
Matlab day 2

Exam scores Histogram via Matlab

Approximate grade ranges

Score	Grade	# of folks
88+	A range	91
75-87	B range	122
58-74	C or C+	70
50-57	C-	16
<50	D or E	19

Project C

- Airplane scheduling is extra credit (5%)
- 4pm today will post code to do selection

 Foday Applying what we know Graphing histograms Linear physics Non-linear physics 	 HIST Histogram. N = HIST(Y) bins the elements of Y into 10 equally spaced containers and returns the number of elements in each container. N = HIST(Y,M), where M is a scalar, uses M bins. N = HIST(Y,X), where X is a vector, returns the distribution of Y among bins with <u>centers</u> specified by X.
 HISTC Histogram count. N = HISTC(X,EDGES), for vector X, counts the number of values in X that fall between the elements in the EDGES vector (which must contain monotonically non-decreasing values). N is a LENGTH(EDGES) vector containing these counts. 	Matlab • Two examples – Linear • Cannon ball, no air resistance – Non-Linear • Cannon ball, air resistance