
Chapter 4

Arrays
In MATLAB, a matrix (a 2-dimensional array) is a rectangular array of numbers.  Special mean-
ing is sometimes attached to 1-by-1 matrices, which are scalars, and to matrices with only one 
row or column, which are vectors.  MATLAB has other ways of storing both numeric and non-
numeric data, but in the beginning, it is usually best to think of everything as a matrix.  The oper-
ations in MATLAB are designed to be as natural as possible.  Where other programming lan-
guages work with numbers one at a time, MATLAB allows you to work with entire matices 
quickly and easily.  

A matrix (or array) of order m by n is simply a set of numbers arranged in a rectangular block of 
m horizontal rows and n vertical columns.  The following

is a matrix of size (m  by  n).  Sometimes we say “matrix A has dimension (m  by  n).”  The num-
bers that make up the array are called the elements of the matrix an, in MATLAB, no distinction is 
made between elements that are real numbers and complex numbers.  In the double subscript 
notation aij for matrix element a(i,j), the first subscript i denotes the row number, and the second 
subscript j denotes the column numbers.  

Note:  1)   All variables in MATLAB are arrays.  A scalar is an array with one element; a vector is 
an array with one row or one column; a matrix is an array with multiple rows and columns
2)  The variable (scalar, vector, or array) is defined by the input when the variable is initialized 
(assigned value).  There is no need to define the size of the array before the elements are assigned.
3)  Once a variable exists ( a scalar, vector, matrix), it can be changed to be any other size, or type, 
or variable.

4.1   Creating a One-Dimensional Array (vector)
A one-dimensional array is a list of numbers that is placed into a row or a column.  Any list of 
numbers can be set up as a vector.  A row vector is simply a (1  by  n) matrix and a column vector 
is a (m  by  1) matrix.  The ith element of a vector
     V = [v1  v2  v3  v4  ...  vn]

is simply denoted vi.  The MATLAB language has been designed to make the definition and 
manipulation of matrices and vectors as simple as possible.

A

a11 a12 a13 … a1n
a21 a22 a23 … a2n
a31 a32 a33 … a3n
… … … … …

am1 am2 am3 ...··· amn

=
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Row vector:  To create a row vector type the elements with a space or a comma between the ele-
ments inside the square brackets.

>> dates = [1  4  10  17  25]

dates =

     1     4    10    17    25

or

yr = [1984, 1986, 1988, 1990, 1992, 1994, 1996]

yr =

        1984       1986       1988       1990       1992       1994       1996

Column vector:  To create a row vector type the elements with a semicolon between the elements 
inside the square brackets.
pop = [127; 130; 136; 145; 158; 178; 211]

pop =

   127
   130
   136
   145
   158
   178
   211

A second way to create a column vector is to use an Enter to indicate the next element.
>> mom = [11
13
21
45
62]

mom =

    11
    13
    21
    45
    62

4.2   Colon Notation in Creating Vectors
Create a vector with constant spacing by specifying the first term, the spacing, and the last term:
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In a vector with constant spacing the difference between the elements is the same.  For example, 
in the vector: v = 2  4  6  8  10, the spacing between the elements is 2.  A vector in 
which the first term is m, the spacing is q, and the last term is n is created by typing: 

variable_name = [m:q:n] or
variable_name = m:q:n       % brackets are optional

Example 1:
>> x = [1:2:13]                         first element:  1
                                        spacing: 2
x =                                     last element: 13
     1     3     5     7     9    11    13

Example 2:
>> y=[1.5:0.1:2.1]                      first element:  1.5
                                        spacing:  0.1
y =                                     last element:  2.1
    1.5000    1.6000    1.7000    1.8000    1.9000    2.0000    2.1000

Example 3:
>> z=[-3:7]                              first element:  -3
                                         spacing (if omitted):  1
z =                                      last element:  7
    -3    -2    -1     0     1     2     3     4     5     6     7

Example 4:
>> q = [21:-3:6]                         first element:  21
                                         spacing:  -3
q =                                      last element:  6

    21    18    15    12     9     6

4.3   Linear Spacing:  linspace
A vector in which the first element is X1, the last element is X2, and the number of elements is N 
is created by typing the linspace command (MATLAB determines the correct spacing):
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:

4.3.1     Examples: 
>> x = linspace(0,8,6)                 #elements: 6 
                                       first element:  0
x =                                    last element:  8

         0    1.6000    3.2000    4.8000    6.4000    8.0000

>> y = linspace(30,10,11)             #elements:  11
                                      first element: 30
y =                                   last element:  10

    30    28    26    24    22    20    18    16    14    12    10

>> z = linspace(49,0.5)               #elements:  100  (by default 
                                                       #elements = 100)
z =                                   first element:  49
                                      last element:  0.5
  Columns 1 through 10 

49.0000  48.5101  48.0202  47.5303  47.0404  46.5505  46.0606  45.5707  45.0808  
44.5909

........
  Columns 90 through 100 

5.3990  4.9091  4.4192  3.9293  3.4394  2.9495  2.4596  1.9697  1.4798  0.9899  
0.5000

General Format:

linspace(X1,   X2,   N)

             first element                      last element            number of
                                                                                 elements

If  N is omitted, linspace(X1, X2) generates a row vector of 100 linearly equally 
spaced points between X1 and X2

For N < 2, linspace returns X2.
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4.4   Creating Two-Dimensional Array (Matrix)

4.4.1   By Enumeration
In a square matrix, the number of rows and number of columns are equal.  
    1   2   3
    4   5   6                  a   3  by  3  square matrix
    7   8   9

In general, the number of rows and columns may be different.  
   1   2   3   4   5   6
   7   8   9   1   2   3                                a   3   by   6  matrix
   4   5   6   7   8   9
has 3 rows and 6 columns.

A matrix is created by assigning the elements of the matrix to a variable.  This is done by typing 
the elements, row by row, inside square brackets [ ].  First type the left bracket [, then type the first 
row separating the elements with spaces or commas.  To type the next row type a semicolon or 
press Enter.  Type the right bracket ] at the end of the last row.

variable_name = [1st row elements; 2nd row elements; 3rd row elements; ... ; last row elements]

The elements that are entered can be numbers or mathematical expressions, predefined variables, 
and functions.  All the rows MUST have the same number of elements.  If an element is zero, it 
has to be entered as such.  MATLAB displays an error message if an attempt is made to define an 
incomplete matrix.  

>> X=[1 5;2 1]

X =

     1     5
     2     1

>> Y = [7   2  76  33  2
        1   9   5   3  2
        5  18  22  32  6]

Y =

     7     2    76    33     2
     1     9     5     3     2
     5    18    22    32     6

>> A = [1:2:11; 0:5:25; linspace(10,60,6);5 25 30 35 40 45]

A =

     1     3     5     7     9    11
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     0     5    10    15    20    25
    10    20    30    40    50    60
     5    25    30    35    40    45

4.5   Indexing of Arrays
x(i) refers to the ith element of array x

There is no off-by-one issue!!!
>> x  = [1 3 5 7];
x(1) is the first element of array x, i.e., x(1) = 1
x(4) is the 4th element of array x, i.e.,   x(4) = 7

>> y = [2 4; 5 7]

y =

     2     4
     5     7

y(1,1) = 2    row 1  column 1
y(2,1) = 5    row 2  column 1
y(1,2) = 4    row 1  column 2
y(2,2) = 7    row 2  column 2

4.6   Arrays Automatically Resize
>> A = [6 9 4;
        1 5 7];

A(1,5) = 3

A =

     6     9     4     0     3
     1     5     7     0     0

4.7   Specialty Matrices
MATLAB provides multiple functions that generate basic matrices.

zeros(r,c) All zeros
ones(r,c) All ones
eye(r,r) Ones down the main diagonal
rand(r,c) Uniformly distributed random elements
randn(r,c) Normally distributed random elements
magic(n) Creates magic squares of size n
Z = [] Empty array
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4.7.1   Examples Specialty Matrices:
zeros
>> Z = zeros(2,4)

Z =

     0     0     0     0
     0     0     0     0

ones
>> F = 5 * ones(3,3)

F =

     5     5     5
     5     5     5
     5     5     5
eye
>> E = eye(3,3)

E =

     1     0     0
     0     1     0
     0     0     1

rand
>> N = fix(10*rand(1,10))

N =

     9     2     6     4     8     7     4     0     8     4

randn
>> R = randn(4,4)

R =

   -0.4326   -1.1465    0.3273   -0.5883
   -1.6656    1.1909    0.1746    2.1832
    0.1253    1.1892   -0.1867   -0.1364
    0.2877   -0.0376    0.7258    0.1139

magic
>> M = magic(4)

M =

    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1
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4.8   load Command
The load command reads binary files containing matrices generated by earlier MATLAB sessions, 
or reads text files containing numeric data.  The text file should be organized as a rectangular 
table of numbers, separated by blanks, with one row per line, and an equal number of elements in 
each row.  For example, outside of MATLAB< create a text file containing these four lines:  
  16.0   3.0   2.0   13.0
   5.0  10.0  11.0    8.0
   9.0   6.0   7.0   12.0
   4.0  15.0  14.0    1.0

Store the file under the name of ML.dat.  Then the command
   load  ML.dat
reads the file and creates a variable, ML, containing our example matrix.

An easy way to read data into MATLAB in many text or binary formats is to use the Import Wiz-
ard.

4.9   Concatenation
Concatenation is the process of joining small matrices to make bigger ones.  In fact, you made 
your first matrix by concatenating its individual elements.  The pair of square brackets, [ ] , is the 
concatenation operator.  For an example, start with the 4- by 4 magic square, M, and form
B = [M   M+32 ;  M+48  M+16]

>> M = magic(4)

M =

    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

>> B = [M   M+32 ;  M+48  M+16]

B =

    16     2     3    13    48    34    35    45
     5    11    10     8    37    43    42    40
     9     7     6    12    41    39    38    44
     4    14    15     1    36    46    47    33
    64    50    51    61    32    18    19    29
    53    59    58    56    21    27    26    24
    57    55    54    60    25    23    22    28
    52    62    63    49    20    30    31    17
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r = [2, 4, 20];
w = [9, -6, 3];
u = [r, w] gives
    [ 2, 4, 20, 9, -6, 3]

A = [1 2 3; 4 5 6; 7 8 9]
B = [A, zeros(3,2); zeros(2,3), eye(2)]

B =

     1     2     3     0     0
     4     5     6     0     0
     7     8     9     0     0
     0     0     0     1     0
     0     0     0     0     1

4.10   SubVectors
v( : ) refers to all elements of v

v( m : n ) refers to elements m through n

Example 1:
>> V = [1 2 3 4]

V =

     1     2     3     4

>> V(:)

ans =

     1
     2
     3
     4

Example 2:
>> V(2:4)

ans =

     2     3     4

4.11   Submatrices
Any matrix obtained by omitting some rows and columns from a given matrix X is called a “sub-
matrix” of X.  The colon notation can be used to pick out selected row, columns, and elements of 
vectors, matrices, and arrays.  The colon may be viewed as a “wild-card” character.
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X( : ) is all the elements of X, regarded as a single column
X( :, n) refers to the elements in column n (all rows)
X( n , : ) refers to the elements in row n (all columns) 
X( : , m : n ) refers to all elements in all rows between columns m and n 
X( m : n , p : q ) refers to all elements in rows m through n and columns  p through q

4.11.1   Examples:
Example 1:
X =

     1     2     3
     4     5     6

>> X(:)

ans =

     1
     4
     2
     5
     3
     6

Example 2:
   >> A(1:4, 3)
is the column vector consisting of the first four entries of the third column of A.  A colon by itself 
denotes an entire row or column.  

A =

     1     2     3     4     5
     6     7     8     9    10
    11    12    13    14    15
    16    17    18    19    20
    21    22    23     2    25
    26    27    28    29    30

>> A(1:4, 3)

ans =

     3
     8
    13
    18

Example 3:
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   >> A(:, 3)
is the third column of A, and A( 1 : 4 ,  : ) is the first four rows of A.  Arbitrary integral vectors 
can be used as subscripts.  
>> A(:,3)

ans =

     3
     8
    13
    18
    23
    28

>> A(1:4,:)

ans =

     1     2     3     4     5
     6     7     8     9    10
    11    12    13    14    15
    16    17    18    19    20

Example 4:
   >> A(:, [2  4])
generates a two-column matrix containing columns 2 and 4 of matrix A.  This subscripting 
scheme can be used on both sides of an assignment statement.  
>> A(:, [2 4])

ans =

     2     4
     7     9
    12    14
    17    19
    22     2
    27    29

Example 5:
   >> A(:, [2 4 5]) = B(:, 1:3)
replaces columns 2, 4, and 5 of matrix A with the first three columns of matrix B.  Note that the 
entire altered matrix A is printed and assigned.
A =

     1     2     3     4
     5     6     7     8
     9    10    11    12
    13    14    15    16

>> B = [A*2 A * -1]

B =
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     2     4     6     8    -1    -2    -3    -4
    10    12    14    16    -5    -6    -7    -8
    18    20    22    24    -9   -10   -11   -12
    26    28    30    32   -13   -14   -15   -16

>> 
>> A(:,[2 4 5]) = B(:, 1:3)

A =

     1     2     3     4     6
     5    10     7    12    14
     9    18    11    20    22
    13    26    15    28    30

>> 

4.12   Deletion of Rows and Columns
You can delete rows and columns from a matrix using just a pair of square brackets.  

>> X = M

X =

    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

Then, to delete the 2nd column of X, use
   X(:, 2) = [ ]

This changes X to

X =

    16     3    13
     5    10     8
     9     6    12
     4    15     1

A(3, :) = []       %delete 3rd row

A(:, 2:4) = []     %deletes 2nd - 4th column

A([1 4], :) = []   % deletes 1st and 4th rows
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If you delete a single element from a matrix, the result isn’t a matrix anymore.  So, expressions 
like
   X(1,2) = []
result in an error.  
   >> X(1,2) = []
     ???  Indexed empty matrix assignment is not allowed.

However, using a single subscript deletes a singe element or sequence of elements, and reshapes 
the remaining elements into a row vector. 
   X(2:2:10) = []

Delete elements starting with the 2nd element; spacing of 2; ending with the 10th element.  MAT-
LAB is column-major form, i.e., it looks at columns NOT rows.  

results in
   >> X(2:2:10) = []

   X =

       16     9     3     6    13    12     1

4.13   Reversal
>> A = [6 9 4 0 3 ; 1 5 7 0 0]

A =

     6     9     4     0     3
     1     5     7     0     0

>> B = A(:,5:-1:1)           % reverses order of columns

B =

16      
(elem 1)

3     
(elem 5)

13     
(elem 9)

5     
(elem 2)

10     
(elem 6)

8     
(elem 10)

9     
(elem 3)

6     
(elem 7)

12     
(elem 11)

4     
(elem 4)

15     
(elem 8)

1       
(elem 12)
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     3     0     4     9     6
     0     0     7     5     1

>> 

4.14   Functions for Handling Arrays
MATLAB has multiple built-in functions for managing and handling arrays. 

Function Description Example

length(A) vector: Returns the num-
ber of elements in vector 
A

>> A = [2 4 6];

>> length(A)
ans =
       3.00

size(A) row vector [m, n] contain-
ing the number of rows:  m 
and the number of cols: n 
in matrix A

>> A = [2 4 6];
>> size(A)
ans =
     1.00     3.00

>> B = [6 -5; -10 0; 3 2];
>> size(B)
ans =
          3.00          2.00

max(A)

max(B)

[Y,I] = max(C)

vector: largest elem in A 

array: row vector contain-
ing max elem of each col

returns the indices of the 
max values in vector

>> A = [2 4 6];
>> max(A)
ans =
          6.00
B =
          6.00        -5.00
        -10.00            0
          3.00         2.00

>> B = [6 -5; -10 0; 3 2];
>> max(B)
ans =
          6.00          2.00
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min(A)

min(B)

[Y,I] = min(C)

vector:  smallest elem in 
A

array: row vector contain-
ing min elem of each col

returns the indices of the 
min values in vector

>> A = [2 4 6];
>> min(A)
ans =
          2.00

>> B = [6 -5; -10 0; 3 2];
>> min(B)
ans =
        -10.00         -5.00

mean(A)

mean(B)

vector: returns average or 
mean value of elements

array: a row vector con-
taining the mean value of 
each column

>> A = [2 4 6];
>> mean(A)
ans =
     4

>> B = [6 -5; -10 0; 3 2];
>> mean(B)
ans =
   -0.3333   -1.0000

median(A)

median(B)

vector: median value of 
the elements of A

array: row vector contain-
ing median value of each 
column

>> A = [2 4 6];
>> median(A)
ans =
     4

>> B = [6 -5; -10 0; 3 2];
>> median(B)
ans =
     3     0

std(A) vector: returns the stan-
dard deviation

array: is a row vector 
containing the standard 
deviation for each column

>> A = [2 4 6];
>> std(A)
ans =
     2

>> std(B)
ans =
    8.5049    3.6056

sum(A)

sum(B)

vector: sums elements

array: sums elements of 
each col of array A; 
returns a row vector

>> A = [2 4 6];
>> sum(A)
ans =
         12.00

>> B = [6 -5; -10 0; 3 2];
>> sum(B)
ans =
         -1.00         -3.00

Function Description Example
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sort(A)

sort(B)

vector: sorts elements in 
ascending order

array: sorts each column 
in ascending order

>> A = [2 6 4];
>> sort(A)
ans =
     2     4     6

>> sort(B)
ans =
   -10    -5
     3     0
     6     2

det(A) returns the determinant of 
a square matrix
use COND instead of DET to 
test for matrix singular-
ity

dot(A,B) vector:  dot product
returns the scalar prod-
uct of vectors A and B.  A 
& B must be vectors of the 
same length

cross(A,B) vector cross product
returns the cross product 
of the vectors A and B
A & B must be 3 element 
vectors

inv(A) the inverse of a square 
matrix.  This is SLOW to 
use.  IT is advised using 
left division instead.

cat(dim, A, B) concatenate arrays A and B 
along the dimension DIM

cat(2,A,B) same as [A,B]
cat(1,A,B) same as [A;B]

Function Description Example
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find find indices of nonzero 
elements

find indices of 
elements > 3

find nonzero element in an 
array

>> A = [1 0 2 0 0 5];
>> find(A)
ans =
     1     3     6

>> I = find(A > 3)
I =
     6

B =  1     2     3
     0     4     5
     0     0     6
>> [i j] = find(B)
i =          j =
     1          1
     1          2
     1          3
     2          2
     2          3
     3          3

end last index X(3:end)
X(1,1:2:end-1)
to grow an array
X(end+1) = 5

reshape(A,m,n) returns the M-by-N matrix 
whose elements are taken 
columnwise from X.  An 
error results if X does 
not have M*N elements.

>> A = [1 2 3;4 5 6]
>> reshape(A,3,2)
ans =
     1     5
     4     3
     2     6

diag(V) When V is a vector, cre-
ates a square matrix with 
the elements of V in the 
diagonal

>> V = [1 3 5];
>> diag(V)
ans =
     1     0     0
     0     3     0
     0     0     5

diag(A) vector: create matrix with 
v on the diag

matrix, creates a vector 
from the diagonal ele-
ments of A

>> A = [1 2 3;4 5 6;7 8 9];
>> diag(A)
ans =
     1
     5
     9

Function Description Example
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triu(A) Extract the upper triangu-
lar part of a matrix

>> A = [1 2 3;4 5 6;7 8 9]
>> U = triu(A)
U =
     1     2     3
     0     5     6
     0     0     9

triu(A,n) Elements on and above the 
n-th diagonal of X.  n = 0 
is the main diagonal. n > 
0 above the main diag
n < 0 is below the main 
diag

>> triu(A,1)
ans =
     0     2     3
     0     0     6
     0     0     0

tril(A) Extract the lower triangu-
lar part of a matrix

>> A = [1 2 3;4 5 6;7 8 9]

> A = tril(A)
A =
     1     0     0
     4     5     0
     7     8     9

tril(A,n) Elements on and below the 
n-th diagonal of X.  n = 0 
is the main diagonal. n > 
0 above the main diag
n < 0 is below the main 
diag

>> tril(A,-1)
ans =
     0     0     0
     0     0     0
     7     0     0

rot90 rotates matrix 90 degrees

fliplr flips from left to right

flipud flips from up to down

Random Numbers

Function Description Example

rand uniformly distributed  
pseudo-random number 
between 0 and 1.  A 
sequence of numbers gener-
ated is determined by the 
state of the generator. 

>> rand
ans =
    0.9501
>> rand
ans =
    0.2311

Function Description Example
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rand(1,n) generates a row vector of 
n random numbers

>> rand(1,5)
ans =
 0.6068  0.4860  0.8913  
0.7621  0.4565

rand(n) generates an n by n matrix 
of random numbers-uniform 
distribution on interval 
(0.0, 1.0)

>> rand(3)
ans =
  0.0185    0.6154    0.7382
  0.8214    0.7919    0.1763
  0.4447    0.9218    0.4057

rand(m,n) generates an m by n matrix 
with random numbers on 
interval (0.0,1.0)

>> rand(2,3)
ans =
  0.9355    0.4103    0.0579
  0.9169    0.8936    0.3529

randn
randn(1,n)
randn(n)
randn(m,n)

normally distributed ran-
dom numbers

see above: rand

sprand sparse uniformly distrib-
uted random matrix

randperm(n) random permutation of 
integers from 1 to n

>> randperm(4)
ans =
     2     3     4     1

permute(A, order) rearranges the dimensions 
of A so that they are in 
the order specified by the 
vector ORDER

Random Numbers

Function Description Example
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4.15   Array Arithmetic
The following matrix operators are available in MATLAB:

Note: We strongly recommend that you add parentheses to all expressions using ‘&’ and ‘|’ to avoid 
any potential problems with the interpretation of your code between different version of MATLAB.  
Earlier version of MATLAB interpreted these differently than the current version.

MATLAB
help precedence C++

Done 
First

Done 
Last

(  ) parentheses
function call

(  )  
function call

^  .^ ‘ exponentiation
transpose

NA

~ not
unary plus minus

!  
unary - +

* .*  / ./   \  .\ multiply, divide, modulus *  /  %  

+   - binary addition subtraction +  -  

: colon NA

<   <=     ==
>   >=     ~=

relational operators <   <=   
>  >=

see above ck for equality
not equal

==  !=  

& element-wise logical AND NA

| element-wise logical OR NA

&& (short-circuit log-
ical AND)

and 

|| (short-circuit log-
ical OR)

or 

= assignment =  
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These matrix operations apply, of course, to scalars (one-by-one matrices) as well.  If the sizes of 
the matrices are incompatible for the matrix operation, an error message will result, except in the 
case of scalar-matrix operations (for addition, subtraction, and division as well as for multiplica-
tion) in which case each entry of the matrix is operated on by the scalar.

4.15.1   Transpose Operator
The transpose operator, when applied to a vector, switches a row vector to a column vector and a 
column vector to a row vector.  When applied to a matrix, it switches the rows to columns and the 
columns to rows.  The transpose operator is applied to typing a single quote ‘ following the vari-
able to be transposed.

4.15.2   Matrix Addition and Subtraction
If A is a (m-by-n) matrix and B is a (p-by-q) matrix, then the matrix sum C = A + B is defined 
only when m = p and n = q.  The matrix sum is a (m-by-n) matrix C whose elements are

cij = aij + bij

Original Transpose

>> A = [1 3 5 7]

A =

     1     3     5     7

>> A'

ans =

     1
     3
     5
     7

A =

     2
     4
     6

>> A'

ans =

     2     4     6

>> A = [1 2; 3 4]

A =

     1     2
     3     4

>> A'

ans =

     1     3
     2     4

>> A = [0 1 2;3 0 4;5 6 0]

A =

     0     1     2
     3     0     4
     5     6     0

>> A'

ans =

     0     3     5
     1     0     6
     2     4     0
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If    and   then C = A + B =  +  =  

In MATLAB,
>> A = [2 1;4 6]
>> B = [4 2;0 1];

>> C = A + B

C =

     6     3
     4     7

4.15.3   Matrix subtraction is parallel to matrix addition  
>> A = [2 1;4 6]
>> B = [4 2;0 1];

>> D = A - B

D =

    -2    -1
     4     5

4.15.4   Dot Product
If X = [x1  x2  x3  ... xn]   a row vector containing n elements and

   is a column vector containing the same number of elements.  The dot product (some-

times called scalar product or inner product) is a special case of matrix multiplication and is 
defined as:

Example: Dot product of X = [1 2 3 4 5] with Y = X’ is
X * Y = [1 2 3 4 5] * [1 2 3 4 5]’
      = 1*1 + 2*2 + 3*3 + 4*4 + 5*5
      = 1  + 4 + 9 + 16 + 25
      = 55

A 2 1
4 6

= B 4 2
0 1

= 2 1
4 6

4 2
0 1

6 3
4 7

Y

y1

y2

y3

…
yn

=

X Y× xi yi⋅

i 1=

n

∑=
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>> X = [1 2 3 4 5];
>> Y = X';

>> X * Y

ans =

    55

4.15.5   Matrix Multiplication
Given the two arrays A (m by n) and B (p by q).  The matrix product A * B is defined only when 
the interior matrix dimensions are the same (i.e., n = p).  The matrix product C = A * B is a (m by 
q) matrix whose elements are

 

for i = 1, 2, ...m and j = 1,2,...n.   Actually, cij is the dot product of the ith row of A with the jth col-
umn of B.

Example:

C = A * B =    and   then 

C = A * B =  =    

>> A = [2 1;4 6];
>> B = [4 2;0 1];

>> A * B

ans =

     8     5
    16    14

A * A * A * A is equivalent to A^4

>> A*A*A*A

ans =

         320         384

cij aikbkj
k 1=

n

∑=

A 2 1
4 6

= B 4 2
0 1

=

2 4⋅ 1 0⋅+ 2 2⋅ 1 1⋅+
4 4⋅ 6 0⋅+ 4 2⋅ 6 1⋅+

8 5
16 14
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        1536        1856

>> A^4

ans =

         320         384
        1536        1856 and the rest of the elements are 0’s.  When the iden-
tity matrix multiplies another matrix (or vector), that matrix (or vector) is 
unchanged.
A * I = I * A = A

4.15.6   Scalar Multiplication of Arrays
Scalar multiplication on matrices is element-by-element.  Example:

>> 2*A                          % multiply each element of A by 2

ans =

     4     2
     8    12

>> A/3                          %divide each element of A by 3

ans =

    0.6667    0.3333
    1.3333    2.0000

>> 3\A                           %left division of A by 3

ans =

    0.6667    0.3333
    1.3333    2.0000

4.15.7   Array Division
The division operation can be explained with the assistance of the identity matrix and the inverse 
operation.

4.15.8   Identity Matrix:

The identity matrix is a square matrix in which the diagonal elements are 1’s and the rest of the 
elements are 0’s.  When the identity matrix multiplies another matrix, the matrix remains 
unchanged.

A * I = I * A = A
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4.15.9   Inverse of a Matrix:
Matrix B is the inverse of matrix A if when two matrices are multiplied the product is the identity 
matrix.  Both matices must be square and the multiplication order can be B*A or A*B

B*A = A*B = I

The inverse of a matrix A is typically written as A-1.  In MATLAB the inverse of a matrix can be 
obtained either by raising A to the power of -1 or with the inv(A) function.  

NOTE:  finding the inverse of a matrix is very costly (time) in MATLAB.  You dont’ believe me 
just try this for something other than a non-trivial array.  It is a much better idea to use LEFT 
DIVISION INSTEAD OF finding the INVERSE.

4.15.10   Array Division:
Left division is used to solve the matrix equation A * X = B.  In this equation X and B are column 
vectors.  This equation can be solved by multiplying on the left of both sides by A-1

A-1 * A * X = A-1 * B

I * X = A-1 * B

X = A-1 * B

In MATLAB, is written as:
X = A \ B

NOTE:  This is the preferrable means of solving this type of equation.  Use left division rather 
than an inverse.

Right division is used to solve the matrix equation X * C = D.  In this equation, X and D are row 
vectors.  This equation is solved by:

X * C * C-1 = D * C-1

X * I = D * C-1

X = D * C-1

In MATLAB,  X = D * C-1 is written as
X = D / C

4.16   Element-by-Element Operations
There are applications that require operations to be carried out on an element by element basis 
rather than on an array basis.  Addition and subtraction are by definition element-by-element 
operations.  Note element-by-element operations can only be done with arrays of the same size.

Element-by-element operations are entered in MATLAB by typing a period (.) in front of the 
operator.  
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>> A = [   2     1;   
           4     6];

>> B = [  4     2;    
          0     1]

>> 
>> A.*B

ans =

     8     2
     0     6

>> A.^B

ans =

    16     1
     1     6

>> A.\B

ans =

    2.0000    2.0000
         0    0.1667

>> A./B
Warning: Divide by zero.
(Type "warning off MATLAB:divideByZero" to suppress this warning.)

ans =

    0.5000    0.5000
       Inf    6.0000

Symbol Element-by-Element

.* multiplication

.^ exponentiation

./ right division

.\ left division
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