double n2coef, n1coef, n0coef;
double root1, root2;

cout << "Enter the n squared coefficient ";
cin >> n2coef;
cout << "Enter the n coefficient ";
cin >> n1coef;
cout << "Enter the constant coefficient ";
cin >> n0coef;

root1=qroot(n2coef,n1coef,n0coef,0);
root2=qroot(n2coef,n1coef,n0coef,1);

cout << endl << "The roots are " << root1 << " and "
<< root2 << endl;

}

ex3.cc
Part 2

#include<iostream>
#include<cstdlib>
using namespace std;
main(int argc, char * argv[])
{

const int trials=9000000;
double x1, y1;
double distance;
int count=0; // number of hits
int i=0;
double value;

while(i<trials)
{

x1=(1.0)*rand()/RAND_MAX; // rand() generates an int [0.0, RAND_MAX]
y1=(1.0)*rand()/RAND_MAX;
distance=x1*x1+y1*y1; // Square of distance from home.
if(distance<1)

count++;
i++;

}
value=(4.0)*count/trials;

cout << "count= " << count << endl;
cout << "value= " << value << endl;

}

mc.cc
(from last time)

