
Chapter 3

Functions and Scripts
3.1 Built-in (Intrinsic) Mathematical Functions
A simple function in mathematics, f(x), associates a unique number to each value of x. The
function can be expressed in the form y = f(x), where f(x) is usually a mathematical expres-
sion in terms of x. A value of y (output) is obtained when a value of x (input) is substituted in
the expression. Many functions are programmed inside MATLAB as built-in functions, and can
be used in mathematical expressions simply by typing their name with an argument; examples are
sin(x), cos(x), sqrt(x), and exp(x).

MATLAB has a plethora of built-in functions for mathematical and scientific computations.
Remember that the arguments to trigonometric functions are given in radians (same as with C++).
A function has a name and an argument list provided in the parentheses. For example, the func-
tion that calculates the square root of a number is sqrt(x). Its name is sqrt, and the argu-
ment is x. When the function is used, the argument can be a number, a variable that has been
assigned a numerical value, or an expression. Functions can also be included in arguments, as
well as in expressions.

>> sqrt(4) % argument is a number

ans =

 2

>> sqrt(25 + 12*7) % argument is an expression

ans =

 10.4403

>> sqrt(23 + 9*sqrt(64)) % argument includes a function

ans =

 9.7468

>> (12 + 500/4)/sqrt(136) % function is included in an
 % argument

ans =

 11.7477
26

Lists of commonly used elementary MATLAB mathematical built-in functions are listed below.

A complete list of functions organized by name of category can be found in the Help Window.
HELP elfun

Trigonometric Math Functions

Function Description

sin(x), sinh(x) sine and hyperbolic sine

asin(x),
asinh(x)

inverse sine and inverse hyperbolic sine

cos(x), cosh(x) cosine and hyperbolic cosine

acos(x),
acosh(x)

inverse cosine and inverse hyperbolic cosine

tan(x), tanh(x) tangent and hyperbolic tangent

atan(x),
atanh(x)

inverse tangent and inverse hyperbolic tangent

atan2(y,x) four-quadrant inverse tangent

sec(x), sech(x) secant and hyperbolic secant

asec(x),
asech(x)

inverse secant and inverse hyperbolic secant

csc(x), csch(x) cosecant and hyperbolic cosecant

acsc(x),
acsch(x)

inverse cosecant and inverse hyperbolic cosecant

cot(x), coth(x) cotangent and hyperbolic cosecant

acot(x),
acoth(x)

inverse cotangent and inverse hyperbolic cotangent

Exponential

Function Description

exp(x) exponential of the elements of X, e to the X.
 For complex Z=X+i*Y, EXP(Z) =
EXP(X)*(COS(Y)+i*SIN(Y))

log(x) natural logarithm
27

log2(x) base 2 logarithm and dissect floating-point numbers
into exponent and mantissa

log10(x) common (base 10) logarithm

pow2 Base 2 power and scale floating point number

realpow Power that will error out on complex result

realllog Natural logarithm of real number

realsqurt Square root of number greater than or equal to zero

sqrt Square roo

nextpow2 Next higher power of 2

Complex

Function Description

abs(x) absolute value and complex magnitude

angle(H) returns the phase angles, in radians, of a matrix with
complex elements

complex(a,b) construct complex data from real and imaginary compo-
nents
return a + bi

conj(x) complex conjugate of X.
 For a complex X, CONJ(X) = REAL(X) - i*IMAG(X)

imag(x) imaginary part of a complex number

real(x) real part of complex number

unwrap Unwrap phase angle

isreal True for real array

xplxpair Sort numbers into compiles conjugate pairs

Exponential

Function Description
28

3.2 Scripts and Functions
When you work in MATLAB, you are working in an interactive environment that stores the vari-
ables you have defined and allows you to manipulate them throughout a session. You do have the
ability to save groups of commands in files that can be executed many times. Actually MATLAB
has two kinds of command files, called M-files. The first is a script M-file. If you save a bunch of
commands in a script file called MYFILE.m and then type the word MYFILE at the MATLAB
command line, the commands in that file will be executed just as if you had run them each from
the MATLAB command prompt (assuming MATLAB can find where you saved the file). A good
way to work with MATLAB is to use it interactively, and then edit your session and save the
edited commands to a script file. You can save the session either by cutting and pasting or by turn-
ing on the diary feature (use the on-line help to see how this works by typing help diary).

3.2.1 User-Defined Functions
Frequently, in computer programs, there is a need to calculate the value of functions that are not
built-in. When a function expression is simple and needs to be calculated only once, it can be
typed as part of the program. However, when a function needs to be evaluated many times for dif-
ferent values of arguments it is convenient to create a “user-defined” function. Once the new
function is created (saved) it can be used just like the built-in functions.

One of the most important aspects of MATLAB is the ability to write your own functions, which
can then be used and reused just like intrinsic MATLAB functions. A function file is a file with an

Rounding and Remainder

Function Description

ceil(x) round x to nearest integer toward infinity

fix(x) rounds the elements of X to the nearest integers
 towards zero

floor(x) rounds the elements of X to the nearest integers
 towards minus infinity

gcd(a,b) is the greatest common divisor of corresponding
 elements of A and B

lcm(a,b) the least common multiple of corresponding elements of
 A and B

mod(x,y) modulus (signed remainder after division)

nchoosek(n,k) binomial coefficient or all combinations

rem(x,y) remainder after division

round(x) round to nearest integer

sign(x) signum function
29

m extension (e.g., MYFUNC.m) that begins with the word function. Basically, functions are M-
files that can accept input arguments and return output arguments. The name of the M-file and of
the function should be the same. Functions operate on variables within their own workspace, sep-
arate from the workspace you access at the MATLAB command prompt.

A good example is height.m. (Note: To view a file: type filename, e.g., type height)

function h = height(g, v, time)
% HEIGHT(g,v,time) returns height a ball reaches when subject to
% constant gravitational acceleration.
% Arguments:
% g - gravitational acceleration
% v - initial velocity
% time - time at which height is desired
h = v * time - g * time * time * 0.5;

The first line of a function M-file starts with the keyword function. It gives the function name and
order of arguments. In this case, there are up to two input arguments and one output argument.

In the Command Window, if you run the function using 9.81 for g, 10 for v and 1 for time, the
result is:
>> height (9.81, 10, 1)

ans =

 5.0950

3.2.2 Creating a Function File
Function files are created and edited in the Editor/Debugger Window. This window is
opened from the Command Window. In the File menu, select New, and them select M-file.
once the Editor/Debugger Window opens it looks like that below. The commands of the
file can be typed line after line. The first line in a function file must be the function definition
line.

3.2.3 Function Definition Line
The first executable line in a function must be the function definition line. Otherwise the file is
considered a script file. The function definition line:
• Defines the file as a function file
• Defines the name of the function
• Defines the number and order of the input and output arguments
The form of the function definition line is:
30

The input and output arguments are used to transfer data into and out of the function. The input
arguments are listed inside parentheses following the function name. Usually, there is at least one
input argument, although it is possible to have a function that has no input arguments. If there are
more than one, the input arguments are separated with commas. The computer code that performs
the calculations within the function file is written in terms of the input arguments and assumes
that the arguments have assigned numerical values. This means that the mathematical expres-
sions in the function file must be written according to the dimensions of the arguments. In the
example below, there are three input arguments (amount, rate, years), and in the mathematical
expressions they are assumed to be scalars. The actual values of the input arguments are assigned
when the function is used (called). Similarly, if the input arguments are vectors or arrays, the
mathematical expressions in the function body must be written to follow linear algebra or ele-
ment-by-element calculations

The output arguments, which are listed inside brackets on the left side of the assignment operator
in the function definition line, transfer the output from the function file. Function files can have
none, one, or several output arguments. If there are more than one, the output arguments are sep-
arated with commas. If there is only one output argument it can be typed without brackets. In
order for the function file to work, the output arguments must be assigned values in the computer
program that is in the function body. In the example below, there are two output arguments
[mpay, tpay]. When a function does not have an output argument, the assignment operator
in the function definition line can be omitted. A function without an output argument can, for
example, generate a plot or print data to a file.

function [output arguments] = function_name(input arguments)

The word function A list of output The name of A list of input
must be the 1st word arguments typed the function arguments typed
and must be typed in inside brackets. inside parentheses.
lower-case letters
31

3.2.4 loan Example in MATLAB:
.

3.2.5 loan Example in C++

function [mpay, tpay] = loan(amount, rate, years)
% loan calculates monthly and total payment of loan.
% input arguments:
% amount = loan amount in $
% rate = annual interest rate in percent
% years = number of years
% output arguments:
% mpay = monthly payment
% tpay = total payment

format bank
ratem=rate * 0.01 / 12;
a = 1 + ratem;
b = (a^(years*12) - 1)/ratem;
mpay = amount*a^(years*12)/(a*b);
tpay=mpay*years*12;

Function

definition line

The H1 line

Help text

Function body

Assignment of
Values to

output arguments

Output ArgumentsNote:

void function loan(double amount, double rate, int years,
 double & mpay, double & tpay)
{
 /*
 * loan calculates monthly and total payment of loan.
 * input arguments:
 * amount = loan amount in $
 * rate = annual interest rate in percent
 * years = number of years
 * output arguments:
 * mpay = monthly payment
 * tpay = total payment
 */
 cout << fixed << showpoint << setprecision(2);
 double ratem = rate * 0.01 / 12;
 double a = 1 + ratem;
 double b = (pow(a,(years*12)) - 1)/ratem;
 mpay = amount*pow(a,(years*12))/(a*b);
 tpay = mpay*years*12;
}

32

It is also possible to transfer string into a function file. This is done by typing the string as part of
the input variables (text enclosed in single quotes). Strings can be used to transfer names of other
functions into the function file.

Usually, all the input to, and output from, a function file are transferred through the input and out-
put arguments. In addition, however, all the input and output features of script files are valid and
can be used in function files. This means that any variable that is assigned a value in the code of
the function file will be displayed on the screen unless a semicolon is typed at the end of the com-
mand. In addition, the input command can be used to input data interactively, and the disp,
fprintf, and plot commands can be used to display information on the screen, save to a file,
or plot figures just as in a script file. The following are examples of function definition lies with
different combinations of input and output arguments.

3.3 Documentation is Important
The H1 line and help text lines are comment lines (lines that begin with the percent % sign) fol-
lowing the function definition line. They are optional, but frequently used to provide information
about the function. The H1 line is the first comment line and usually contains the name and a
short definition of the function. When a user types (in the Command Window) lookfor a_word,

Function Definition Line
MATLAB C++

function[mpay,tpay] = loan(amount,
rate,years)

% Three input arguments, two output
arguments

void loan(double amount,
 double rate, double years,
 double & mpay,
 double & tpay)

function[A] = rectArea(a,b)

% Two input arguments, one output
argument

double rectArea(double a, double b)
or
void rectArea (double a, double b,
 double & A)

function A = rectArea(a,b)

% same as the above

same as the above

function [V,S] = sphereVolArea(r)

% One input variable, two output vari-
ables

void sphereVolArea(double r,
 double & V,
 double & S)

function trajectory(v,h,g)

% Three input arguments, no output
arguments

void trajectory(double v, double h,
 double g)
33

MATLAB searches for a_word in the H1 lines of all the functions, and if a match is found, the H1
line that contains the match is displayed.

The help text lines are comment lines that follow the H1 line. These lines contain an explana-
tion of the function and any instructions related to the input and output arguments. The comment
lines that are typed between the function definition line and the first non-comment line (the H1
line and the help text) are displayed when the user types help function_name in the Command
Window. This is true for MATLAB build-in functions as well as the user-defined functions.

>> lookfor height
height.m: % HEIGHT(g,v,time) returns height a ball reaches when subject to

The next several lines, up to the first blank or executable line, are comment lines that provide the
help text. These lines are printed when you type help height.

>> help height

 HEIGHT(g,v,time) returns height a ball reaches when subject to
 constant gravitational acceleration.
 Arguments:
 g - gravitational acceleration
 v - initial velocity
 time - time at which height is desired

3.4 Using the Function File
A user-defined function is used in the same way as a built-in function. The function can be called
from the Command Window, or from another function. To use the function file, the directory
where it was saved must either be in the current directory or be in the search path. You may need
to alter where your current directory is pointing to.

A function can be used by assigning its output to a variable (or variables), as a part of a mathemat-
ical expression, as an argument in another function, or just by typing its name in the Command
Window or in a script file. In all cases the user must know exactly what the input and output
arguments are. An input argument can be a number, an expression, or it can be a variable that has
an assigned value. The arguments are assigned according to their position in the input and output
argument lists in the function definition line.

Two of the ways that a function can be used are illustrated below with the user-defined loan func-
tion that calculates the monthly and total payment (two output arguments) of a loan. The input
arguments are the loan amount, annual interest rate, and the length (number of years) of the loan.
In the first illustration, the loan function is used with numbers as input arguments:
>> [month,total] = loan(25000,7.5,4)

month =

 600.72
34

total =

 28834.47

In the second example, the loan function is used with two preassigned variables and a number as
the input arguments:

>> a = 70000
a =
 70000.00

>> b = 6.5
b =
 6.50

>> [month, total] = loan(a,b,30)
month =
 440.06

total =
 158423.02
>>

In the third example, the loan function is called, but only one return value is captured. Note that
only “month” is captured.

>> month = loan(a,b,30)
month =
 440.06

>> total
??? Undefined function or variable 'total'.

>>
Note: It is very easy to get unexpected results if you give the same name to different functions, or
if you give a name that is already used by MATLAB. Prior to saving a function that you write, it
is useful to use the which command to see if the name is already in use.

3.4.1 Number of Arguments to Functions
MATLAB is very flexible about the number of arguments that are passed to and from a function.
This is especially useful if a function has a set of predefined default values that usually provide
good results. For example, suppose you write a function that iterates until a convergence criteria is
met or a maximum number of iterations has been reached. One way to write such a function is to
make the convergence criteria and the maximum number of iterations be optional arguments. The
following function attempts to find the value of x such that ln(x)=ax, where a is a parameter.
 function x=SolveIt(a,tol,MaxIters)
 if nargin<3 | isempty(MaxIters), MaxIters=100; end
35

 if nargin<2 | isempty(tol), tol=sqrt(eps); end
 x=a;
 for i=1:MaxIters
 lx=log(x);
 fx=x.*lx-a;
 x=x-fx./(lx+1);
 disp([x fx])
 if abs(fx)<tol, break; end
 end

In this example, the command nargin means "number of input arguments" and the command
isempty checks to see is a variable is passed but is empty (an empty variable is created by set-
ting it to []). An analogous function for the number of output arguments is nargout; many times
it is useful to put a statement like

 if nargout<2, return; end

into your function so that the function does not have do computations that are not requested.

It is possible that you want nothing or more than one thing returned from a procedure. For exam-
ple
 function [m,v]=MeanVar(X)
 % MeanVar Computes the mean and variance of a data matrix
 % SYNTAX
 % [m,v]=MeanVar(X);
 n=size(X,1);
 m=mean(X);
 if nargout>1
 temp=X-m(ones(n,1),:);
 v=sum(temp.*temp)/(n-1);
 end

To use this procedure call it with [mu,sig]=MeanVar(X). Notice that is only computes the
variance if more than one output is desired. Thus, the statement mu=MeanVar(X) is correct and
returns the mean without computing the variance.

3.5 Handling Name Conflicts
Suppose that you do not know that sum is a built-in function and type the MATLAB satement
>> x = 1;
>> y = 2;
>> z = 3;
>> sum = x + y + z;
The name sum now represents a variable and MATLAB’s built-in sum function is hidden (you can
check this with the command who).

When a name is typed at the prompt or used in an arithmetic expression the MATLAB interpreter
evaluates the name using the following in the order they are given:
1) looks to see if it is the name of a variable
2) look to see if it is the name of a built-in function
36

3) looks in the current directory to see if it is the name of a script file
4) looks in the MATLAB search path for a script file matching the name.

Clearing the variable sum (clear sum) reactivates the built-in function sum.

3.6 Error Checking:
Good documentation is very important but it is also useful to include some error checking in your
functions. This makes it much easier to track down the nature of problems when they arise. For
example, if some arguments are required and/or their values must meet some specific criteria
(they must be in a specified range or be integers) these things are easily checked.

The command error(‘message’) inside a function or script aborts the execution, displays the
error message, and returns control to the keyboard.

function a = areaCircle(r)
if nargin ~= 1
 error('Sorry, need one argument')
end
if length(r) == 1
 ...
end

For example, consider the function areaCircle listed above. This is intended for a scalar. The
input is needed. The command error in a function file prints out a specified error message and
returns the user to the MATLAB command line.

An important feature of MATLAB is the ability to pass a function to another function. For exam-
ple, suppose that you want to find the value that maximizes a particular function, say f(x)=
x*exp(-0.5x2). It would useful not to have to write the optimization code every time you
need to solve a maximization problem. Instead, it would be better to have solver that handles opti-
mization problems for arbitrary functions and to pass the specific function of interest to the solver.
For example, suppose we save the following code as a MATLAB function file called
MYFUNC.m
 function fx=myfunc(x)
 fx=x.*exp(-0.5*x.^2);
Furthermore suppose we have another function call MAXIMIZE.m which has the following call-
ing syntax
 function x=MAXIMIZE(f,x0)
The two arguments are the name of the function to be maximized and a starting value where the
function will begin its search (this is the way many optimization routines work). One could then
call MAXIMIZE using
 x=maximize(‘myfunc’,0)
and, if the MAXIMIZE function knows what it’s doing, it will return the value 1. Notice that the
word myfunc is enclosed in single quotes. It is the name of the function, passed as a string vari-
able, that is passed in. The function MAXIMIZE can evaluate MYFUNC using the feval com-
mand. For example, the code
37

 fx=feval(f,x)
is used to evaluate the function. It is important to understand that the first argument to feval is a
string variable (you may also want to find out about the command eval).

It is often the case that functions have auxiliary parameters. For example, suppose we changed
MYFUNC to
 function fx=myfunc(x,mu,sig)
 fx=x.*exp(-0.5*((x-mu)./sig).^2);
Now there are two auxiliary parameters that are needed and MAXIMIZE needs to be altered to
handle this situation. MAXIMIZE cannot know how many auxiliary parameters are needed, how-
ever, so MATLAB provides a special way to handle just this situation. Have the calling sequence
be
 function x=MAXIMIZE(f,x0,varargin)
and, to evaluate the function, use
 fx=feval(f,x,varargin{:})
The command varargin (variable number of input arguments) is a special way that MATLAB
has designed to handle variable numbers of input arguments. Although it can be used in a variety
of ways the simplest is shown here, where it simply passes all of the input arguments after the sec-
ond on to feval. Don’t worry too much if this is confusing at first. Until you start writing code to
perform general functions like MAXIMIZE you will probably not need to use this feature in your
own code, but it is handy to have an idea of what its for when you are trying to read other peoples’
code.

3.7 Debugging
Bugs in your code are inevitable. Learning how to debug code is very important and will save you
lots of time and aggravation. Debugging proceeds in three steps. The first ensures that your code
is syntactically correct. When you attempt to execute some code, MATLAB first scans the code
and reports an error the first time it finds a syntax error. These errors, known as compile errors,
are generally quite easy to find and correct (once you know what the right syntax is). The second
step involves finding errors that are generated as the code is executed, known as run-time errors.
MATLAB has a built-in editor/debugger and it is the key to efficient debugging of run-time
errors. If your code fails due to run time errors, MATLAB reports the error and provides a trace of
what was being done at the point where the error occurred. Often you will find that an error has
occurred in a function that you didn’t write but was called by a function that was called by a func-
tion that was called by a function (etc.) that you did write. A safe first assumption is that the prob-
lem lies in your code and you need to check what your code was doing that led to the eventual
error.

The first thing to do with run-time errors is to make sure that you are using the right syntax in call-
ing whatever function you are calling. This means making sure you understand what that syntax
is. Most errors of this type occur because you pass the wrong number of arguments, the arguments
you pass are not of the proper dimension or the arguments you pass have inappropriate values. If
the source of the problem is not obvious, it is often useful to use the debugger. To do this, click on
File and the either Open or New from within MATLAB. Once in the editor, click on Debug, then
on Stop if error. Now run your procedure again. When MATLAB encounters an error, it now
enters a debugging mode that allows you to examine the values of the variables in the various
38

functions that were executing at the tie the error occurs. These can be accessed by selecting a
function in the stack on the editor's toolbar. Then placing your cursor over the name of a variable
in the code will allow you to see what that variable contains. You can also return to the MATLAB
command line and type commands. These are executed using the variables in the currently
selected workspace (the one selected in the Stack). Generally a little investigation will reveal the
source of the problem (as in all things, it becomes easier with practice).

There is a third step in debugging. Just because your code runs without generating an error mes-
sage, it is not necessarily correct. You should check the code to make sure it is doing what you
expect. One way to do this is to test it one a problem with a know solution or a solution that can be
computed by an alternative method. After you have convinced yourself that it is doing what you
want it to, check your documentation and try to think up how it might cause errors with other
problems, put in error checks as appropriate and then check it one more time. Then check it one
more time.

3.7.1 A few last words of advice on writing code and debugging.
(1) Break your problem down into small chunks and debug each chunk separately. This usually
means write lots of small function files (and document them).

(2) Try to make functions work regardless of the size of the parameters. For example, if you need
to evaluate a polynomial function, write a function that accepts a vector of values and a coeffi-
cient vector. If you need such a function once it is likely you will need it again. Also if you change
your problem by using a fifth order polynomial rather than a fourth order, you will not need to
rewrite your evaluation function.

(3) Try to avoid hard-coding parameter values and dimensions into your code. Suppose you have
a problem that involves an interest rate of 7%. Don’t put a lot of 0.07s into your code. Later on
you will want to see what happens when the interest rate is 6% and you should be able to make
this change in a single line with a nice comment attached to it, e.g.,
 rate=0.07; % the interest rate

(4) Avoid loops if possible. Loops are slow in MATLAB. It is often possible to do the same thing
that a loop does with a vectorized command. Learn the available commands and use them.

(5) RTFM – internet lingo meaning Read The (F-word of choice) Manual.

(6) When you just can’t figure it out, check the MATLAB technical support site (MathWorks), the
MATLAB discussion group (comp.soft-sys.matlab) and DejaNews for posting about your prob-
lem and if that turns up nothing, post a question to the discussion group. Don’t overdo it, how-
ever; people who abuse these groups are quickly spotted and will have their questions ignored.
Also don’t ask the group to solve your homework problems; you will get far more out of attempt-
ing them yourself then you’ll get out of having someone else tell you the answer. You are likely to
be found out anyway and it is a form of cheating.
39

3.8 Extended Example

3.8.1 MATLAB: ball4.m
function h = height(g, v, time)
% HEIGHT(g,v,time) returns height a ball reaches
% when subject to constant gravitational acceleration.
% FILE: height.m
% Arguments:
% g - gravitational acceleration
% v - initial velocity
% time - time at which height is desired
h = v * time - g * time * time * 0.5;

function vf = velocity(g, v, time)
% VELOCITY(g,v,time) returns velocity ball reaches
% when subject to constant gravitational acceleration.
% FILE: velocity.m
% Arguments:
% g - gravitational acceleration
% v - initial velocity
% time - time at which height is desired
vf = v - g * time ;

% ==
% ball4.m
% Code to compute the height and velocity of a ball
% launched with given initial velocity on Earth and on Mars
% ==

% define accelerations due to gravity
gEarth = 9.81; %acceleration on Earth
gMars = 3.63; % acceleration on Mars

v0 = input ('Input the initial velocity (m/s):> ');

t = input ('Input the time (s):> ');

% Results on Earth
disp('==')
disp('Earth:')
fprintf('The velocity at time %4.2f is %6.2f', t, velocity(gEarth, v0,t))

fprintf('\n and the height is %9.4f \n\n', height(gEarth, v0, t))

% Now do Mars
disp('==')
disp('Mars:')
fprintf('The velocity at time %4.2f is %6.2f', t, velocity(gMars, v0,t))

fprintf('\n and the height is %9.4f', height(gMars, v0, t))
40

3.8.2 MATLAB: Run
>> ball4
Input the initial velocity (m/s):> 10.0
Input the time (s):> 1.0
==
Earth:
The velocity at time 1.00 is 0.19
 and the height is 5.0950

==
Mars:
The velocity at time 1.00 is 6.37
 and the height is 8.1850

3.8.3 C++: ball4.cpp
// ==
// ball4.cpp
// Code to compute the height and velocity of a ball
// launched with given initial velocity on Earth and on Mars
// ==
#include <iostream>
using namespace std;

double height(double g, double v, double time);
double velocity(double g, double v, double time);

// =========================>> main <<=========================
int main()
{
 // define accelerations due to gravity
 double gEarth = 9.81; // acceleration on Earth
 double gMars = 3.63; // acceleration on Mars

 cout << "Input the initial velocity (m/s):> ";
 double v0;
 cin >> v0;

 cout << "Input the time (s):> ";
 double t;
 cin >> t;

 // Results on Earth
 cout << "==" << endl;
 cout << "Earth:" << endl;
 cout << "The velocity at time " << t << " is "
 << velocity(gEarth, v0, t) << endl;
 cout << "and the height is "
 << height(gEarth, v0, t) << endl;

 // Now do Mars
 cout << "==" << endl;
41

 cout << "Mars:" << endl;
 cout << "The velocity at time " << t << " is "
 << velocity(gMars, v0, t) << endl;
 cout << "and the height is "
 << height(gMars, v0, t) << endl;

 return 0;
}

// ===================>> height <<===========================
// Return height a ball reaches when subject to constant
// gravitational acceleration.
// Arguments:
// g - gravitational acceleration
// v - initial velocity
// time - time at which height is desired
// ===
double height(double g, double v, double time)
{
 double h; // height ball will reach
 h = v * time - g * time * time * 0.5;
 return h;
}

// ===================>> velocity <<========================
// Return velocity ball reaches when subject to constant
// gravitational acceleration.
// g - gravitational acceleration
// v - initial velocity
// time - time at which height is desired
// ===
double velocity(double g, double v, double time)
{
 double vf; // final velocity of ball
 vf = v - g * time;
 return vf;
}

3.8.4 C++: Run
Input the initial velocity (m/s):> 10.0
Input the time (s):> 1.0
==
Earth:
The velocity at time 1 is 0.19
and the height is 5.095
==
Mars:
The velocity at time 1 is 6.37
and the height is 8.185
42

3.9 References:
[1] MatLab an Introduction with Applications, Amos Gilat, John Wiley and Sons, Inc., 2004

[2] A MATLAB Primer, http://www4.ncsu.edu/unity/users/p/pfackler/www/MPRIMER.htm
43

	Chapter 3
	Functions and Scripts
	3.1 Built-in (Intrinsic) Mathematical Functions
	3.2 Scripts and Functions
	3.3 Documentation is Important
	3.4 Using the Function File
	3.5 Handling Name Conflicts
	3.6 Error Checking:
	3.7 Debugging
	3.8 Extended Example
	3.9 References:

