
Chapter 6

Plotting
MATLAB does an incredible job with plotting data. I still remember the 1st time I played around
with the different commands. My impression can be best described as WOW. This chapter deals
with graphing capabilities and provides examples.

6.1 The basic plot command
The plot command will “plot” a vector. For vector x
 >> plot(x)
treats the values stored in x as abscissa values, and plots these against their index. With two vec-
tors of the same length and the same type, i.e., both must be either row or column vectors, we can
also plot these against each other like
 >> plot(x, y) %produces a graph of y versus x

6.1.1 A simple line plot
Here are the MATLAB commands to create a simple plot of y = sin(3*pi*x) from 0 to 2*pi.

% File: sin3xPlot.m
%
% A sample MATLAB script to plot y = sin(3*x) and label the plot

x = 0:pi/30:2*pi; % x vector, 0 <= x <= 2*pi, increments of pi/30
y = sin(3*x); % vector of y values
plot(x,y) % create the plot
xlabel('x (radians)'); % label the x-axis
ylabel('sine function'); % label the y-axis
title('y = sin(3*x)',’FontSize’, 12); % put a title on the plot

The effect of the labeling commands, xlabel, ylabel, and title are indicated by the text and red
arrows in the figure. Don't skimp on the labels!
78

6.2 Basic plotting
We can also combine several lines like
plot(x, y, x, f, x, z)
or
plot(x, y, ‘bo:’, x, f, ‘gV--’)

6.3 Creating Symbol Plots with MATLAB
Changing symbol or line types

The symbol or line type for the data can by changed by passing an optional third argument to the
plot command. For example
>> t = 0:pi/30:2*pi;
>> plot(cos(3*t),sin(2*t),'o'); % blue (default) circles

plots data in the x and y vectors using circles drawn in the default color (blue), and

title (‘y=sin(3*x)’)

ylabel(‘sine function’) xlabel(‘x(radians)’)
79

>> plot(cos(3*t),sin(2*t),'r:'); % red dotted line

plots data in the x and y vectors by connecting each pair of points with a red dotted line.

The third argument of the plot command is a one, two or three character string of the form 'cs',
where 'c' is a single character indicating the color and 's' is a one or two character string indicating
the type of marker type or line. The color selection is optional. Allowable color and marker types
are summarized in the following tables. Refer to ``help plot'' for further information.

6.3.1 A simple symbol plot
This example shows you how to plot data with symbols. This is done by indicating a marker type
but NOT a linestyle. For example,

Color, Marker Types and Line Type Selectors for 2-D plots

‘c’
character

symbol &
line color

‘ss’
string

marker types
and filled

marker types

‘ss’
string Linestyle

‘y’ yellow ‘.’ point ‘-’ solid line

‘m’ magenta ‘o’ circle ‘:’ dotted line

‘c’ cyan ‘x’ x-mark ‘-.’ dashdot line

‘r’ red ‘+’ plus ‘--’ dashed

‘g’ green ‘*’ star ‘none’ no line

‘b’ blue ‘s’ square

‘w’ white ‘d’ diamond

‘k’ black ‘^’ up triangle

‘\/’ down triangle

‘>’ right triangle

‘<‘ left triangle

‘p’ pentagram

‘h’ hexagram

‘none’ no marker
80

 >> plot(x, y, ’ks’)
plots black (‘k’) squares (‘s’) at each point, but does not connect the markers with a line.
The statement
 >> plot(x, y, ’r:+’)
plots a red (‘r’) dotted line (‘:’) and places plus sign markers (‘+’) at each data point. This type of
plot is appropriate, for example, when connecting data points with straight lines would give the
misleading impression that the function being plotted is continuous between the sampled data
points.

Here are the MATLAB commands to create a symbol plot with the data generated by adding noise
to a known function.

% File: noisyData.m
%
% Generate a noisy function and plot it.

x = 0:0.01:2; % generate the x-vector
noise = 0.02*randn(size(x)); % and noise
y = 5*x.*exp(-3*x) + noise; % Add noise to known function
plot(x,y,'o'); % and plot with symbols

xlabel('x (arbitrary units)'); % add axis labels and plot title
ylabel('y (arbitrary units)');
title('Plot of y = 5*x*exp(-3*x) + noise');

Note that the “.*'' operator is necessary when multiplying the vector x by the vector exp(-3*x).
The preceding statements create the following plot.
81

 You can control the color and line style of this plot with optional string arguments like
 plot(x, ‘r.’)
which plots as a set of red dots.

There may be times where you will want the function plotted along with the noisy data. This is
done by putting them both into the ”plot”. See the example below

% File: noisyDataLine.m
%
% Generate a function and add noise to it. Plot the function
% as a solid line and the noisy data as open circles

x = 0:0.01:2; % generate the x-vector
y = 5*x.*exp(-3*x); % and the "true" function, y - by formula
yn = y + 0.02*randn(size(x)); % Create a noisy version of y
plot(x,y,'-',x,yn,'ro'); % Plot the function and the noisy one too

xlabel('x (arbitrary units)'); % add axis labels and plot title
ylabel('y (arbitrary units)');
title('Plot of y = 5*x*exp(-3*x) + noise');
legend('true y','noisy y');
82

When you plot the markers and lines on the same plot, you may want to use fewer data points to
plot the markers than you use to plot the lines. This example plots the data twice using a different
number of points for the data line and marker plots.
83

Every time you plot, the new plot replaces the old by default. To change this behavior either use
hold on, open a new figure window, or use a subplot.

6.4 hold
The command
 hold on
causes subsequent plotting commands to be added to the existing set of plot axes rather than
replacing the existing graph. A command of
 hold off
 will restore the default behavior of replacing the current plot contents with the new plot.
The command
 hold
will toggle between hold on and hold off.

The following puts three plots on the same set of axes.
x = 0: 0.01:2*pi;
plot(x, sin(x), 'r--')
hold on
plot(x,sin(2*x),'k:')
plot(x,sin(4*x),'b+')
grid
title ('Three plots: sin(x), sin(2x), sin(4x)')
xlabel('x')
ylabel('y')
legend('sin(x)','sin(2x)','sin(4x)')

legend

grid on

ylabel xlabel
84

We have used two new command in this last example:
 grid on % puts in the hashing
 legend %the tables associated with the lines plotted.
The basic form of legend is:
 legend (‘string1’, ‘string2’, ... , pos)
where string1, string2, and so forth, are the labels associated with the lines plotted, and
pos is an integer specifying where to place the legend. The command legend off will
remove the existing legend. The possible values for pos are:

6.5 Controlling the Axes
The axis command supports a number of options for setting the scaling, orientation, and aspect
ratio of plots.

Values of pos in the legend Command

Value Meaning

0 Automatic “best” placement (least conflict
with data)

1 Upper right-hand corner (default)

2 Upper left-hand corner

3 Lower left-hand corner

4 Lower right-hand corner

-1 to the right of the plot

Command Description

axis([xmin xmax ymin ymax]) sets scaling for the x- and y-axes on the current plot.

axis auto returns the axis scaling to its default, automatic mode
where, for each dimension, 'nice' limits are chosen
based on the extents of all line, surface, patch, and
image children.

axis tight sets the axis limits to the range of the data
85

6.6 Figure Windows
Graphing functions automatically open a new figure window if there are no figure windows
already on the screen. If a figure window exists, MATLAB uses that window for graphics output.
If there are multiple figure windows open, MATLAB targets the one that is designated the “cur-
rent figure” (the last figure used or clicked in).

To make an existing figure window the current figure, you can click the mouse while the pointer
is in that window or you can type
 figure(n)
where n is the number in the figure title bar.

6.6.1 Clearing the Figure for a New Plot
When a figure already exists, most plotting commands clear the axes and use this figure to create
a new plot. However, these commands do NOT reset figure properties, such as the background
color or the colormap. If you have set any figure properties in the previous plot, you may want to
use the clf command with the reset option
 clf reset
before creating your new plot to set the figure’s properties to their defaults.

6.7 Formatting Output
It is possible to enhance plotted text strings (titles, axis labels, etc.) with formatting such as bold
face, italics, as well as special characters--Greek and mathematical symbols.

axis equal sets the aspect ratio so that equal tick mark
increments on the x-,y- and z-axis are equal in size.
This makes SPHERE(25) look like a sphere, instead
of an ellipsoid.

axis square makes the current axis box square in size.

axis normal restores the current axis box to full size and removes
any restrictions on the scaling of the units. This
undoes the effects of AXIS SQUARE and AXIS
EQUAL.

axis off turns off all axis labeling, tick marks and background.

axis on turns axis labeling, tick marks and background back
on

Command Description
86

The font used to display the text can be modified by stream modifiers--a special sequence of char-
acters that tells the MATLAB interpreter to change its behavior. Once a stream modifier has been
inserted into a text string, it will remain in effect until the end of the string or until cancelled. If a
modifier is followed by brackets { }, only the text in the brackets is affected.

Formatting Modifiers

Modifier Effect Example Result

\bf Boldface \bfThis is Bold\rm This is Bold

\it Italics \itThis is Italics\rm This is Italics

\rm

\fontname{fontname} Specify the font name to
use \fontname{courier}

\fontsize{fontsize} Specify font size \fontsize{16}

_{xxx} Characters inside the
braces are subscripts x_{12} x12

^{xxx} Characters inside the
braces are superscripts y^{3} y3

Greek and Mathematical Symbols in Titles/Labels
Chapman p 116

Character
Sequence Symbol Character

Sequence Symbol Character
Sequence Symbol

\alpha \int

\beta \cong

\gamma \Gamma \sim

\delta \Delta \infty

\epsilon \pm

\eta \leq

α

β

γ Γ

δ ∆

ε

η

87

6.8 SubPlot
The subplot command enables you to display multiple plots in the same window.
H = SUBPLOT(m,n,p), or SUBPLOT(mnp), breaks the Figure window into an m-by-n
matrix of small axes, selects the p-th axes for the current plot, and returns the axis handle. The
axes are counted along the top row of the Figure window, then the second row, etc. For example,

 SUBPLOT(2,1,1), PLOT(income)
 SUBPLOT(2,1,2), PLOT(outgo)

 plots income on the top half of the window and outgo on the bottom half.

SUBPLOT(m,n,p), if the axis already exists, makes it current.
SUBPLOT(m,n,p,'replace'), if the axis already exists, deletes it and creates a new axis.
SUBPLOT(m,n,P), where P is a vector, specifies an axes position that covers all the subplot
positions listed in P.

%SUBPLOT can be used to partition the graphics screen so that either
% two or four plots are displayed simultaneously

\theta \geq

\lambda \Lambda \neq

\mu \propto

\nu \div

\pi \Pi \circ

\phi \Phi \leftrightarrow

\rho \leftarrow

\sigma \Sigma \rightarrow

\tau \uparrow

\omega \Omega \downarrow

Greek and Mathematical Symbols in Titles/Labels
Chapman p 116

Character
Sequence Symbol Character

Sequence Symbol Character
Sequence Symbol

θ

λ Λ

µ

ν

π Π

ϕ Φ

ρ

σ Σ

τ

ω Ω
88

x = linspace(-1, 1, 40);
f0 = ones(1, length(x)); %constant
f1 = x; %linear
f2 = 1/2*(5*x.^2-1); %quadratic
f3 = 1/2*(5*x.^3-3*x); %cubic

subplot(2,2,1),plot(x,f0,'k-'),title('Plot 1')
subplot(2,2,2),plot(x,f1,'k:'),title('Plot 2')
subplot(2,2,3),plot(x,f2,'k-.*'),title('Plot 3')
subplot(2,2,4),plot(x,f3,'k--o'),title('Plot 4')
axis([-1,1,-1,1.1])
zoom on

6.9 Additional 2-D Plots
Bar Chart
BAR(X,Y) draws the columns of the M-by-N matrix Y as M groups of N vertical
bars. The vector X must be monotonically increasing or decreasing.

BAR(Y) uses the default value of X=1:M. For vector inputs, BAR(X,Y) or BAR(Y)
draws LENGTH(Y) bars. The colors are set by the colormap.

BAR(X,Y,WIDTH) or BAR(Y,WIDTH) specifies the width of the bars. Values of WIDTH
> 1, produce overlapped bars. The default value is WIDTH=0.8

89

BAR(...,'grouped') produces the default vertical grouped bar chart.
BAR(...,'stacked') produces a vertical stacked bar chart.
BAR(...,LINESPEC) uses the line color specified (one of 'rgbymckw').

 H = BAR(...) returns a vector of patch handles.

Use SHADING FACETED to put edges on the bars. Use SHADING FLAT to turn them
off.

Examples: subplot(3,1,1), bar(rand(10,5),'stacked'), colormap(cool)
 subplot(3,1,2), bar(0:.25:1,rand(5),1)
 subplot(3,1,3), bar(rand(2,3),.75,'grouped')

Horizontal Bar Chart - barh(x,y)

Compass
 COMPASS(U,V) draws a graph that displays the vectors with
 components (U,V) as arrows emanating from the origin.

Pie - pie chart
Stairs - Image stair steps
Stem - They remind me of the stems of tulips
Histograms - Yep these are an easy way to draw histograms
Polar - Use when you want polar coordinates

x = 1:6;
y = zeros(1,6);
for i = 1:600
90

 ii = ceil(6 * rand(1));
 y(1,ii)= y(1,ii) + 1;
end,

subplot (3,2,1)
bar(x,y)
title('Bar Chart')
axis off

subplot (3,2,2)
barh(x,y)
title('Horizontal Bar Chart')

subplot (3,2,3)
pie(x,y)
title('Pie Chart')

subplot (3,2,4)
compass(x,y)
title('Compass Chart')

subplot (3,2,5)
stairs(x,y)
title('Stairs')

subplot (3,2,6)
stem(x,y)
title('Stem')

6.10 Surface Plotting
There is a relationship between 2-D data and 3-D plots. By 2-D data, I mean a matrix of data
(many rows and columns). The rows and columns implicitly imply x - y locations, and the val-
ues stored at each row, column are a height. Simplistically, this height can be represented graphi-
cally by pcolor. With the default shading, the pcolor command does not do quite what many
expect. Consider
 f = [1 10; 10 10]
 pcolor(f)

This shows only a single patch of color. Indeed the 10’s make no difference to the plot. But with
shading interp the color is interpolated to the corners of the plot, where the 10’s live. With
flat and faceted shading the color of each surface patch is set based on only one corner value (the
one with the lowest row and column index). So such data really describes a surface in 3D. MAT-
91

LAB defines a surface by the z-coordinates of points above a grid in the x-y plane, using straight
lines to connect adjacent points.

Other commands of note for plotting 2-D data: mesh, surf, contour. The mesh and surf plotting
functions display surfaces in three dimensions. mesh produces wireframe surfaces that color
only the lines connecting the defining points. surf displays both the connecting lines and the
faces of the surface in color.

6.10.1 Mesh and Surface Plots
Mesh and surface plots are generated in a three step process.

1) create a grid in the x-y plane that covers the domain of the function
2) calculate the value of z at each point of the grid
3) create the plot

Step 1: create a grid in the x-y plane that covers the domain
Example: if our domain is:

 -1 <= x <= 3 and 1 <= y <= 4
 x = -1:1:3
x =
 -1 0 1 2 3

>> y = 1:1:4
y =
 1 2 3 4

MATLAB has a function that will create the grid:
meshgrid

>> [X Y] = meshgrid(x,y)

X =
 -1 0 1 2 3

pcolor shading interp
92

 -1 0 1 2 3
 -1 0 1 2 3
 -1 0 1 2 3
Y =
 1 1 1 1 1
 2 2 2 2 2
 3 3 3 3 3
 4 4 4 4 4

Step 2: calculate the value of z at each point of the grid
The value of z at each point is calculated by using element-by-element calculations. If the for-

mula is: The value of z at each point of the grid is calculated by:

Z = X.*Y.^2./(X.^2+Y.^2)

Z =
 -0.5000 0 0.5000 0.4000 0.3000
 -0.8000 0 0.8000 1.0000 0.9231
 -0.9000 0 0.9000 1.3846 1.5000
 -0.9412 0 0.9412 1.6000 1.9200

Step 3: create the plot
Now you can create the plot.
 mesh(X,Y,Z)

6.10.2 Another Example:
xx = -10: 0.4: 10;

z xy2

x2 y2+
----------------=

mesh(X,Y,Z) surf(X,Y,Z)
93

yy = xx;
yy = yy + (yy == 0)*eps
[x,y] = meshgrid(xx,yy);
z = (x.^2 + y.^2).*sin(y)./y
mesh(xx,yy,z)
xlabel('x'),ylabel('y'),zlabel('z')

It is strongly suggested that you use shading interp following the surf and mesh com-
mands.
 shading interp % using linear interpolation on height to color surface

mesh(xx,yy,z) surf(xx,yy,z)

shading interp
94

%define array of temperatures in chimney cross section
temp = [NaN NaN NaN NaN 200.0 147.3 96.5 47.7 0.0;
 NaN NaN NaN NaN 200.0 146.9 96.0 47.4 0.0;
 NaN NaN NaN NaN 200.0 145.2 93.9 46.1 0.0;
 NaN NaN NaN NaN 200.0 140.4 88.9 43.2 0.0;
 200.0 200.0 200.0 200.0 200.0 128.2 78.8 37.8 0.0;
 147.3 146.9 145.2 140.4 128.2 94.3 60.6 29.6 0.0;
 96.5 96.0 93.9 88.9 78.8 60.6 40.2 19.9 0.0;
 47.7 47.4 46.1 43.2 37.8 29.6 19.9 10.0 0.0;
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0];

%generate contour and surface subplots

subplot(2,2,1); contour(temp)
title('Contour Plot');
subplot(2,2,2); mesh(temp)
title('Mesh Plot');
subplot(2,2,3); surf(temp)
title('SurfacePlot');
subplot(2,2,4); surfc(temp)
title('Surface Plot with Contours');

6.10.3 Plot3
MATLAB uses the function plot3 to display arrays of data points (xi, yi, zi), i = 1,
2, 3, ..., n in three-dimensional space. The syntax is plot3(x, y, z). When x, y,
and z are vectors of the same length, this function plots a line in three-dimensional space through
the points whose coordinates are the elements of x, y, and z.

Example: a three-dimensional line plot
 x(t) = e-0.2tcos(2t)
 y(t) = e-0.2tsin(2t)
95

These functions might represent the decaying oscillations of a mechanical system in two dimen-
sions. Therefore x and y together represent the location of the system at any given time.

>> t=0:0.1:10;
 x = exp(-0.2*t).*cos(2*t);
 y = exp(-0.2*t).*sin(2*t);
 plot3(x,y,t);
 title('\bf3-D Line Plot');
 xlabel('\bfx');
 ylabel('\bfy');
 zlabel('\bftime');
 axis square;
 grid on;
96

	Chapter 6
	Plotting
	6.1 The basic plot command
	6.2 Basic plotting
	6.3 Creating Symbol Plots with MATLAB
	6.4 hold
	6.5 Controlling the Axes
	6.6 Figure Windows
	6.7 Formatting Output
	6.8 SubPlot
	6.9 Additional 2-D Plots
	6.10 Surface Plotting

