Eng101
Sample Final
Fall 2004

You may use any printed materials or notes on the exam. You may not use any electronic devices.

Unless otherwise specified you can implement algorithms in either C++ or Matlab.

Printed Name:

8 Digit UM ID Number:

Lab Section:

Please sign the Engineering Honor Code:

I have neither given nor received aid on this examination.
Question 1: What are the values of x and y after the following Matlab statements are executed:

\[
x = \text{ones}(5,5);
\]
\[
x(2:4,2:4) = 2.0 * \text{ones}(3,3);
\]
\[
y = \text{sum}(ext{ones}(3,3)) .* (1:3);
\]

Question 2: Consider the following function (the C++ and Matlab functions are equivalent)

```c
double ak(double x, unsigned int n)
{
    double result = 1;
    while(1 <= n)
    {
        if (0 == n % 2)
        {
            n = n/2;
            x = x*x;
        }
        else
        {
            n = n - 1;
            result = result*x;
        }
    }
    return result;
}
```

What does it return for $x = 2.0$ and $n = 4$? For $n = 5$? Write a single line of C++ or Matlab that does the same thing as $y = \text{ak}(x, n)$.

Question 3: A polynomial

\[P(x) = a_0x^0 + a_1x^1 + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n \]

can be stored in a computer as an array of coefficients \{a_0, a_1, \ldots a_n\} of length $n+1$. The “derivative” of P is the polynomial

\[P'(x) = a_1x^0 + 2a_2x^1 + \cdots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1}. \]

Write a function that takes a polynomial (as an array of coefficients) and returns its derivative (as an array of coefficients). Be sure to deal correctly with a polynomial like $P(x) = 1$, where $P'(x) = 0$ is still a polynomial with one coefficient (that just happens to be zero).
Question 4: I am trying to compute the cosine of angles using the expression

\[
\cos(\theta) = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} \ldots (-1)^n \frac{\theta^{2n}}{(2n)!} \ldots = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n}}{(2n)!}.
\]

For this purpose I have partially written the following code. Please complete it.

```matlab
function trigSum = Cosine(angle, epsilon)
    trigSum = 0.0; % estimate of cosine
    nextTerm = 1.0; % next term to add into sum
    f = 0; % f! will be built in denominator

    % Do one step outside the loop so there will be previous % term included in the sum
    trigSum = trigSum + nextTerm; % add term
    previousTerm = nextTerm; % record what was added
    nextTerm = -nextTerm * \[\text{expression}\]; % for next time
    f = \[\text{expression}\]; % for next time

    while abs(previousTerm) > epsilon
        trigSum = trigSum + nextTerm; % add term
        previousTerm = nextTerm; % record what was added
        nextTerm = -nextTerm * \[\text{expression}\]; % for next time
        f = \[\text{expression}\]; % for next time
    end
```

Question 5: The discrete Laplacian is a measure of the curvature of data on a grid. Given a rectangular array of values, and calling a typical value \(a_{i,j}\) at the grid point \(i, j\), the discrete Laplacian at \(i, j\) is

\[
L_{i,j} = a_{i-1,j} + a_{i+1,j} - 4a_{i,j} + a_{i,j-1} + a_{i,j+1}
\]

Write a routine `Laplacian` that computes this at all points on a grid, including the edges, with the understanding that any missing data needed to compute the Laplacian at the edges of the array is zero. `Laplacian` should take a two-D array of doubles as input, and return a two-D array of double of the same size.