
Chapter 4

Arrays
In MATLAB, a matrix (a 2-dimensional array) is a rectangular array of numbers. Special mean-
ing is sometimes attached to 1-by-1 matrices, which are scalars, and to matrices with only one
row or column, which are vectors. MATLAB has other ways of storing both numeric and non-
numeric data, but in the beginning, it is usually best to think of everything as a matrix. The oper-
ations in MATLAB are designed to be as natural as possible. Where other programming lan-
guages work with numbers one at a time, MATLAB allows you to work with entire matices
quickly and easily.

A matrix (or array) of order m by n is simply a set of numbers arranged in a rectangular block of
m horizontal rows and n vertical columns. The following

is a matrix of size (m by n). Sometimes we say “matrix A has dimension (m by n).” The num-
bers that make up the array are called the elements of the matrix an, in MATLAB, no distinction is
made between elements that are real numbers and complex numbers. In the double subscript
notation aij for matrix element a(i,j), the first subscript i denotes the row number, and the second
subscript j denotes the column numbers.

Note: 1) All variables in MATLAB are arrays. A scalar is an array with one element; a vector is
an array with one row or one column; a matrix is an array with multiple rows and columns
2) The variable (scalar, vector, or array) is defined by the input when the variable is initialized
(assigned value). There is no need to define the size of the array before the elements are assigned.
3) Once a variable exists (a scalar, vector, matrix), it can be changed to be any other size, or type,
or variable.

4.1 Creating a One-Dimensional Array (vector)
A one-dimensional array is a list of numbers that is placed into a row or a column. Any list of
numbers can be set up as a vector. A row vector is simply a (1 by n) matrix and a column vector
is a (m by 1) matrix. The ith element of a vector
 V = [v1 v2 v3 v4 ... vn]

is simply denoted vi. The MATLAB language has been designed to make the definition and
manipulation of matrices and vectors as simple as possible.

A

a11 a12 a13 … a1n
a21 a22 a23 … a2n
a31 a32 a33 … a3n
… … … … …

am1 am2 am3 ...··· amn

=

44

Row vector: To create a row vector type the elements with a space or a comma between the ele-
ments inside the square brackets.

>> dates = [1 4 10 17 25]

dates =

 1 4 10 17 25

or

yr = [1984, 1986, 1988, 1990, 1992, 1994, 1996]

yr =

 1984 1986 1988 1990 1992 1994 1996

Column vector: To create a row vector type the elements with a semicolon between the elements
inside the square brackets.
pop = [127; 130; 136; 145; 158; 178; 211]

pop =

 127
 130
 136
 145
 158
 178
 211

A second way to create a column vector is to use an Enter to indicate the next element.
>> mom = [11
13
21
45
62]

mom =

 11
 13
 21
 45
 62

4.2 Colon Notation in Creating Vectors
Create a vector with constant spacing by specifying the first term, the spacing, and the last term:
45

In a vector with constant spacing the difference between the elements is the same. For example,
in the vector: v = 2 4 6 8 10, the spacing between the elements is 2. A vector in
which the first term is m, the spacing is q, and the last term is n is created by typing:

variable_name = [m:q:n] or
variable_name = m:q:n % brackets are optional

Example 1:
>> x = [1:2:13] first element: 1
 spacing: 2
x = last element: 13
 1 3 5 7 9 11 13

Example 2:
>> y=[1.5:0.1:2.1] first element: 1.5
 spacing: 0.1
y = last element: 2.1
 1.5000 1.6000 1.7000 1.8000 1.9000 2.0000 2.1000

Example 3:
>> z=[-3:7] first element: -3
 spacing (if omitted): 1
z = last element: 7
 -3 -2 -1 0 1 2 3 4 5 6 7

Example 4:
>> q = [21:-3:6] first element: 21
 spacing: -3
q = last element: 6

 21 18 15 12 9 6

4.3 Linear Spacing: linspace
A vector in which the first element is X1, the last element is X2, and the number of elements is N
is created by typing the linspace command (MATLAB determines the correct spacing):
46

:

4.3.1 Examples:
>> x = linspace(0,8,6) #elements: 6
 first element: 0
x = last element: 8

 0 1.6000 3.2000 4.8000 6.4000 8.0000

>> y = linspace(30,10,11) #elements: 11
 first element: 30
y = last element: 10

 30 28 26 24 22 20 18 16 14 12 10

>> z = linspace(49,0.5) #elements: 100 (by default
 #elements = 100)
z = first element: 49
 last element: 0.5
 Columns 1 through 10

49.0000 48.5101 48.0202 47.5303 47.0404 46.5505 46.0606 45.5707 45.0808
44.5909

........
 Columns 90 through 100

5.3990 4.9091 4.4192 3.9293 3.4394 2.9495 2.4596 1.9697 1.4798 0.9899
0.5000

General Format:

linspace(X1, X2, N)

 first element last element number of
 elements

If N is omitted, linspace(X1, X2) generates a row vector of 100 linearly equally
spaced points between X1 and X2

For N < 2, linspace returns X2.
47

4.4 Creating Two-Dimensional Array (Matrix)

4.4.1 By Enumeration
In a square matrix, the number of rows and number of columns are equal.
 1 2 3
 4 5 6 a 3 by 3 square matrix
 7 8 9

In general, the number of rows and columns may be different.
 1 2 3 4 5 6
 7 8 9 1 2 3 a 3 by 6 matrix
 4 5 6 7 8 9
has 3 rows and 6 columns.

A matrix is created by assigning the elements of the matrix to a variable. This is done by typing
the elements, row by row, inside square brackets []. First type the left bracket [, then type the first
row separating the elements with spaces or commas. To type the next row type a semicolon or
press Enter. Type the right bracket] at the end of the last row.

variable_name = [1st row elements; 2nd row elements; 3rd row elements; ... ; last row elements]

The elements that are entered can be numbers or mathematical expressions, predefined variables,
and functions. All the rows MUST have the same number of elements. If an element is zero, it
has to be entered as such. MATLAB displays an error message if an attempt is made to define an
incomplete matrix.

>> X=[1 5;2 1]

X =

 1 5
 2 1

>> Y = [7 2 76 33 2
 1 9 5 3 2
 5 18 22 32 6]

Y =

 7 2 76 33 2
 1 9 5 3 2
 5 18 22 32 6

>> A = [1:2:11; 0:5:25; linspace(10,60,6);5 25 30 35 40 45]

A =

 1 3 5 7 9 11
48

 0 5 10 15 20 25
 10 20 30 40 50 60
 5 25 30 35 40 45

4.5 Indexing of Arrays
x(i) refers to the ith element of array x

There is no off-by-one issue!!!
>> x = [1 3 5 7];
x(1) is the first element of array x, i.e., x(1) = 1
x(4) is the 4th element of array x, i.e., x(4) = 7

>> y = [2 4; 5 7]

y =

 2 4
 5 7

y(1,1) = 2 row 1 column 1
y(2,1) = 5 row 2 column 1
y(1,2) = 4 row 1 column 2
y(2,2) = 7 row 2 column 2

4.6 Arrays Automatically Resize
>> A = [6 9 4;
 1 5 7];

A(1,5) = 3

A =

 6 9 4 0 3
 1 5 7 0 0

4.7 Specialty Matrices
MATLAB provides multiple functions that generate basic matrices.

zeros(r,c) All zeros
ones(r,c) All ones
eye(r,r) Ones down the main diagonal
rand(r,c) Uniformly distributed random elements
randn(r,c) Normally distributed random elements
magic(n) Creates magic squares of size n
Z = [] Empty array
49

4.7.1 Examples Specialty Matrices:
zeros
>> Z = zeros(2,4)

Z =

 0 0 0 0
 0 0 0 0

ones
>> F = 5 * ones(3,3)

F =

 5 5 5
 5 5 5
 5 5 5
eye
>> E = eye(3,3)

E =

 1 0 0
 0 1 0
 0 0 1

rand
>> N = fix(10*rand(1,10))

N =

 9 2 6 4 8 7 4 0 8 4

randn
>> R = randn(4,4)

R =

 -0.4326 -1.1465 0.3273 -0.5883
 -1.6656 1.1909 0.1746 2.1832
 0.1253 1.1892 -0.1867 -0.1364
 0.2877 -0.0376 0.7258 0.1139

magic
>> M = magic(4)

M =

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1
50

4.8 load Command
The load command reads binary files containing matrices generated by earlier MATLAB sessions,
or reads text files containing numeric data. The text file should be organized as a rectangular
table of numbers, separated by blanks, with one row per line, and an equal number of elements in
each row. For example, outside of MATLAB< create a text file containing these four lines:
 16.0 3.0 2.0 13.0
 5.0 10.0 11.0 8.0
 9.0 6.0 7.0 12.0
 4.0 15.0 14.0 1.0

Store the file under the name of ML.dat. Then the command
 load ML.dat
reads the file and creates a variable, ML, containing our example matrix.

An easy way to read data into MATLAB in many text or binary formats is to use the Import Wiz-
ard.

4.9 Concatenation
Concatenation is the process of joining small matrices to make bigger ones. In fact, you made
your first matrix by concatenating its individual elements. The pair of square brackets, [] , is the
concatenation operator. For an example, start with the 4- by 4 magic square, M, and form
B = [M M+32 ; M+48 M+16]

>> M = magic(4)

M =

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

>> B = [M M+32 ; M+48 M+16]

B =

 16 2 3 13 48 34 35 45
 5 11 10 8 37 43 42 40
 9 7 6 12 41 39 38 44
 4 14 15 1 36 46 47 33
 64 50 51 61 32 18 19 29
 53 59 58 56 21 27 26 24
 57 55 54 60 25 23 22 28
 52 62 63 49 20 30 31 17
51

r = [2, 4, 20];
w = [9, -6, 3];
u = [r, w] gives
 [2, 4, 20, 9, -6, 3]

A = [1 2 3; 4 5 6; 7 8 9]
B = [A, zeros(3,2); zeros(2,3), eye(2)]

B =

 1 2 3 0 0
 4 5 6 0 0
 7 8 9 0 0
 0 0 0 1 0
 0 0 0 0 1

4.10 SubVectors
v(:) refers to all elements of v

v(m : n) refers to elements m through n

Example 1:
>> V = [1 2 3 4]

V =

 1 2 3 4

>> V(:)

ans =

 1
 2
 3
 4

Example 2:
>> V(2:4)

ans =

 2 3 4

4.11 Submatrices
Any matrix obtained by omitting some rows and columns from a given matrix X is called a “sub-
matrix” of X. The colon notation can be used to pick out selected row, columns, and elements of
vectors, matrices, and arrays. The colon may be viewed as a “wild-card” character.
52

X(:) is all the elements of X, regarded as a single column
X(:, n) refers to the elements in column n (all rows)
X(n , :) refers to the elements in row n (all columns)
X(: , m : n) refers to all elements in all rows between columns m and n
X(m : n , p : q) refers to all elements in rows m through n and columns p through q

4.11.1 Examples:
Example 1:
X =

 1 2 3
 4 5 6

>> X(:)

ans =

 1
 4
 2
 5
 3
 6

Example 2:
 >> A(1:4, 3)
is the column vector consisting of the first four entries of the third column of A. A colon by itself
denotes an entire row or column.

A =

 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20
 21 22 23 2 25
 26 27 28 29 30

>> A(1:4, 3)

ans =

 3
 8
 13
 18

Example 3:
53

 >> A(:, 3)
is the third column of A, and A(1 : 4 , :) is the first four rows of A. Arbitrary integral vectors
can be used as subscripts.
>> A(:,3)

ans =

 3
 8
 13
 18
 23
 28

>> A(1:4,:)

ans =

 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20

Example 4:
 >> A(:, [2 4])
generates a two-column matrix containing columns 2 and 4 of matrix A. This subscripting
scheme can be used on both sides of an assignment statement.
>> A(:, [2 4])

ans =

 2 4
 7 9
 12 14
 17 19
 22 2
 27 29

Example 5:
 >> A(:, [2 4 5]) = B(:, 1:3)
replaces columns 2, 4, and 5 of matrix A with the first three columns of matrix B. Note that the
entire altered matrix A is printed and assigned.
A =

 1 2 3 4
 5 6 7 8
 9 10 11 12
 13 14 15 16

>> B = [A*2 A * -1]

B =
54

 2 4 6 8 -1 -2 -3 -4
 10 12 14 16 -5 -6 -7 -8
 18 20 22 24 -9 -10 -11 -12
 26 28 30 32 -13 -14 -15 -16

>>
>> A(:,[2 4 5]) = B(:, 1:3)

A =

 1 2 3 4 6
 5 10 7 12 14
 9 18 11 20 22
 13 26 15 28 30

>>

4.12 Deletion of Rows and Columns
You can delete rows and columns from a matrix using just a pair of square brackets.

>> X = M

X =

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Then, to delete the 2nd column of X, use
 X(:, 2) = []

This changes X to

X =

 16 3 13
 5 10 8
 9 6 12
 4 15 1

A(3, :) = [] %delete 3rd row

A(:, 2:4) = [] %deletes 2nd - 4th column

A([1 4], :) = [] % deletes 1st and 4th rows
55

If you delete a single element from a matrix, the result isn’t a matrix anymore. So, expressions
like
 X(1,2) = []
result in an error.
 >> X(1,2) = []
 ??? Indexed empty matrix assignment is not allowed.

However, using a single subscript deletes a singe element or sequence of elements, and reshapes
the remaining elements into a row vector.
 X(2:2:10) = []

Delete elements starting with the 2nd element; spacing of 2; ending with the 10th element. MAT-
LAB is column-major form, i.e., it looks at columns NOT rows.

results in
 >> X(2:2:10) = []

 X =

 16 9 3 6 13 12 1

4.13 Reversal
>> A = [6 9 4 0 3 ; 1 5 7 0 0]

A =

 6 9 4 0 3
 1 5 7 0 0

>> B = A(:,5:-1:1) % reverses order of columns

B =

16
(elem 1)

3
(elem 5)

13
(elem 9)

5
(elem 2)

10
(elem 6)

8
(elem 10)

9
(elem 3)

6
(elem 7)

12
(elem 11)

4
(elem 4)

15
(elem 8)

1
(elem 12)
56

 3 0 4 9 6
 0 0 7 5 1

>>

4.14 Functions for Handling Arrays
MATLAB has multiple built-in functions for managing and handling arrays.

Function Description Example

length(A) vector: Returns the num-
ber of elements in vector
A

>> A = [2 4 6];

>> length(A)
ans =
 3.00

size(A) row vector [m, n] contain-
ing the number of rows: m
and the number of cols: n
in matrix A

>> A = [2 4 6];
>> size(A)
ans =
 1.00 3.00

>> B = [6 -5; -10 0; 3 2];
>> size(B)
ans =
 3.00 2.00

max(A)

max(B)

[Y,I] = max(C)

vector: largest elem in A

array: row vector contain-
ing max elem of each col

returns the indices of the
max values in vector

>> A = [2 4 6];
>> max(A)
ans =
 6.00
B =
 6.00 -5.00
 -10.00 0
 3.00 2.00

>> B = [6 -5; -10 0; 3 2];
>> max(B)
ans =
 6.00 2.00
57

min(A)

min(B)

[Y,I] = min(C)

vector: smallest elem in
A

array: row vector contain-
ing min elem of each col

returns the indices of the
min values in vector

>> A = [2 4 6];
>> min(A)
ans =
 2.00

>> B = [6 -5; -10 0; 3 2];
>> min(B)
ans =
 -10.00 -5.00

mean(A)

mean(B)

vector: returns average or
mean value of elements

array: a row vector con-
taining the mean value of
each column

>> A = [2 4 6];
>> mean(A)
ans =
 4

>> B = [6 -5; -10 0; 3 2];
>> mean(B)
ans =
 -0.3333 -1.0000

median(A)

median(B)

vector: median value of
the elements of A

array: row vector contain-
ing median value of each
column

>> A = [2 4 6];
>> median(A)
ans =
 4

>> B = [6 -5; -10 0; 3 2];
>> median(B)
ans =
 3 0

std(A) vector: returns the stan-
dard deviation

array: is a row vector
containing the standard
deviation for each column

>> A = [2 4 6];
>> std(A)
ans =
 2

>> std(B)
ans =
 8.5049 3.6056

sum(A)

sum(B)

vector: sums elements

array: sums elements of
each col of array A;
returns a row vector

>> A = [2 4 6];
>> sum(A)
ans =
 12.00

>> B = [6 -5; -10 0; 3 2];
>> sum(B)
ans =
 -1.00 -3.00

Function Description Example
58

sort(A)

sort(B)

vector: sorts elements in
ascending order

array: sorts each column
in ascending order

>> A = [2 6 4];
>> sort(A)
ans =
 2 4 6

>> sort(B)
ans =
 -10 -5
 3 0
 6 2

det(A) returns the determinant of
a square matrix
use COND instead of DET to
test for matrix singular-
ity

dot(A,B) vector: dot product
returns the scalar prod-
uct of vectors A and B. A
& B must be vectors of the
same length

cross(A,B) vector cross product
returns the cross product
of the vectors A and B
A & B must be 3 element
vectors

inv(A) the inverse of a square
matrix. This is SLOW to
use. IT is advised using
left division instead.

cat(dim, A, B) concatenate arrays A and B
along the dimension DIM

cat(2,A,B) same as [A,B]
cat(1,A,B) same as [A;B]

Function Description Example
59

find find indices of nonzero
elements

find indices of
elements > 3

find nonzero element in an
array

>> A = [1 0 2 0 0 5];
>> find(A)
ans =
 1 3 6

>> I = find(A > 3)
I =
 6

B = 1 2 3
 0 4 5
 0 0 6
>> [i j] = find(B)
i = j =
 1 1
 1 2
 1 3
 2 2
 2 3
 3 3

end last index X(3:end)
X(1,1:2:end-1)
to grow an array
X(end+1) = 5

reshape(A,m,n) returns the M-by-N matrix
whose elements are taken
columnwise from X. An
error results if X does
not have M*N elements.

>> A = [1 2 3;4 5 6]
>> reshape(A,3,2)
ans =
 1 5
 4 3
 2 6

diag(V) When V is a vector, cre-
ates a square matrix with
the elements of V in the
diagonal

>> V = [1 3 5];
>> diag(V)
ans =
 1 0 0
 0 3 0
 0 0 5

diag(A) vector: create matrix with
v on the diag

matrix, creates a vector
from the diagonal ele-
ments of A

>> A = [1 2 3;4 5 6;7 8 9];
>> diag(A)
ans =
 1
 5
 9

Function Description Example
60

triu(A) Extract the upper triangu-
lar part of a matrix

>> A = [1 2 3;4 5 6;7 8 9]
>> U = triu(A)
U =
 1 2 3
 0 5 6
 0 0 9

triu(A,n) Elements on and above the
n-th diagonal of X. n = 0
is the main diagonal. n >
0 above the main diag
n < 0 is below the main
diag

>> triu(A,1)
ans =
 0 2 3
 0 0 6
 0 0 0

tril(A) Extract the lower triangu-
lar part of a matrix

>> A = [1 2 3;4 5 6;7 8 9]

> A = tril(A)
A =
 1 0 0
 4 5 0
 7 8 9

tril(A,n) Elements on and below the
n-th diagonal of X. n = 0
is the main diagonal. n >
0 above the main diag
n < 0 is below the main
diag

>> tril(A,-1)
ans =
 0 0 0
 0 0 0
 7 0 0

rot90 rotates matrix 90 degrees

fliplr flips from left to right

flipud flips from up to down

Random Numbers

Function Description Example

rand uniformly distributed
pseudo-random number
between 0 and 1. A
sequence of numbers gener-
ated is determined by the
state of the generator.

>> rand
ans =
 0.9501
>> rand
ans =
 0.2311

Function Description Example
61

rand(1,n) generates a row vector of
n random numbers

>> rand(1,5)
ans =
 0.6068 0.4860 0.8913
0.7621 0.4565

rand(n) generates an n by n matrix
of random numbers-uniform
distribution on interval
(0.0, 1.0)

>> rand(3)
ans =
 0.0185 0.6154 0.7382
 0.8214 0.7919 0.1763
 0.4447 0.9218 0.4057

rand(m,n) generates an m by n matrix
with random numbers on
interval (0.0,1.0)

>> rand(2,3)
ans =
 0.9355 0.4103 0.0579
 0.9169 0.8936 0.3529

randn
randn(1,n)
randn(n)
randn(m,n)

normally distributed ran-
dom numbers

see above: rand

sprand sparse uniformly distrib-
uted random matrix

randperm(n) random permutation of
integers from 1 to n

>> randperm(4)
ans =
 2 3 4 1

permute(A, order) rearranges the dimensions
of A so that they are in
the order specified by the
vector ORDER

Random Numbers

Function Description Example
62

4.15 Array Arithmetic
The following matrix operators are available in MATLAB:

Note: We strongly recommend that you add parentheses to all expressions using ‘&’ and ‘|’ to avoid
any potential problems with the interpretation of your code between different version of MATLAB.
Earlier version of MATLAB interpreted these differently than the current version.

MATLAB
help precedence C++

Done
First

Done
Last

() parentheses
function call

()
function call

^ .^ ‘ exponentiation
transpose

NA

~ not
unary plus minus

!
unary - +

* .* / ./ \ .\ multiply, divide, modulus * / %

+ - binary addition subtraction + -

: colon NA

< <= ==
> >= ~=

relational operators < <=
> >=

see above ck for equality
not equal

== !=

& element-wise logical AND NA

| element-wise logical OR NA

&& (short-circuit log-
ical AND)

and

|| (short-circuit log-
ical OR)

or

= assignment =
63

These matrix operations apply, of course, to scalars (one-by-one matrices) as well. If the sizes of
the matrices are incompatible for the matrix operation, an error message will result, except in the
case of scalar-matrix operations (for addition, subtraction, and division as well as for multiplica-
tion) in which case each entry of the matrix is operated on by the scalar.

4.15.1 Transpose Operator
The transpose operator, when applied to a vector, switches a row vector to a column vector and a
column vector to a row vector. When applied to a matrix, it switches the rows to columns and the
columns to rows. The transpose operator is applied to typing a single quote ‘ following the vari-
able to be transposed.

4.15.2 Matrix Addition and Subtraction
If A is a (m-by-n) matrix and B is a (p-by-q) matrix, then the matrix sum C = A + B is defined
only when m = p and n = q. The matrix sum is a (m-by-n) matrix C whose elements are

cij = aij + bij

Original Transpose

>> A = [1 3 5 7]

A =

 1 3 5 7

>> A'

ans =

 1
 3
 5
 7

A =

 2
 4
 6

>> A'

ans =

 2 4 6

>> A = [1 2; 3 4]

A =

 1 2
 3 4

>> A'

ans =

 1 3
 2 4

>> A = [0 1 2;3 0 4;5 6 0]

A =

 0 1 2
 3 0 4
 5 6 0

>> A'

ans =

 0 3 5
 1 0 6
 2 4 0
64

If and then C = A + B = + =

In MATLAB,
>> A = [2 1;4 6]
>> B = [4 2;0 1];

>> C = A + B

C =

 6 3
 4 7

4.15.3 Matrix subtraction is parallel to matrix addition
>> A = [2 1;4 6]
>> B = [4 2;0 1];

>> D = A - B

D =

 -2 -1
 4 5

4.15.4 Dot Product
If X = [x1 x2 x3 ... xn] a row vector containing n elements and

 is a column vector containing the same number of elements. The dot product (some-

times called scalar product or inner product) is a special case of matrix multiplication and is
defined as:

Example: Dot product of X = [1 2 3 4 5] with Y = X’ is
X * Y = [1 2 3 4 5] * [1 2 3 4 5]’
 = 1*1 + 2*2 + 3*3 + 4*4 + 5*5
 = 1 + 4 + 9 + 16 + 25
 = 55

A 2 1
4 6

= B 4 2
0 1

= 2 1
4 6

4 2
0 1

6 3
4 7

Y

y1

y2

y3

…
yn

=

X Y× xi yi⋅

i 1=

n

∑=
65

>> X = [1 2 3 4 5];
>> Y = X';

>> X * Y

ans =

 55

4.15.5 Matrix Multiplication
Given the two arrays A (m by n) and B (p by q). The matrix product A * B is defined only when
the interior matrix dimensions are the same (i.e., n = p). The matrix product C = A * B is a (m by
q) matrix whose elements are

for i = 1, 2, ...m and j = 1,2,...n. Actually, cij is the dot product of the ith row of A with the jth col-
umn of B.

Example:

C = A * B = and then

C = A * B = =

>> A = [2 1;4 6];
>> B = [4 2;0 1];

>> A * B

ans =

 8 5
 16 14

A * A * A * A is equivalent to A^4

>> A*A*A*A

ans =

 320 384

cij aikbkj
k 1=

n

∑=

A 2 1
4 6

= B 4 2
0 1

=

2 4⋅ 1 0⋅+ 2 2⋅ 1 1⋅+
4 4⋅ 6 0⋅+ 4 2⋅ 6 1⋅+

8 5
16 14
66

 1536 1856

>> A^4

ans =

 320 384
 1536 1856 and the rest of the elements are 0’s. When the iden-
tity matrix multiplies another matrix (or vector), that matrix (or vector) is
unchanged.
A * I = I * A = A

4.15.6 Scalar Multiplication of Arrays
Scalar multiplication on matrices is element-by-element. Example:

>> 2*A % multiply each element of A by 2

ans =

 4 2
 8 12

>> A/3 %divide each element of A by 3

ans =

 0.6667 0.3333
 1.3333 2.0000

>> 3\A %left division of A by 3

ans =

 0.6667 0.3333
 1.3333 2.0000

4.15.7 Array Division
The division operation can be explained with the assistance of the identity matrix and the inverse
operation.

4.15.8 Identity Matrix:

The identity matrix is a square matrix in which the diagonal elements are 1’s and the rest of the
elements are 0’s. When the identity matrix multiplies another matrix, the matrix remains
unchanged.

A * I = I * A = A
67

4.15.9 Inverse of a Matrix:
Matrix B is the inverse of matrix A if when two matrices are multiplied the product is the identity
matrix. Both matices must be square and the multiplication order can be B*A or A*B

B*A = A*B = I

The inverse of a matrix A is typically written as A-1. In MATLAB the inverse of a matrix can be
obtained either by raising A to the power of -1 or with the inv(A) function.

NOTE: finding the inverse of a matrix is very costly (time) in MATLAB. You dont’ believe me
just try this for something other than a non-trivial array. It is a much better idea to use LEFT
DIVISION INSTEAD OF finding the INVERSE.

4.15.10 Array Division:
Left division is used to solve the matrix equation A * X = B. In this equation X and B are column
vectors. This equation can be solved by multiplying on the left of both sides by A-1

A-1 * A * X = A-1 * B

I * X = A-1 * B

X = A-1 * B

In MATLAB, is written as:
X = A \ B

NOTE: This is the preferrable means of solving this type of equation. Use left division rather
than an inverse.

Right division is used to solve the matrix equation X * C = D. In this equation, X and D are row
vectors. This equation is solved by:

X * C * C-1 = D * C-1

X * I = D * C-1

X = D * C-1

In MATLAB, X = D * C-1 is written as
X = D / C

4.16 Element-by-Element Operations
There are applications that require operations to be carried out on an element by element basis
rather than on an array basis. Addition and subtraction are by definition element-by-element
operations. Note element-by-element operations can only be done with arrays of the same size.

Element-by-element operations are entered in MATLAB by typing a period (.) in front of the
operator.
68

>> A = [2 1;
 4 6];

>> B = [4 2;
 0 1]

>>
>> A.*B

ans =

 8 2
 0 6

>> A.^B

ans =

 16 1
 1 6

>> A.\B

ans =

 2.0000 2.0000
 0 0.1667

>> A./B
Warning: Divide by zero.
(Type "warning off MATLAB:divideByZero" to suppress this warning.)

ans =

 0.5000 0.5000
 Inf 6.0000

Symbol Element-by-Element

.* multiplication

.^ exponentiation

./ right division

.\ left division
69

	Chapter 4
	Arrays
	4.1 Creating a One-Dimensional Array (vector)
	4.2 Colon Notation in Creating Vectors
	4.3 Linear Spacing: linspace
	4.4 Creating Two-Dimensional Array (Matrix)
	4.5 Indexing of Arrays
	4.6 Arrays Automatically Resize
	4.7 Specialty Matrices
	4.8 load Command
	4.9 Concatenation
	4.10 SubVectors
	4.11 Submatrices
	4.12 Deletion of Rows and Columns
	4.13 Reversal
	4.14 Functions for Handling Arrays
	4.15 Array Arithmetic
	4.16 Element-by-Element Operations

