
Chapter 5

Control Flow Structures
MATLAB has several constructs that allow for varying ways to control the flow of program exe-
cution.

Iteration:
• while loops
• for loops

Selection:
• if - else statements
• if - elseif statements

5.1 Relational and Logical Operators
The operation of many branching constructs is controlled by an expression whose result is either
true (1) or false (0). There are two types of operators that produce true/false results:
relational operators and logic operators. Unlike C++, MATLAB does not have a boolean data
type (it only has double and character). However, as in C++, MATLAB interprets zero (0) as
false and any other value as true.

5.1.1 Relational Operators
Relational operators are binary operators that yield a true or a false. The general form is:
 x op y
where x and y may be arithmetic expressions, variables, result of function calls, strings
 op is one of the relational operators in the table below.

Caution concerning the == and ~= operators. Remember that all variables in MATLAB are dou-
ble and a check for equality on doubles is a bad idea. There is roundoff error during calculations;

MATLAB Operation C++

==
Equal to
Note: two ==
a single = is an assignment

==

~= Not equal to !=

> Greater than >

>= Greater than or equal to >=

< Less than <

<= Less than or equal to <=
70

two numbers, theoretically equal, can differ slightly causing an equality or inequality test to fail.
Instead of comparing two numbers for exact equality, you should check if they are close enough,
i.e., check if they are within eps.

>> a = 0
a =
 0

>> b = sin(pi)
b =
 0.00

>> a == b
ans =
 0 %remember 0 is false

>> abs(a-b) < eps
ans =
 1.00 %this check gives true

5.1.2 Logical Operators
Logical operators connect two or more relational expressions into one or reverse the logical of an
expression.

MATLAB Operation C++

 &
Logical AND and

&&

 |
Logical OR or

||

xor Logical exclusive OR
one or the other but not
both

N/A

~ Logical NOT !

Inputs and or xor not

a b a & b a | b xor(a,b) ~a

0 0 0 0 0 1
71

Logical operators can be used to compare a scalar value with an array and for comparing arrays.

5.1.3 Logical Functions

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

Examples

>> A = [1 2; 3 0]; >> B = [1 7; 0 9];

>> A == B

ans =

 1 0
 0 0

>> A < B

ans =

 0 1
 0 1

>> A & B

ans =

 1 1
 0 0

>> A | B

ans =

 1 1
 1 1

>> A~=B

ans =

 0 1
 1 1

>> A<=B

ans =

 1 1
 0 1

Function Description Example

any(A) vector: return 1 if ANY of the
elements of A are nonzero: 0
otherwise

D = [0 1 0 1];
>> any(D)
ans =
 1.00

Inputs and or xor not

a b a & b a | b xor(a,b) ~a
72

any(A)
matrix: operates on columns of
A, returning a row vector of 1s
and 0s

C = [1 0 0 ; 0 0 0];
>> any(C)
ans =
 1.00 0 0
>>

all(A) vector: return 1 if ALL of the
elements of A are nonzero: 0
otherwise

>> all(D)
ans =
 0

all(A) matrix: operates on columns of
A, returning a row vector of 1s
and 0s

>> all(C)
ans =
 0 0 0

find(A)

finds the indices of the nonzero
elements of A

A = [1.00 0 0;
 0 2.00 4.00]
>> find(A)
ans =
 1.00
 4.00
 6.00

isnan(A)
returns 1s where the elements
of A are NaNs and 0s where
they are not

>> B = [1 NaN 0; 0 2 4];
>> isnan(B)
ans =
 0 1.00 0
 0 0 0

isempty(A) an empty matrix has a zero size
in at least one dimension
isempty(A) returns 1 is A is
empty matrix and 0 otherwise

ischar(A) returns 1 if A is a character
array and a 0 otherwise

isinf(A)

returns a 1 if the value of A is
infinite (Inf) and a 0 otherwise

C = [1.00 0 Inf;
 NaN 1.00 Inf]
>> isinf(C)
ans =
 0 0 1.00
 0 0 1.00

ifnumeric(A) returns a 1 if the A is a numeric
array and a 0 otherwise

Function Description Example
73

5.2 Iteration (Loops)
Loops allow programmers to execute a sequence of statements more than once. There are two
basic forms of loop constructs: while loops and for loops. The major difference between the
two types of loops is how the repetition is controlled. While loops are usually used when you do
not know how many times you want the loop to execute. It is controlled by a condition. The for
loop is a count controlled loop, i.e., the number of repetitions is known before the loop starts.

5.2.1 while loop
The while loop repeats a group of statements an indefinite number of times under control of a
logic condition. A matching end delineates the statements.

General syntax of a while loop is:

while expression
% some loop that is executed when expression is true

end

Examples for both MATLAB and C++:

finite(A)

returns 1 where the elements of
A are finite and 0s where they
are not

>> C = [1 0 inf;
 NaN 1 inf];
>> finite(C)
ans =
 1.00 1.00 0
 0 1.00 0

MATLAB C++

function s= sumTill(N)
%sums numbers from 1 - N
 s = 0;
 counter = 1;
 while (counter <= N)
 s = s + counter;
 counter = counter + 1;
 end

Note: the function name “sum”
could not be used because there is
an intrinsic fn by the name of
“sum”
ck: lookfor sum

int sumTill(int N)
//sums numbers from 1 - N
{
 int sum = 0;
 int counter = 1;
 while (count <= N)
 {
 sum = sum + counter;
 counter = counter + 1;
 }
 return sum;
}

Function Description Example
74

5.2.2 for
A for loop is used to repeat a statement or a group of statements for a fixed number of times.
General form:

for index = expr
 statement 1
 statement 2
 ...
 statement n
end

where index is the loop control variable and expr is the loop control expression--usually a vec-
tor. The loop body is executed once for each column in expr. Shortcut notation for expr is:
start: increment: last
But unlike C++, a MATLAB for loop can loop through a vector or array rather than just a simple
count. See examples below.

x = 1;
y = 10;
while (x < y) %the () are
 x = x + 1; % optional
 y = y - 1;
end

int x = 1;
int y = 10;
while (x < y)
{
 x = x + 1;
 y = y - 1;
}

change = 1;
while change >= 0.001
 change = change/2;
end
disp(change);

double change = 1;
while (change >= 0.001)
 change = change/2;
cout << change << endl;

MATLAB C++

s = 0;
for i = 1:10 %increment of 1
 s = s + i;
end
disp(s);

int sum = 0;
for (int i = 1; i <= 10; i++)
 sum = sum + i;
cout << sum << endl;

MATLAB C++
75

5.3 Selection: if
The if statement evaluates a logical expression and executes a group of statements when the
expression is true. The optional elseif and else keywords provide for the execution of alternate
groups of statement. An end keyword, which matches the if, terminates the last group of state-
ments. The groups of statement are delineated by the four keywords--no braces or brackets are
involved.

The general syntax of an if/elseif/else construct is:
if expression1
 % Executed when expression1 is true
elseif expression2
 % Executed when expression2 is true

Examples Output

for i = [2,3,4,5,10]
 c = 2 * i
end

c =
 4.00
c =
 6.00
c =
 8.00
c =
 10.00
c =
 20.00

The control condition is a vector containing 5 elements. The for loop will
be run 5 times. The value of i will be 2 the first time; 3 the second time;
4 the 3rd time; 5 the 4th time; and 10 the last time

>> s=0;
>> for i = 1:2:10
 s=s+i;
 end
>> s

>> s =
 25 %1+3+5+7+9

The initial value of i will be: 1; The end value will be maximum of 10;
the increment will be 2;
Therefore the value of index i will be 1 3 5 7 9

>> for i = 1:2
 for j = 1:2
 A(i,j) = i/j
 end
 end

A =
 1.00 0.50 0
 2.00 1.00 4.00

The inner most loop will execute first. Therefore with i= 1; j will take on
the values of 1 and then 2; i will then become 2; j will take on the values
of 1 and then 2
76

elseif expression3
 % Executed when expression3 is true
 ...
elseif expressionN
 % Executed when expressionN is true
else
 % Executed when expression 1 .. N are false
end

Valid syntax requires the if and the end, zero or more elseif’s and zero or one else. The design is
very much like C++. Examples in both MATLAB and C++ follow:

MATLAB C++

if (i <= 10)
 j = 0;
else
 k = 0;
end

if (i <= 10)
{
 j = 0;
}
else
{
 k = 0;
}

x = rand;
if x < 1/3
 disp(‘x < 1/3’);
elseif x < 2/3
 disp(‘1/3 <= x < 2/3’);
else
 disp(‘2/3 <= x ’);
end

#include <cstdlib>
x = rand();
if (x < 1/3)
 cout << “x < 1/3” << endl;
elseif (x < 2/3)
 cout << “1/3 <= x < 2/3” << endl;
else
 cout << “2/3 <= x “ << endl;
77

	Chapter 5
	Control Flow Structures
	5.1 Relational and Logical Operators
	5.2 Iteration (Loops)
	5.3 Selection: if

