
Programming assignment A 
ASCII Minesweeper 

  
Official release on Feb 14th at 1pm (Document may change before then without notice) 

Due 5pm Feb 25th 
 
Minesweeper is computer game that was first written in 1989 by Robert Donner.  The game became very 
popular when it was distributed with Windows 3.1.  It still comes with all Windows computers.  This 
project is worth approximately 6% of your class grade. 

Game description  
Note, this is a slightly modified version of a minesweeper description found on wikipedia 
http://en.wikipedia.org/wiki/Minesweeper_%28computer_game%29.  You might find it helpful to go to 
that page to learn more about minesweeper. 
 

The game screen consists of a rectangular field of squares. Each square can be cleared, or 
uncovered, by selecting it. If a square that contained a mine is selected, the game is over. If the 
square did not contain a mine, two things can happen. A number will appear indicating the amount 
of adjacent (including diagonally-adjacent) squares containing mines. In addition, if there is no 
mine adjacent to that space, then the game automatically clears those squares adjacent to the 
empty square (since they could not contain mines).  Further, anytime a space is adjacent (including 
diagonals) to an uncovered space with 0 mines adjacent to it, that space is also uncovered.  The 
game is won when all squares that do not contain a mine are cleared. 

 
In our version of the game the board is displayed as a text output.  Here is a 5x5 board at different stages of 
completion. 
 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   00000 
   01234 
 
 0 ..... 
 1 ..... 
 2 ..... 
 3 ..... 
 4 ..... 

Start of game with 
all the spaces 
covered 

   00000 
   01234 
 
 0 0001. 
 1 0012. 
 2 111.. 
 3 ..... 
 4 ..... 

User selected 0,0.  
The game uncovered 
the space and all 
spaces adjacent to 
any uncovered zero. 

   00000 
   01234 
 
 0 0001. 
 1 0012. 
 2 111.. 
 3 .1111 
 4 .1000 

User selected 4,4.  
The game uncovered 
the space and all 
spaces adjacent to 
any uncovered zero. 

   00000 
   01234 
 
 0 0001# 
 1 00122 
 2 111#1 
 3 #1111 
 4 11000 

User selected 4,0.  
This was a mine, so 
the game is over and 
the full board is 
displayed (# are 
mines) 



Code provided 
We have provided you with a main program and a few functions to give you a start on writing this program. 
The entirety of the code provided is available on the web.  The main follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Note that COLS and ROWS are previously declared as global constants.  The program uses the following 
data structures: 

• map[][] is a two dimensional array which specifies where the mines are as well as information 
about the number of adjacent mines 

• found[][] is a two-dimensional array that is used in parallel with map[][].  If found[x][y]=1, this 
means that the location has been uncovered by the user and should be displayed.  If it is equal to 
zero that means the user hasn’t yet uncovered the space and when the map is displayed this space 
should be shown as a blank. 

• playerMove is a struct which simply has the row and column the user has selected to uncover. 
• mines is the number of mines in the map. 

 
The following functions are either written for you, partially written, or you need to write them from scratch.   

• generateMap() will either generate a map from a file (if the user specifies one from the command 
line) or will generate a random map.  If it is a random map you should prompt the user for the 
number of mines he or she wishes to have.  Assuming that number is possible, you map must have 
that many mines!  generateMap() will also set the non-mine spaces equal to the number of mines 
adjacent to the space.  If there is a mine in the space it will set the space’s value equal to MINE 
(which is a global constant set to be 100).  The part where it reads from a file written for you.  In 
all cases, the number of mines on the map will be sent as the return value. 

 

main(int argc, char * argv[]) 
{ 
    string fname="";  // Initialization not needed, but makes me happy. 
    int map[COLS][ROWS]; 
    int found[COLS][ROWS]; 
    int done=0; // 0=not done, 1=player lost, 2=player won  
    Move playerMove; 
    int moveCount=0; 
    int mines; 
 
 
    if(argc==2) 
        fname=argv[1];  
    
    mines=generateMap(map,fname);  // if file="", generate random map.  
                                   // Else generate map defined by file. 
                                   // return the number of mines 
    clearFound(found); 
    while(!done) 
    { 
        displayMap(map,found); 
        playerMove=getMove(); 
        done=updateMap(map, found, playerMove,mines); 
        moveCount++; 
 
    } 
    printScore(done, moveCount, map); 
} 
 



• clearFound() sets the entire found array to be zero (so no spaces start uncovered).  You need to 
write this function. 

 
• displayMap() displays the uncovered parts of the map.  We provide this function but you really 

should read it carefully so that you understand what it does and what it is expecting.  You 
shouldn’t change this function unless you need to for some optional feature. 

 
• getMove() prompts the user for the row and column they wish to uncover.  It needs to check to be 

sure that the space actually exists on the map (so the row and column numbers aren’t too big or 
too small.  getMove() should tell the user if they enter an invalid row or column and ask them to 
try again.  Optional: you can give the user the option of quiting.   If the user hits a mine (or quits) 
you should return a 1.  If the user has uncovered all non-mine spaces, the function should return a 
2. (They’ve won). 

 
• updateMap() figures out what spaces to uncover (and changes the found array as needed) based 

on what the user asked to uncover.  This may include more than one space if the uncovered space 
was a zero.  You need to write this function. 

 
• printScore() should at the least print the entire map (uncovered) and tell the user if he or she won 

or lost.  If you want to compute a score based upon the number of moves or something else, you 
are welcome to do so. 

Hints, help and clues 
Perhaps the most important thing is Start early.  By Monday the 21st you should have the vast majority of 
this done and just be debugging.  Debugging will take much longer than it has in the past.  
 
You really only have the following tasks: 

• Complete generateMap().  Note, as written this involves a call to a function called 
findMineValues() which would populate the non-mine spaces with the number of adjacent 
mines(0 to 8) 

• Write clearFound()  (this is pretty easy) 
• Write getMove().  While this is harder than clearFound(), it is still not too bad. 
• Write updateMap().  (This is the hardest part by far) 
• Write printScore (also quite easy, although you need to display the whole uncovered map, which 

might be a bit of a pain). 
 
As noted, updateMap() is the hard part, with generateMap() being a bit tricky.  Once you understand the 
code we’ve given to you, generateMap() is really the only other difficult function. You really should work 
on the easy parts first. 
 
Hints and clues: 

 
• This project can be quite intimidating.  The trick is to think of it (and of most programming) as a 

group of functions.  We’ve already done the high-level design for you—you “just” need to write 
the functions! 

o Read the code first.  While the code isn’t complete, you should be able to use the skills 
you’ve gained in reading code to understand what is going on.  Take your time and read 
things carefully. 

o Start with the easy ones.  clearFound(), getMove() and printScore() are all pretty simple 
once you understand the big picture.   

• For generateMap(), you will need to generate random numbers.  You saw how to generate random 
numbers back when we used random numbers find an estimate of Pi.  You don’t need to worry 
about seeding the random number generator. 



o Also, you need to be really careful when counting the adjacent mines that you don’t go 
outside of the map array bounds.  This can be tricky. 

• For updateMap() it is strongly suggested you start by just uncovering the location specified by the 
user and returning a 1 if they have hit a mine.  Once you have that (and all the rest of the program 
working) you can work on uncovering everything adjacent to an uncovered 0.   Getting the  
“uncover all spaces next to an uncovered zero” feature working is quite difficult. 

o Once you get everything else working, you need to think about how to uncover all spaces 
next to an uncovered zero.  The hard part is being sure that you have uncovered all the 
squares you should.  There are a number of ways to do this, but perhaps the easiest is: 

� If the player’s move uncovered a zero, walk every square on the board.  If that 
square is next to an uncovered zero, uncover it.  Once you have done that with 
the whole board figure out if you uncovered any zeros during that walk.  If you 
did, you will have to walk every square again.  You continue until one walk of 
all of the squares resulted in no new squares being uncovered. 

• Use the –Wall flag when compiling.  Really. 
• Be very careful with your array bounds.  Always be checking (with asserts or whatever else) that 

you aren’t going to go past the array bounds.  As a general rule, look over every access to an array 
and convince yourself that there is now way the array can go past its bounds.  Debugging 
problems like this are very hard indeed.  (When Prof. Brehob wrote this assignment, he spent the 
better part of an hour looking for array-bound related errors.  And he has a lot of experience 
finding these things.  If you have an error like this you can easily get stuck until you get help.)  In 
general if something really wacky is going on, you probably have an array bound error.  Even if 
the error appears unrelated to an array in any way.   

Rules for the project 
Your code is to be based upon the code we have provided.  You are welcome to make changes to our 
program.  The only really key thing is that you must be able to read the exact same input files the code we 
gave you can read.  We would greatly prefer you use our displayMap() function, but if you wish to add a 
feature we don’t support (see optional parts, below) then (and only then) you are allowed to make changes 
to displayMap(). 
 
As always this code is to be written on your own.  We will be running an autocorrelator to look for those 
who have copied code from each other. You may not copy code from any source other than our texts.  See 
the course web page for further clarification on collaboration.  If in doubt, ask the instructor. 
 
You will hand in the project by placing your code in a directory called “PA”.  The ONLY .cc files that 
should be in that directory is your code (it can be in multiple files if you wish).  When in your PA directory, 
the command: 
 g++ *.cc 
should generate a file named “a.out” which is your minesweeper game. 
 

Optional features 
• User has a way of marking a mine.  If they are wrong they lose, otherwise the mine is uncovered.  

This would probably by having the user specify that they are uncovering something (Say the user 
types “U 0 0” to uncover 0 0.  They lose if that space is a mine.  Or the user might type (“M 0 0”) 
to indicate they believe that 0 0 is a mine.  They lose if it isn’t a mine.) 

• User has a way of saving the game and reloading it latter.  Probably involves writing a file which 
describes the board as well as a file specifying which spaces have been uncovered.  There must be 
a way to restart the game after saved, even if the program has been quit. 

• Seed the random number generator.  (look around for information on srand() and time().) 
• Something else cool. 

 



The first 2 items would likely be worth 10 points each depending on how well you implemented it. The 3rd 
might be worth around 3 points. You can’t get better than 110 points on the project.  Further, small extra 
things (like allowing the user to quit early) will not be worth any points, although they may make the game 
better (and easier to debug).  If you have any optional features you must create a file named “optional.txt” 
which describes these features. This file must be in your PA directory. 

Scoring: 
• Program works, but you don’t uncover all spaces next to an uncovered 0. 80 points 
• Program works entirely. 100 points 
• Program works and you did some optional things. Up to 110 points 

You can lose points (up to 20) for poorly written (or poorly commented) code. Further, if you turn it in 
after its due date/time, but before Tuesday March 8th at 5pm you will lose 20 points.  After that, you will 
get zero points. 
 


