
1620 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

Decentralized Supervisory Control with
Communicating Controllers

George Barrett, Member, IEEE, and Stéphane Lafortune, Fellow, IEEE

Abstract—The decentralized control problem for discrete-event
systems addressed in this paper is that of several communicating
supervisory controllers, each with different information, working
in concert to exactly achieve a given legal sublanguage of the un-
controlled system’s languagemodel. A novel information structure
model is presented for dealing with this class of problems. Exis-
tence results are given for the cases of when controllers do and do
not anticipate future communications, and a synthesis procedure is
given for the case when controllers do not anticipate communica-
tions. Several conditions for optimality of communication policies
are presented, and it is shown that the synthesis procedure yields
solutions, when they exist for this class of controllers, that are op-
timal with respect to one of these conditions.
Index Terms—Communicating controllers, decentralized con-

trol, discrete-event systems.

I. INTRODUCTION

THE DECENTRALIZED nature of information in many
large-scale systems, as well as practicality, dictate the

need for supervisory control systems that are also decentral-
ized. Decentralized control of discrete-event systems, in the
absence of communication, has been well studied in previous
work [1]–[11], and many classifications of language structure
admitting decentralized control without communication exist,
including coobservability, decomposability and strong decom-
posability.
Control of logical discrete-event systems with communica-

tion has been pondered recently in [12]–[15]. The fundamental
alteration to the structure of the control systems is that the con-
trollers observe events generated by the system and are allowed
to pass messages in order to attempt to resolve ambiguities and
determine correct control actions.
Prior work has yet to introduce a framework that is general

enough to address certain fundamental questions concerning
decentralized supervisory control with communication (para-
phrased from [16]).

1) Who should know what and when?
2) Who should communicate with whom?

Manuscript received November 11, 1998; revised December 1, 1999. Rec-
ommended by Associate Editor, L. Dai. This work was supported in part by the
DDR&E MURI on Low Energy Electronics Design for Mobile Platforms and
managed by ARO under Grant ARO DAAH04-96-1-0377. This work was per-
formed while G. Barrett was attending The University of Michigan.
G. Barrett was attending The University of Michigan. He is now with the

System and Information Sciences Group, The Johns Hopkins University Ap-
plied Physics Laboratory, Laurel, MD 20723-6099 USA (e-mail: george.bar-
rett@jhuapl.edu).
S. Lafortune is with the Department of Electrical Engineering and Computer

Science, The University of Michigan, Ann Arbor, MI 48109-2122 USA (e-mail:
stephane@eecs.umich.edu).
Publisher Item Identifier S 0018-9286(00)07498-5.

3) When should controllers communicate?
4) What should controllers communicate?

It is one of the intentions of this paper to present a framework
that is general enough to address these questions. The decentral-
ized control problem that we address is that of several communi-
cating supervisory controllers, each with different information,
working in concert to exactly achieve a given legal sublanguage
of the uncontrolled system’s model. There are several contribu-
tions of this work.
1. A novel information structure formalism is presented
in Section II for dealing with this class of problems.
The information structure, based on extended trace
models, explicitly represents actions observable by
each controller, which controllers communicate to other
controllers, what symbols are communicated, when
controllers initiate communication, and what information
may be inferred by each of the controllers following any
sequence of actions. Constraining specific components
of the information structure yields several classes of
problems.

2. Necessary and sufficient conditions are given in Section
III for the existence, under certain assumptions, of solu-
tions to the described decentralized supervisory control
problem with communication. These conditions charac-
terize the class of languages achievable by decentralized
controllers that anticipate and expect future communica-
tions from other controllers.

3. Necessary and sufficient conditions are given that char-
acterize the class of languages achievable by communi-
cating supervisory controllers, termed “myopic,” that do
not anticipate future communications.

4. By comparing the classes of languages described by the
previous two contributions, we elucidate the significance
of controllers that anticipate future communications in
decentralized supervisory control problems. Using the
class of controllers that anticipate future communications
has nontrivial implications for synthesis algorithms.

5. Several basic notions for optimum communication poli-
cies are given in Section IV.

6. In Section V-A, a finite version of the myopic controller
information structure is presented. The controllers in this
class maintain and communicate finite-state estimates.

7. A procedure is presented for finding an optimal communi-
cation policy, if one exists, for the above-mentioned class
of finite myopic controllers. The main part of the proce-
dure deals with the construction of a unique, supremal set
which can then be used to determine communication re-
quirements.

0018–9286/00$10.00 © 2000 IEEE

BARRETT AND LAFORTUNE: DECENTRALIZED SUPERVISORY CONTROL WITH COMMUNICATING CONTROLLERS 1621

8. In Section V-D it is shown that, despite the existence of
the unique supremal set mentioned above, optimal com-
munication policies are not unique in general.

General knowledge of supervisory control and its most
common notation is assumed, and for introductory material
the reader is directed to [9],[17]–[19]. The organization of
this paper is as follows. Section II introduces and describes a
novel information structure formalism to address decentralized
supervisory control problems. Given this general framework,
the problem examined in this paper is then formally stated.
The existence of solutions to the above-mentioned problem is
examined in Section III. Two cases for existence are considered:
when controllers do and do not anticipate future communica-
tions. Optimal communication policies are discussed in Section
IV. A constrained class of controllers is examined in Section V,
where the finite model is described and a synthesis procedure
is given. The synthesis procedure is illustrated by example in
Section V-C, and the policies derived from the procedure are
proved optimal in Section V-D. Non-uniqueness of optimal
solutions is shown in Section V-D, and the paper concludes
with a summary in Section VI.

II. A GENERAL FRAMEWORK FOR DECENTRALIZED
SUPERVISORY CONTROL PROBLEMS

When designing communicating supervisory controllers that
cooperate to achieve a desired legal behavior, the three roles
of each controller must be considered: estimation, control, and
communication. In general, these three roles cannot be sepa-
rated, and any synthesis procedure must take all into account
simultaneously. To design the control and communication poli-
cies, five specifications are necessary:
1. the events that each controller can control;
2. the symbols that each controller can communicate;
3. the information available to each controller to be used in
its control and communication policies;

4. how the individual decisions of the controllers affect the
plant (decision fusion);

5. constraints on the forms of the control and communica-
tion policies.

The first, second, fourth and fifth items in this list are gener-
ally specified prior to policy synthesis for a given number of
controllers acting on a given system. These items are generally
dictated by specific physical mechanisms and resources avail-
able in the given problem, e.g., memory, processing capabilities,
energy available for storage, processing and transmission, etc.
The third item refers to the information structure [16], [20], [21]
of the control system. When the controllers are not allowed to
communicate, the information structure of the problem is fixed.
However, when a communication policy is to be created, the
information structure is altered as the communication policy
varies during synthesis.
Consider a discrete-event system modeled by an automaton
with associated language . Recall that associated with

the system is a set of events that can be disabled , and there is
a set of events, , that can be observed by the controllers. The
set of all events is denoted by . The sets of uncontrollable and
unobservable events are denoted by and

Fig. 1. Multiple controller supervision with communication.

, respectively. To control the system, there is a finite set
of coordinating controllers represented by .
Each controller has an associated set of events
that it can disable, a set of symbols that it is allowed to

communicate to other controllers, and a set of events
that it can directly observe. The events that are unobservable to
each controller are given by . To represent the
fact that controllers have only partial observations of traces in

, a projection operator is used. Recall that
if otherwise , and

. If a subscript is not given, e.g. , then
it is assumed the codomain is . The inverse projection of
is the mapping defined as

.
Regarding control, numerous voting schemes can be used to

combine the control actions of the controllers in [7], [22].
However, regardless of how the control signals are combined,
the closed-loop language of the plant, , under control of the set
of supervisors, , is denoted by . The controllers have
access to a communication channel which allows the sharing of
information. This general system topology is shown in Fig. 1.
For the purposes of the present work, it will be assumed that
channel access is only restricted in the sense that a controller is
not able to “eavesdrop” on communications among other con-
trollers. The distinction of the communication channel from the
plant is somewhat artificial, and the two are shown as separate
objects in Fig. 1 merely to emphasize the existence of commu-
nication between the controllers.
The representation of the dynamics of the closed-loop system

with communication is extended from sets of traces over plant
events to sets of extended traces [23] over plant events and
controller communications. These extended traces will be
called trajectories.1 The global system trajectories produced
by the plant/controller and controller/controller interactions are
defined by the set

(1)

A communication matrix is a matrix with trans-
mitter and receiver axis and elements which are sets of sym-
bols being communicated. The communication symbols are se-
lected from a set . The set of all possible -communica-
tion matrices, , is assumed to contain the matrix of empty
1The use of “trajectory” here differs from its use in nondeterministic super-

visory control literature.

1622 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

sets (analog of). The first communication matrix in (1)
represents messages sent at that instant, and the second com-
munication matrix represents messages being received at that
instant. When assumptions of zero-delay and lossless commu-
nication are used, the two communication matrices can be com-
bined, and the form of the global trajectories reduces to

(2)

This is precisely the version we use here. When a communica-
tion matrix is completely empty, i.e., no communication takes
place and the matrix elements are only empty sets, then the ma-
trix need not be represented in the trajectory: . It is
sometimes useful to ignore communications and restrict atten-
tion to the underlying event sequence of a trajectory, , denoted
by . This restriction is extended to sets of trajectories, e.g.,

, by restricting each trajectory in the set. The prefix
closure of a set of trajectories, , is defined in the obvious way
by

(3)

and, due to our convention that , prefixes of trajecto-
ries can end with either the occurrence of an event or commu-
nication. We will always define ; hence,

.
In general, the controllers acting on the plant cannot observe

all events that can occur and they cannot observe all commu-
nications that occur. Following a trajectory the
unprocessed data available to a controller, , for making a
decision is represented by an extended trace of the form

where , is a set of symbols communicated
from Controller to Controller , and the products are to be
interpreted as column vectors of communicated symbols. To de-
rive the “locally observed” trajectory sets, , from the global
set of trajectories a prefix-preserving projection operator, , is
given by

(4)

where is the set of th columns of communication matrices
in (will denote the th row), and

if and s.t.

if and

if and s.t.

if and

The projection removes if it is unobservable to
Controller and removes elements of not received by Con-
troller . The inverse projection of is the mapping

(5)

defined by . Again,
the projection of a set of trajectories is determined by the set
of projected trajectories. We then derive the set

.
Given their observations, the controllers make com-

munication and control decisions. The control policy is
where each is a disablement map:

and the fusion of the individual control decisions following a
trajectory, , is denoted by . An event is dis-
abled following if . The communication policy
is where each is a communication
map:

Note that the domains of control maps and communicationmaps
differ. Themotivation for this difference is that control decisions
are persistent over all trajectories that map to the same locally
observed trajectory, but communications generally only take
place when observations change, (cf. Moore versus Mealy-type
automata [24]).
Given a control/communication-policy pair that depends on

, the generation of the set of trajectories
is denoted . An example rule set2

for recursively generating is given by the following
constructions:
1. ;
2.

;

3. ... ;

4. ...

;
where, for constructions 3 and 4, it is understood that .
The model for generating trajectories presented here does not
prevent the use of “bad” communication policies that lead to
Zeno3 behavior. Indeed, communication-policy synthesis pro-
cedures should guarantee non-“bad” communication behavior
resulting from the use of the generated policies.
2We use “example” here, for there appears to be no reason to assume such a

rule set is unique.
3Zeno behavior is characterized by the potential for an infinite number of

occurrences (of communication in this case) in a finite amount of time. The
zero-delay model does not prohibit an unbounded number of communications
between the occurrence of plant events.

BARRETT AND LAFORTUNE: DECENTRALIZED SUPERVISORY CONTROL WITH COMMUNICATING CONTROLLERS 1623

Having addressed the issue of how a set is generated
using a given pair, we can now determine when a set

is feasible given the informational constraints of each
controller in the form of the ’s.
Definition 2.1: A set of trajectories , with controllable

with respect to and , is informationally consistent with
respect to if there exists a control/commu-
nication pair such that .
The most simple example of a set of trajectories not being

informationally consistent is the case where we have one con-
troller that is supposed to achieve a language that is not observ-
able. The language in this case is not informationally consistent
because there are two traces following which the controller de-
rives the same information set but must make two incompatible
control decisions. The analogy of observability for a single con-
troller thatmustmake control decisions extends to informational
consistency for multiple controllers that must make both com-
munication and control decisions.
Only informationally consistent trajectory sets will be consid-

ered feasible for multiple-controller supervision of logical dis-
crete-event systems. This feasibility requirement is completely
consistent with existing literature on centralized and decentral-
ized control of DEDS.
The set represents the finest infor-

mation that can be obtained under the projection . In general,
controllers may not have the required resources to determine the
finest information sets, and the controllers have access only to
the information provided by a map

(6)

which we will refer to as a controller’s inference map.4 We de-
fine the information structure of this model in the spirit of those
defined in [16] and [21] by

(7)

In the unconstrained case, ,
the maximal information set. We will generally require that the
information structure factors the control and communication
policies, i.e.,

(8)

and

(9)

An example of a constrained inference map is represented by
the case where a controller “knows” the desired language but
does not “know” a priori that it will receive communications,
that is, must satisfy the constraint

An interesting feature of this model is that it captures the fact
that the inference maps (estimation), the communication maps,
and the control maps cannot be designed independently. This
4In earlier versions [25], [26] of this model, ’s co-domain was .

lack of separation between the maps and the requirement that
trajectory sets be informationally consistent are the principle
contributors to the difficulties encountered when attempting to
synthesize suitable, optimal, control and communication maps.
Problems investigated in the sections that follow are now for-
mally stated.
Problem (P): Given a plant with generated lan-

guage , a desired behavior modeled by an au-
tomaton with language , and a set of
controllers with informational re-
sources represented by , construct
control and communication policies for the controllers,

and respectively,
such that and .
Designers may also be interested in solutions to Problem (P)

that are optimal in some sense. That is, the control and com-
munication policies chosen must minimize some cost function
or maximize some preference relation. We will distinguish
problem Problem (P) from this optimization problem, which
we will refer to as Problem (P). Examples of communication
optimization include minimizing the communication alphabet
, minimizing the number of trajectories with communication,
minimizing the number of controllers that must communicate,
etc. Similar optimization efforts regarding only observed events
have appeared for centralized supervisory control and moni-
toring [27] and [28]. However, these problems are significantly
different from the current effort due to their lack of controller
multiplicity and that, here, the supervisors make both control
and communication decisions. A brief formalization of several
notions of optimality is the subject of Section IV.

III. EXISTENCE OF SOLUTIONS

The primary purpose of this section is to present necessary
and sufficient conditions for the existence of communication
policies that support a solution to Problem (P) as stated in Sec-
tion II. The following results deal with the case in which com-
munication between the controllers is allowed in both direc-
tions; e.g., Controller can communicate to Controller , and
Controller can communicate with Controller . We will com-
pare the case of when controllers can anticipate receiving com-
munications along certain traces, and can therefore adjust their
estimates based on these anticipated communications, to the
case of when controllers are not allowed to utilize the antic-
ipation of future communications to affect their estimates. It
is important to note that “anticipate communication” is not in-
tended to imply that a controller knows exactly what communi-
cations will occur, for this would represent a causality violation.
The implied meaning is that controllers have prior knowledge
of, and make use of, the communication policy. The inference
maps, , depend upon the communication policy. The
assumptions used in the results that follow are:
A.1: The plant is modeled by a finite automaton

with associated language ,
and the desired behavior is modeled by a finite automaton

with language .
Recall that the automaton representing the product of and
is denoted by .

1624 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

A.2: Controllers are synchronized on the initial state of the
system.
A.3: There are no communication delays.
A.4: There are no communication losses.
A.5: Collectively, the controllers observe all observable

events and control all controllable events, i.e.,
and .
A.6: The control laws for the individual supervisors are -

permissive; that is, following the observation of , Controller
may only disable an event if should not be enabled
following any trajectory in . This assumption is implic-
itly standard for existing work in both centralized supervisory
control and decentralized supervisory control without commu-
nication.
A.7: The joint action of the controllers on the system is cap-

tured by the union of the sets of disabled events.
A.8: The behavior of the controllers is restricted so that they

only respond to communications initiated by the observation of
an event. This eliminates the potential for unterminated cycles
of communications and responses among the controllers. How-
ever, it does not limit the amount of information passed among
controllers using two-way broadcast.
A.9: Controllers are able to determine fromwhich other con-

trollers they receive communicated symbols.
A.10: Communication between controllers is two-way

broadcast, that is, whenever Controller sends a message to
Controller it also sends the message to every other controller.
Upon receiving a communication caused by the observation
of an event, Controller responds by sending a message to
Controller and to every other controller.
The first result of this section is formalized by the following

theorem on the existence of information structures that support
solutions to (P). This theorem addresses the case where con-
trollers can utilize “knowledge” of potential future communica-
tions to affect their estimates, i.e., controllers know the commu-
nication policy.
Theorem 3.1 (Unconstrained): Let a set of permissive con-

trollers, , be given that satisfy the given assumptions. A com-
munication policy exists that supports a solution to Problem (P)
iff the following two conditions hold:
1. is controllable5 with respect to and ;
2. is observable6 with respect to , and .

Furthermore, the information structure has a finite representa-
tion and the solution to (P) can be obtained by the communica-
tion of controller state-estimates.
Theorem 3.1 implies that Problem (P) has a solution iff the

desired language can be implemented by a centralized su-
pervisor. In particular, a communication policy that will allow
the generation of via decentralized controllers is for the
controllers to maintain finite-state estimates, representing the
set of states each controller infers the plant may be in at a par-
ticular instant, and to communicate these state estimates among
all of the controllers following the occurrence of any observable
event.

5Recall that a language is controllable w.r.t. and iff
.
6The definition of observability is recalled in Appendix A.

It will be useful to define the following function
as

such that

that is, is the set of states of reachable
from the states in by traces in .

Proof of Theorem 3.1: To prove Theorem 3.1, it suffices
to show that there exists a communication policy for controllers
that anticipate future communications that allows the “recon-
struction” of the same state estimate that a centralized super-
visor observing would generate. Hence, the control actions
of the centralized supervisor can be reconstructed also. A tech-
nique often useful for classifying the types of languages achiev-
able by a class of controllers is to assume the controllers are
allowed to communicate all of the time. Consider the following
communication policy: “All controllers communicate their state
estimates via two-way broadcast following the occurrence of
every locally observed event.” Thus, following the occurrence
of any observable event, Assumptions A.5 and A.8, the con-
trollers exchange state estimates. Most importantly, the con-
trollers “expect” to receive a communication following any ob-
servable event that they do not directly observe. Here, the con-
trollers do not communicate the actual observable event that oc-
curs, merely their state estimates. The proof given here provides
for the general case of controllers.
At the initial state of the system, i.e., following
, the state estimates for the controllers are:

(10)

Note that in all estimates above in-
stead of . This is because Controller will observe
events in , and it will receive a communication following
events in . Thus, by Assumptions A.5 and A.8 and since
controllers expect to receive these communications, the state es-
timate for Controller is updated following the occurrence of
any observable event. Substituting the identity, by Assumption
A.5, into (10) yields)

(11)

That is, each controller starts off with the same information due
to the fact that the communication policy is taken into account
within the state estimates.
Following , there are three possible cases

and state-estimate update rules. These rules explicitly represent
how state estimates are intersected while using the knowledge
of which controller(s) communicated those state estimates. For
these update rules, the set of controllers which directly observe
is denoted by , i.e.,

Case (i): . By Assumption A.5,
implies that Hence,

BARRETT AND LAFORTUNE: DECENTRALIZED SUPERVISORY CONTROL WITH COMMUNICATING CONTROLLERS 1625

Case (ii): . For this case, there are two groups
of controllers: those that observe and those that do not. The
update rule is

(12)

For those controllers that do not observe in the above expres-
sion, the inference takes place that some event occurred that
they did not observe because these controllers receive commu-
nicated state estimates from some nonempty set of controllers
that did observe an event. By Assumption A.9, the controllers
that do not observe infer that the event that occurredmust have
been observed by every controller initiating the communication
Therefore, the event must be in the set . Re-
call that the controllers only communicate state estimates and
not events. Substituting the identity
into (12) yields

(13)

Case (iii): . In this case, every controller observes ,
and the update rule is simply the first part of (12)

(14)

Consider the state estimate generated by a centralized controller
that observes all events in . This centralized estimate, ,
is determined by

if ,
otherwise.

Notice that the update rules represented in cases (ii) and (iii)
generate state estimates using and not . This
is an important feature of the state-estimate update rules that
results from the assumption of instantaneous communication
following the observed event , i.e., if communication is in-
stantaneous, then no unobservable continuations can occur fol-
lowing the generation of and before the initiation of com-
munication. If the communication channel had a characteristic
delay associated with it, then this would alter the state esti-
mates by appending to locally unobservable traces of max-
imum length corresponding to the delay. All available informa-
tion concerning the communication channel should, in general,
be accounted for in each .

The use of a simple, inductive argument on the length of
traces in reveals that the decentralized controllers
produce the same state estimates as that of the centralized con-
troller:
Basis of Induction: For trace ,

, so the assertion is
true for the base case.
Inductive Hypothesis: Assume the assertion is true for .
Inductive Step: The three cases are examined.
Case (i):

Case (ii):

Case (iii) results by similar manipulations as in Case (ii), and
the inductive argument is complete.
Following the trace , the control decision that

a centralized supervisor generates is based on the set of states
(permissive). However, we have that

for all , so each controller in the
decentralized system is able to synthesize the centralized control
decision under the policy of full communication. From this and
the well-known fact of supervisory control theory that
is achievable by a central supervisor iff is controllable
with respect to and , and is observable with
respect to , and , the first assertion of the theorem
is true. Furthermore, the estimator structures used here for each
controller are finite by the boundedness of leading to a
finite information structure. The finite state estimates were the
only objects communicated in the above policy, so the second
assertion of the theorem holds.
The proof of Theorem 3.1 utilizes the construction of a finite

estimator structure and inference maps that utilize the existence
of future communications from other controllers along certain
trajectories in the system. For the case of full communication
used in the proof, these trajectories are easy to determine and
are represented by the arguments of , i.e.,

1626 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

contains all unobservable continuation traces for which commu-
nication is not expected. If a locally unobservable continuation
trace is not in then either it cannot occur, it will be followed
by a locally observable event, or it will be followed by a com-
munication. Memory of prior communications is captured by
the state-update rules for the estimator structure. In retrospect,
it is to be expected that full communication will allow the cen-
tralized controller’s information to be reconstructed by decen-
tralized controllers. However, one may not have expected that
this could be done by only communicating state-estimates and
not the events themselves.
It will be shown that the fundamental property required to

support the result of Theorem 3.1 is the anticipation of commu-
nication and its effect on the controllers’ information. Not only
do these controllers base their “state estimates” on every event
they observe and every communication they receive, but they
also utilize the fact that they can expect future communications
from other controllers if certain events occur. As discussed ear-
lier, this expectation is captured by customizing each used in
the state-update rules, and this is, in general, what makes com-
munication-policy synthesis difficult. The next result provides a
characterization of the languages achievable by controllers that
do not anticipate future communications.
Consider permissive controllers that maintain trajectory, not

state, estimates. That is, following a trajectory ,
each controller has an estimate of trajectories
that Controller infers could have occurred given its observa-
tions of events and communications received. In the case of a
centralized controller with total recall, perfect memory of en-
tire observed event sequence, the centralized estimate for

and is [assuming
]:

where the last equality holds because, in the centralized case,
there is no communication and the trajectories degenerate
to event traces, and can be viewed, to some extent,
as the standard natural projection . Because of its depen-
dence solely on , with no communication, we may denote

by for brevity and conve-
nience. Likewise, we will use the notation to represent

when , and the following definition will
be used to characterize a particular inference map constraint.
Definition 3.1: Controller is called myopic if does

not take into account future communications between the
controllers, that is,

(15)

The trace estimates of myopic controllers with unbounded
memory and communication capacities are characterized in the
following lemma.
Lemma 3.1: Let ,

, be trace estimates generated by myopic controllers
that communicate their trace estimates via two-way broadcast
following every locally observed event. Then for

that is, the trace estimates of each controller in the decentral-
ized system are equal to the trace estimate that a centralized
controller would have, appended with the set of locally unob-
servable continuation traces.

Proof of Lemma 3.1 (By induction): For

hence the assertion holds, by construction, for the base case.
Assume the assertion holds for , and we must show that
it holds for . Let denote the set of controllers

for which . There are three cases: ,
, and .

Case (i): .
. By the assumption that , we have

and ; hence,

Case (ii): . The general rule used here for up-
dating trace estimates following communication is given by

(16)

Substituting from the induction hypothesis

(17)

Using the fact that

Use to reduce

(Using Lemma B.1 in Appendix B).

BARRETT AND LAFORTUNE: DECENTRALIZED SUPERVISORY CONTROL WITH COMMUNICATING CONTROLLERS 1627

Case (iii): . All controllers observe in this case, and
the general rule used here for updating trace estimates following
communication is given by

(18)

which reduces as in Case (ii) to

(19)

For each of the three cases the induction step holds, hence the
inductive proof is complete.
The class of languages achievable using myopic controllers

can now be characterized.
Theorem 3.2 (Myopic -Permissive): Let be a set of my-

opic -permissive controllers that maintain trace estimates and
communicate their trace estimates via two-way broadcast fol-
lowing every event they observe locally. Then Problem (P) can
be solved with these controllers iff:
1. is controllable with respect to and ;
2. :

Proof of Theorem 3.2—Sufficiency: We can construct su-
pervisors in two ways.
(a) having the controllers communicate their trace estimates

to every other controller following every observed event
resulting in trace estimates derived in Lemma 3.1;

(b) using trace estimates from (a) we assign the permissive
disable maps as follows:

(20)

This form of disable map is analogous to the “pass the
buck” construction used in [9] where the “buck” that is
passed is the decision to disable an event. These control
maps represent the -permissive property of the con-
trollers: a controller only disables an event if there is no
ambiguity to that controller that the event should be dis-
abled over all traces in .7

Thus if , then no controller disables , and if
and , then the constructions in (b)

and the second condition of the theorem guarantee at least one
controller will disable . If , and
then the first condition implies (controllability), and
no controller disables ; hence, Problem (P) is solvable using
these controllers.
Necessity: If Problem (P) is solvable using , then it is solv-

able in the centralized case. Therefore, we have the controlla-
bility requirement of the first condition. For the second condi-
tion, we will use contradiction. Assume Problem (P) is solvable
using the myopic controllers in with permissive control maps,
7There are other “bucks” that can be passed. For example, work is currently

being done [22] on anti-permissive control maps where each controller attempts
to disable an event if there is any ambiguity to that controller as to whether the
event should be enabled or disabled. The fusion rule for these anti-permissive
controllers is the intersection of the disabled events (versus the union of disabled
events for permissive controllers). In the centralized case, permissive and anti-
permissive control maps are equivalent (there are no “bucks” to be passed).

but the second condition does not hold, then and
such that

Then for all such that we have
. This implies that for

each such there are two traces, , for which
must be disabled following but enabled following ; hence,
each controller must enable by the permissive nature of the
control maps. The enabling of allows the violation of the
language , a contradiction, so the second condition must
hold.
The proof of Theorem 3.2 proceeds by showing that trace es-

timates generated as in Lemma 3.1 are sufficiently refined such
that permissive control policies can produce any language pos-
sessing the property shown in the theorem. The proof also shows
that if the desired language does not have the required property,
the trace estimates generated by myopic controllers with total
recall and full communication are not refined enough for per-
missive control maps to produce the correct actions required to
synthesize the desired behavior.
It is interesting to compare the class of languages achiev-

able by myopic controllers to the class of languages achievable
by controllers that anticipate future communications. It can be
shown (see Appendix A) that the observability condition in The-
orem 3.1 can be rewritten as

Comparing this with the second condition in Theorem 3.2
reveals that permissive myopic controllers with arbitrarily
large memory and communication resources (i.e., maintaining
and communicating arbitrarily large trace estimates) are
outperformed by permissive controllers that maintain and
communicate finite state estimates, but anticipate future
communications.
We can also use the results in Appendix A to compare per-

missive myopic controllers to controllers that do not commu-
nicate at all. The class of languages achievable by permissive
controllers with no communication is characterized by the coob-
servability property [9] which, disregarding marking, can be
written as

from which it is apparent that permissive communicating my-
opic controllers achieve a strictly larger class of languages than
coobservable languages. We summarize this comparison with
the following corollary.
Corollary 3.1: Let be a specified language,

and be given for . Denote by
the class of languages observable with respect

to . Denote by
the class of languages coobservable with respect to

1628 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

. Denote by the
class of languages achievable with permissive finite-state
estimate nonmyopic controllers (See Proof of Theorem
3.1) with respect to .
Finally, denote by the class of languages satis-
fying the properties given in Theorem 3.2 with respect to

, i.e., languages achievable
by permissive myopic controllers with total recall. Then

.
From a communication-policy synthesis viewpoint, the re-

sults of this section have at least one major implication. This
implication is exactly analogous to the case in stochastic con-
trol where there is no separation between estimation and control.
Here, for Problem (P), the lack of separation is between estima-
tion and communication. In order to determine when communi-
cation is required (synthesis of the communication policy), the
estimation policy needs to be known. For controllers that an-
ticipate future communications, however, the synthesis of the
estimation policy depends on knowledge of the communication
policy. Thus, in the general case, the communication policies
and inference maps must be synthesized simultaneously.

IV. OPTIMALITY OF COMMUNICATION POLICIES

When designing the communication policy, it may be desir-
able to have the controllers communicate as little as possible
while collectively guaranteeing that a desired behavior is syn-
thesized. It is difficult to agree on definitions of “optimality” or
“minimality” for discrete-event system policies that are useful
for all scenarios. The most significant reason for this difficulty
is the lack of measure on the system states or events. 8 Opti-
mality in discrete-event systems generally involves the coarse-
ness of a partition [30] or the supremality/infimality of a partic-
ular set. For example, supremal controllable languages contain
as many desired traces as possible. Thus, one might wish to at-
tempt to characterize an optimal communication policy using
similar concepts. Most of these characterizations will probably
have the tendency to be good for some systems while bad for
others due to the existence of transition loops that indicate that
a communicationmay occur an arbitrarily large number of times
regardless of the partition refinement or any partial ordering of
the set resulting from the optimization process. There are, how-
ever, certain conditions that we would like any definition of op-
timality to possess, and it is therefore useful to attempt to cap-
ture the intuitive aspects of these conditions with amathematical
characterization.
Let be the set of all communication policies that will allow

Problem (P) to be solved, i.e., for each there is a corre-
sponding control policy such that solves Problem (P).
Each has a corresponding language that represents
the set of all traces for which a communication occurs
immediately following . is generally not a prefix-closed
language unless there is constant communication.
One condition we would like for any optimal communication

policy to possess is that no trace in can be removed
without some other trace (or set of traces) being added. This
leads us to the first optimality condition:
8Work has been done in [29] where this type ofmeasure is added to the system

model to derive an optimal centralized control for discrete-event systems.

(C1) :

There appears to be nothing “wrong” about only requiring C1
for optimality. Although it does not indicate structures of poli-
cies that we should look for or how to search the -space, it is
consistent with the common usage of language inclusion for op-
timality in logical-DES control theory.
We may also want additional structure in optimal commu-

nication policies. For example, we may want optimal policies
to “postpone communication for as long as possible.” In some
sense, the idea behind this notion of optimality is identical to that
used for the supremal controllable sublanguage. Optimal con-
trol policies postpone the disablement of a set of events for as
long as possible. Of course, the lack of a measure on the events
or states themselves makes even this notion of optimality open
to debate. There are many ways to define the idea of postponing
communication in DES. We give two here, where the first con-
dition, C2, is actually a special case of the second, C3:
(C2) :

where it is standard to define . Condition C2 indi-
cates that no single trace in can be lengthened (hence post-
poning communication longer). There may, however, be com-
munication structures satisfying C2 that would allow, for ex-
ample, two traces in to be simultaneously lengthened;
hence, we have the following condition.
(C3) :

This condition says that communication cannot be postponed
along any subset of traces in .9 Evidently, if a communica-
tion policy is C3-optimal, then it is also optimal with regard to
C1 () and C2 (). There are, of course, many
conditions that a designer could specify for optimality However,
it is not our intention to exhaust the possibilities here, and in the
follwoing we will restrict attention to C1–C3.

V. FINITE-STATE ESTIMATE MYOPIC CONTROLLER
INFORMATION STRUCTURE AND SYNTHESIS PROCEDURE

In this section, we present an example of how the general in-
formation structure of Section II can be constrained a priori
as a means of side-stepping the difficulties associated with ex-
actly optimal nonseparable solutions to Problem (P). Instead
of searching for an exact solution to the original problem, we
will search for optimal solutions within a constrained class of
controllers. That is, the problem is constrained to yield commu-
nication policies that are more amenable to synthesis.

A. Finite-State Estimates for Myopic Controllers
The specific decentralized supervisory control problem inves-

tigated here is that of having two controllers with a constrained
9The idea of postponing communication “for as long as possible” seems

intuitive. However, this may have significantly undesirable effects on robust-
ness—an issue yet to be investigated.

BARRETT AND LAFORTUNE: DECENTRALIZED SUPERVISORY CONTROL WITH COMMUNICATING CONTROLLERS 1629

information structure. However, the discussion naturally gener-
alizes to controllers. The information structure is constrained
such that the inference maps satisfy (15). Furthermore, the in-
ference maps of these controllers will be based on a finite struc-
ture, making the solution physically implementable. Additional
assumptions used in this section are as follows.
A.11: Controllers maintain and communicate estimates of

the state of the plant.
A.12: The inference maps are based on a finite structure as

described below.
To construct the controller inference maps, we will first de-

fine a finite estimator structure which is a finite-state ma-
chine with augmented state information. For the case of two
controllers, an estimator-structure state is a quadruple

where , , , and .
and are the finite-state estimates of Controllers 1 and

2, respectively. Two estimator-structure states
and will be considered equivalent if ,

, , and . Denote by
the set of all -tuples for which

and . The initial state of the estimator structure
is

The transition function of the estimator structure is defined from
the transitions in as follows:

(21)

where

As stated in Assumption A.11, the controllers are constrained a
priori to communicate their respective estimates . The update
rule for state estimates following the assumed two-way commu-
nication (Assumption A.10) is determined by the operator
in (22):

(22)

where

if

if

if

otherwise

(23)

The operator of (22) can be interpreted in the following
way.
(i) If both controllers observe an event, then the new infor-

mation or “innovation” derived by the communication is
simply the intersection of both controller state estimates.

(ii) If Controller A does not observe an event but receives
a communication from Controller B, then Controller A
“knows” that Controller B observed an event that was
not observable by Controller A, and this “knowledge” is
incorporated into the state-update rule. Note that Con-
troller B, as in the Proof of Theorem 3.1, does not ex-
plicitly communicate which event was observed.

(iii) The fourth implication of (22) is for notational con-
sistency with the fact that controllers communicate fol-
lowing observable events, and it allows to be com-
pletely defined.

The complete state-estimate update rule for individual con-
trollers is as follows.
1. following an event use (21) to derive ;
2. following a two-way communication use (22) to derive

.
Based on the finite estimator structure defined above, it is now
possible to specify the inference maps for the controllers and
thus complete the specification of the form of this myopic in-
formation structure. Let be the es-
timator-structure state reached following where

, and let be the trajectory observed by Con-
troller along . The inference map that will be used for this
section is

(24)

The myopic nature of this type of state-estimate update is evi-
denced by the use of in the language arguments of the

operation. Controllers that anticipate future communi-
cations would have specific traces removed from the individual

languages at each state in the estimator structure. The traces
removed from would correspond to those indicated by the
anticipation of future communications. Clearly, the oper-
ator described in (22) is not the only possible choice for indi-
cating how communication affects state-estimates.
The inference map of (24) is not only myopic as described

above, but, due to its dependence on finite state estimates, it
is also forgetful in the sense that the trajectory is not identi-
fied (the set of trajectories leading to the same state estimate in
the structure is identified). Certainly, more complex inference
maps can be constructed, e.g., constructing the to be nonmy-
opic, basing the state-update rules on some finite-length “most
recent” record of , more complex operator,10 etc. How-
ever, it is not our intention to exhaust those possibilities here.

B. Control and Communication
The control policy presented here is based on

the permissive “pass the buck” constructs in [9], that is, fol-
lowing trajectory . Controller is allowed to disable an event

only if the event should be disabled or does not exist
in following every trace in . Formally, for :

10In general, should be based on the global set of trajectories, ,
to generate maximal information sets and not just the “local” information avail-
able at each controller as is done in (22); however, synthesis would then suffer
from a lack of separation as discussed in Section III.

1630 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

(25)
To begin the synthesis of a communication policy, it must be

determined why communication is needed. To formalize this,
the notion of a conflict state is introduced.
Definition 5.1: Let be the estimator structure for a two-

controller system as described in Section V-A. A conflict state
of estimator structure is a state forwhich there
exists that must be disabled at state (for
the sake of legality) and for which

such that is defined (enabled).
The implication of Definition 5.1 is that a conflict state is one

in which an event must be disabled in the global system. How-
ever, none of the controllers has enough information to deter-
mine that the event must be disabled, therefore all of the con-
trollers enable the event by default. The avoidance of conflict
states is the motivation for communication between controllers.
Note that if is coobservablewith respect to , all ,
and all , then has no conflict states.
Let be the set of all conflict states in , and define

the subset of estimator structure states as:

Notice that if is a conflict state, then
is also a conflict state. Intuitively, this makes

sense because there is more information available following
a communication than following no communication. By As-
sumption A.3, instantaneous communication upon reaching a
potential conflict state is an allowable means of avoiding a true
conflict state, i.e., communication can be used to attempt to
immediately resolve a potential conflict. The set is the set
of all states for which instantaneous communication fails to
resolve potential conflicts. Define the sequence such that

or
such that

The set is first constructed by including all estimator states
that are in . Second, all estimator-structure states are in-
cluded in for which communication at those states cannot
guarantee that the system will not transition, in one step, to a
state in . The sequence converges by the mono-
tonicity of the cardinality of and the boundedness of
Furthermore, the limiting set is unique. Denote the limit of the
sequence by . This set characterizes all states of the estimator
structure (not necessarily reachable from) for which there
exists a path of states that leads to a conflict state and the con-
trollers communicate at all possible moments along this path.
Hence, if the system enters , there exists a continuation trace
which violates the desired behavior regardless of the amount of
communication along that trace.
For a given automaton , define the

preimage of a set of states by

such that

We define the boundary of , denoted , as
the set of states which have a transi-
tion into but for which does not

(). These states represent the
last possible moment for which communication of state esti-
mates as described above can be utilized to avoid all conflict
states in . We will refer to the procedure just described for
constructing as the “ -Procedure” in the sequel.
Note that, due to fourth implicant of (22), every estimator-

structure state in has the property

This property is important because we would like at least one
controller to be able to initiate communication on the boundary
of . Because is guaranteed on the boundary of

, by Assumption A.5 we can allow the controllers to “wait”
until the boundary of is reached. Then, at the boundary, at
least one controller will observe the transition to the boundary
and communicating state estimates will guarantee that will
be avoided. The definition of can be used to show that

is necessary and sufficient for to be exactly
achievable under the finite-state estimate myopic scheme de-
scribed. This test for provides a very crude charac-
terization of the set of languages achievable by these finite-state
estimate myopic controllers.
We now give two rules for constructing the communication

maps based on . Comparison of these two rules will
help elucidate the difficulties associated with Problem (P) even
with the use of these myopic controllers.
Rule (R1) For with , and :

if and such that
,

or
or a communication is received from
other controller (A.10);
otherwise

(26)

if and such that
,

or
or a communication is received from
other controller (A.10)
otherwise.

(27)

Note that Rule R1 utilizes the two-way broadcast assumption
mentioned in Section III. The notation “ ” in the argu-
ment of each means that given a controller’s previous esti-
mate and the new observation , the controller decides
instantly whether to initiate a communication or not. Note also
that, technically, must be defined inductively starting with
the empty trace. This is because of the use of trajectories in
the argument of , i.e., a trajectory of length can only be
defined if each has been defined for all prefixes of that tra-
jectory with lengths less than . In general, this would present

BARRETT AND LAFORTUNE: DECENTRALIZED SUPERVISORY CONTROL WITH COMMUNICATING CONTROLLERS 1631

a problem since will usually depend on trajectories
which are continuations of which cannot be known without
first knowing along those continuations. The use of myopic
controllers solves this problem by removing the dependence on
continuations of at the cost, of course, of limiting controller
performance. It can be seen that Rule R1 generalizes easily to
controllers and provides an easy method of generating commu-
nication policies based on the finite-estimator structure; further-
more, given the set there is a unique communication policy
associated with Rule R1. The uniqueness of the communication
policy results from the use of only the unique sets
and in the decision to communicate or not.
Now, consider the following rule.
Rule (R1*) For with , and

if and
such that

or a communication is received from
other controller (A.10)
otherwise

(28)

if and
such that

or a communication is received from
other controller (A.10)
otherwise

(29)

The difference between Rules R1 and R1* is that Rule R1*
checks the reachability of states thatmay be either in
or in before determining that a communication is re-
quired. Rule R1 does not perform this reachability test, and so it
may produce communications based on indistinguishability of
the current state from a state in that is not even reachable.
Clearly, Rule R1* should outperform Rule R1 in some sense.
However, this performance comes at a price. Reachability in the
estimator structure cannot be determined a priori to the syn-
thesis of the maps, and reachability may change during the
synthesis of maps. Thus, for Rule R1* in general, an iterative
procedure must be used to synthesize each , and the resulting
maps are not necessarily unique despite the uniqueness of . It
is unclear whether such iterative procedures necessarily termi-
nate. However, it is a relatively simple matter to check whether
or not a proposed communication policy correctly implements
Rule R1*. Despite the difficulties associated with synthesizing
communication policies that are consistent with Rule R1*, the
performance of Rule R1* is discussed in more detail in Section
V-D.

This completes the construction of the decentralized super-
visory control system with communicating finite-state myopic
controllers. An illustrative example is given in the following
subsection.

C. Example

The example presented here utilizes the myopic inference
maps of (24) based on the finite estimator structure to solve
the decentralized supervisory control problem with communi-
cation. The desired behavior of the controlled system is de-
picted in Fig. 2 where it is assumed that the event is pos-
sible in the plant at state 7, but is disabled in the desired be-
havior. It is assumed that , ,

. The key feature of this example is
the interleaving of and . To begin the solution procedure,
the finite estimator structure is constructed without communi-
cation. This facilitates the identification of reachable conflict
states, the avoidance of which motivates communication. The
estimator structure constructed using (21) is shown in Fig. 3.
The states of the estimator structure are named a, b, c, d, e, f,
g, and h for reference. Examining the estimator structure con-
structed with no communication between the controllers, it be-
comes apparent that state g is a conflict state. The conflict arises
because the event must be disabled at the system’s state 7 (es-
timator-structure state g) However, Controller 1 is uncertain as
to whether the system is at state 6 or state 7. State 6 requires
that be enabled. Hence, Controller 1 enables , by default,
at estimator-structure state g.
In accordance with the -Procedure, the set of all con-

flict states that cannot be immediately resolved using commu-
nication needs to be determined. Because we are only interested
in reachable conflict states, our attention is focused on state g
in the estimator-structure. Communication at state g follows the
event which is observable only to Controller 1 Therefore, the
second implication of (22) applies. Controller 2, upon receiving
a communication from Controller 1, recognizes that an observ-
able event has occurred (by Assumption A.10) that was not ob-
served by itself, and Controller 2 utilizes the second implication
of the operator to determine its new state estimate

Controller 1 carries out a similar calculation arriving at
. Hence, Controller 1 still enables event . Thus, esti-

mator-structure state g is a member of . Given that the con-
flict at state g cannot be immediately resolved using communi-
cation, the preimage of g is examined for inclusion in the set .
The state estimates for the controllers following communication
at state e, found in a similar manner as above, are and

; hence, at state e

1632 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

Fig. 2. Desired behavior to be decentrally implemented.

Fig. 3. Estimator structure without communication.

which, following the event , leads to the new state
. The state is not a

conflict state. Hence estimator-structure state e is the last point
at which the controllers can communicate to avoid conflict
states (namely, conflict state g).
Controller 2 needs to initiate the communication at state e

following the observation of However, state b is indistin-
guishable from state e (modulo Controller 2’s inference map)
indicating that Controller 2 must communicate at state b also.

The estimator structure determined by this informal procedure
represents a communication policy that is consistent with Rule
R1* and is shown in Fig. 4 where doubled state boxes indicate
the occurrence of communication (left before communica-
tion, right after communication). There are no conflict states
in Fig. 4, and the set of system trajectories represented by Fig.
4 is given in Table I.

D. Myopic Controllers, Optimality and Non-Uniqueness
Here, we show that any communication policy consistent with

Rule R1* for the finite-state myopic controllers is, in fact, op-
timal over the class of described finite-state estimate myopic
controllers with respect to Condition C1.
To facilitate the proof and to relate informational consistency

to state estimates, define the following set:

such that Controller initiates communication at
under policy

So, is the set of event/state-estimate pairs where Con-
troller initiates communication under policy .
Lemma 5.1: Let where ,

then

(30)
(31)

Proof of Lemma 5.1: Implication (30) follows by con-
tradiction: if such that and

, then which contradicts
. Implication (31) follows from the definition

of .
Lemma 5.1 simply states that if does not lead to a commu-

nication and does lead to a communication, then does
not “look like” to any controller that initiates communica-
tion following . Given this lemma, we have the following
optimality property of communication policies satisfying Rule
R1*.
Theorem 5.1: Let be consistent with

the -Procedure and Rule R1*; then is C1-optimal over
the class of myopic controllers that maintain and communicate
finite state estimates as described in (21) and (22).

Proof of Theorem 5.1 (By contradiction): Suppose
(defined in Section IV) such that where
but , then one of two cases holds:

(i): leads to a state of in the set
; but , so the system state is in

but no communication occurs.
By the construction of , without communication at states in

it cannot be guaranteed that the system does not
reach a state in and hence from reaching a conflict state
that cannot be resolved by communication. By definition of

, not communicating when the system is at a state

BARRETT AND LAFORTUNE: DECENTRALIZED SUPERVISORY CONTROL WITH COMMUNICATING CONTROLLERS 1633

Fig. 4. Estimator structure with communication.

TABLE I
TRAJECTORIES REPRESENTED BY

FIG. 4

in implies that the correct control decision is not
guaranteed. It follows that cannot solve Problem (P).
(ii): does not lead to a state in the set

but is indistinguishable from which does
lead to a state in , and by Lemma
5.1 . Since
leads to a state in and
wemay follow the same reasoning as Case (i) above to conclude
that the policy cannot solve Problem (P).

Cases (i) and (ii) both contradict the assertion that .

It is for Case (ii) of the proof above that Rule R1* differs most
significantly from Rule R1. Rule R1* is based on there being an

that leads to a state in which is
indistinguishable from the current state, while Rule R1 is based
only on the fact that there is a state in

that is indistinguishable from the current state regardless
of whether that state is actually reachable. The qualification of
using (21) and (22) for updating information is for comparison
of myopic controllers with equivalent information processing
techniques.
The simplicity of the proof of Theorem 5.1 is derived

primarily from the structure of the sets and
. Communication policies based on Rule R1* and

are structured such that communi-
cation is only initiated when a controller obtains a state estimate
that is identical to an estimate for that controller at a system
state in the reachable part of the set
or if not communicating makes such a system state reachable.
As the proof relates, removing any of the communications
due to this state-estimate based inference implies removing a
communication at the very last point where communication
would be useful in avoiding or resolving conflict states.
Although , and are unique sets, it is

important to note that Rule R1* is not the sole, unique, rule for
determining optimal communication policies based on and

. Indeed, R1* itself is not necessarily
associated to a unique communication policy. In general there
may be many optimal communication policies as stated in the
following theorem.
Theorem 5.2 (Non-Uniqueness): If is con-

trollable with respect to and and observable with re-
spect to , and , then C1–C3-optimal communication
policies that support solutions to Problem (P) are not unique, in
general.

Proof of Theorem 5.2: The proof of Theorem 5.2 is easily
performed by example, that is, we need only give a counter-ex-
ample to a uniqueness hypothesis. Consider the desired behavior
shown in Fig. 5 where, again, implies that the event is
defined in the plant but must be disabled. Assume two con-
trollers will be used with , ,

and . For the desired behavior
shown in Fig. 5 the class ofmyopic controllers supports multiple
optimal solutions to Problem (P). Two C1–C3-optimal commu-
nication policies for the desired behavior of Fig. 5 are shown in
Fig. 6. For one myopic controller solution, Controller 1 com-
municates its state estimate following . Similarly, the other
optimal solution has Controller 2 communicating following .
These two solutions can be interpreted as first determining the
set as discussed earlier, then the communication maps are
generated in a specific order. The first optimal communication
policy in Fig. 6 results from building first, and because the
reachable subset of is altered,
is then designed to only respond to Controller 1’s communica-
tions. Thus, the synthesis of is conditioned on the design of
. Vice versa for the second optimal communication map. Both

policies in Fig. 6 satisfy R1*, and for comparison, the policy de-

1634 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

Fig. 5. Desired behavior with nonunique optimal decentralized
implementation.

termined by Rule R1 is shown in Fig. 7. Thus, the fact that the
set is unique does not imply there are unique C1–C3-op-
timal communication policies. Note that for this example, if the
controllers were allowed to be nonmyopic, then the communica-
tion policies represented in Fig. 6 would still be C1–C3-optimal;
however, the state-estimates within each box would be more re-
fined due to nonmyopia.

E. Remarks on Myopic Controllers

It was discussed in Sections II and III that the synthesis of
communication and control policies is difficult due to the lack of
separation between estimation, communication and control. In
Sections V-A and V-B, some of the difficulties in synthesizing
communication policies were bypassed by the use of myopic
controllers where a separation between communication and es-
timation is forced as a constraint on the information structure.
The separation between communication and estimation for my-
opic controllers occurs because each is known a priori to
be ; thus, ignorance of future potential communications
is forced into the structure of the controllers so that a simple
synthesis algorithm (-Procedure and Rule R1) may be used.
Unfortunately, the synthesis of optimal communication policies
(such as those consistent with R1*) is complicated by the fact
that the information used to determine if a communication is re-
quired, e.g., the reachable part of , is
affected by both the decision to communicate at the present state
and by similar decisions at other states in the system. The fun-
damental idea for this section is revealed: very simplifying as-
sumptions were made, yet optimal policies, even in a very con-
strained class of controllers, are difficult to determine.
Of course, a decentralized supervisory control scheme using

the myopic and state-estimate based inference maps presented
in Section V-B will not, in general, allow arbitrary languages

to be achievable under control with communication. For
these permissive finite-structure myopic controllers, the condi-
tions of Theorem 3.2 are necessary but not sufficient due to the
use of only state estimates. This is an interesting departure from

(a)

(b)

Fig. 6. Two C1–C3-optimal communication policies for Fig. 5.

centralized supervisory control where observability and control-
lability are necessary and sufficient regardless of whether trace
estimates or state estimates are used for implementation. Upon
generating , if , then the initial state of the system
is such that no amount of communication using the described ,

BARRETT AND LAFORTUNE: DECENTRALIZED SUPERVISORY CONTROL WITH COMMUNICATING CONTROLLERS 1635

Fig. 7. Communication policy for Fig. 5 resulting from Rule R1.

and can prevent the system from reaching a conflict state.
The definition of can be used to show that is nec-
essary and sufficient for to be exactly achievable under
the permissive finite-state estimate myopic scheme described;
thus, this brute-force test provides a very crude characterization
of the set of languages achievable by these finite-state estimate
myopic controllers.
The -Procedure described above was presented as gener-

ating the set by examining the entire state-space ; how-
ever, this manner of presentation was to ease the need for proofs
of convergence and uniqueness. In practice, only a subset of
would be generated, as needed, using efficient algorithms; cer-
tainly, it is not desirable to examine unreachable states. How-
ever, as discussed earlier, the problem remains that reachability
can not, in general, be determined a priori.
The utility of the -Procedure described above applies not

only to the control of a discrete-event system, but by changing
the definition of “conflict state” many predicates on the states
of the system can be enforced also. Examples of such pred-
icates could include: having the completion of a task (repre-
sented by marking, for example) “known” to at least one of the
controllers at all times, having diagnostic information about the
plant “known” to at least one of the controllers, etc. These ex-
tensions are beyond the intended scope of this paper.
The myopic scheme presented, whatever disadvantages or

shortcomings it may have, does have the benefit of a well de-
fined and unique set that indicates

communication requirements. As already mentioned, for arbi-
trarily constrained information structures, no such uniqueness
property for optimal communication policies (even those re-
sulting from the unique) holds as indicated in Theorem 5.2.

F. Remarks on Computational Complexity
At this point, it may be useful to describe the computational

complexity of some of the ideas mentioned in this paper. De-
centralized control is notorious for its difficulty and associated
high computational complexity. Given a choice, there seem to
be few cases where decentralized control is preferred to central-
ized control. The motivation for this paper is that there are many
cases where the designer does not have a choice.
The -Procedure, as described in this section, is a good in-

dicator of the daunting computation complexity of decentralized
controller policy synthesis. The potential generation of the en-
tire space of -tuples indicates a worst-case
complexity of . Of course, there are ques-
tions regarding decentralized supervisory control that can be
answered in polynomial time. For example, testing the condi-
tions of Theorem 3.1, specifically the controllability and ob-
servability conditions, has been shown to be polynomial [31].
The algorithm proposed in [31] was extended in [8] for the case
of testing coobservability while maintaining polynomial com-
plexity. The conjecture, given here without proof, is that a mod-
ified version of the observability and coobservability testing al-
gorithms can be applied to the Theorem 3.2 resulting in a test
with polynomial computational complexity. It is unclear as to
what insight or utility would result from a proof of this conjec-
ture.

VI. CONCLUSION

In this paper, the problem of achieving a given desired
language using decentralized supervisory control with com-
munication was addressed. A novel framework was presented
for analysis and synthesis issues in decentralized supervisory
control with communication. We characterized the classes of
languages achievable for the two cases of when controllers
do and do not anticipate future communications. Anticipation
of future (potential) communications is described as a con-
dition on the components of the information structure in
the general model. Comparing the two classes of achievable
languages reveals the fact that communicating controllers with
finite memory and communication resources and that anticipate
future communications outperform controllers with unbounded
memory and communication resources that do not anticipate
future communications.
It was shown how the general information structure can be

constrained to finite objects to permit physically implementable
solutions to the above-mentioned problem, and a synthesis pro-
cedure was presented for the class of finite state-estimate con-
trollers that do not anticipate future communications. An ex-
ample was given to demonstrate the use of this class of con-
strained information structure controllers to produce a solution
to the decentralized supervisory control problem (when a solu-
tion exists for this class of controllers). It was shown that optimal
communication policies exist, and a rule was given describing a

1636 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

class of policies that are optimal in the sense that no communi-
cation instance can be removed from the communication policy.
Other types of optimality were presented, and the nonunique-
ness of optimal solutions was demonstrated.

APPENDIX A
ALTERNATIVE EXPRESIONS OF OBSERVABILITY AND

COOBSERVABILITY

The material here represents an attempt to simplify the
descriptions and comparisons of language observability and
coobservability to other language classifications. The defini-
tions given below are not new; they are simply the “classical”
definitions re-written for simplification. Yet another way of
expressing coobservability can be found in [8, Proposition 3].
Proposition A.1: Let and be the specification and plant

automata, respectively. The language is observable with
respect to , and iff :

(32)
The idea behind observability and its representation in the above
proposition is the following. Following the occurrence of a trace
, if an event must be disabled (i.e., the trace is not in

but is in) then none of the traces in the supervisor’s
maximal information set can be followed
by the event .

Proof of Proposition A.1: Recall the “classical” definition
of observability: a language is observable with respect to

, , and if :

(33)

Note that the “ ” relation that is generally associated
with the definition of observability is included in the expression
of (33). Without loss of generality, we may restrict attention to

, so we rewrite (33) as
:

(34)

which may be expanded to yield
:

(35)
Re-writing (35) yields:

:

(36)

which is directly equivalent to the alternative definition:

:

(37)

For decentralized systems, note that under the assumption
that , the alternative expression for observability
is also equivalent to:

:

(38)

Proposition A.2: Let be a set of supervi-
sory controllers with respective sets of observable and control-
lable events. Let and be the specification and plant au-
tomata, respectively. The language is coobservable with
respect to , and iff

:

Proof of Proposition A.2: Recall the definition of the
relation:

, if

(39)

We will immediately rewrite (39) in the following way (without
a loss of generality for our purposes): ,

if

(40)

Given sets of observable and controllable events for each super-
visory controller in , a language
is coobservable with respect to , , , , if
[9]

(41)

where marking will be considered separately. Note that
while coobservability naturally generalizes to supervisory
controllers, the form of (41) does not allow the generalized
definition of coobservability to be easily written. The difficulty
results from having a separate “test” string, e.g., , for each

BARRETT AND LAFORTUNE: DECENTRALIZED SUPERVISORY CONTROL WITH COMMUNICATING CONTROLLERS 1637

controller and from having to write out the conjuncts for every
possible set of intersections of controllable events that the event
could exist. Indeed, even the form of coobservability found

in [8, Proposition 3] does not generalize easily for the same
reasons. The “new” form of the definition of coobservability
does not suffer this difficulty.
(41) can be written as

(42)

which further simplifies to

(43)

Expanding (43) using (40) eliminates explicit mention of
and yields

(44)

which simplifies to

(45)

and (45) is directly equivalent to the alternative definition given
in the proposition.
If one is interested in the marking action of the controllers,

then similar manipulations as above can be used to show the
following condition is required for coobservability

(46)

APPENDIX B
SIMPLE FACT FOR CATENATIVE INFORMATION SETS

The following provides some assistance in proving certain
claims. Definitions of sets and operations are found within the
main body of the text.
Lemma B.1: Let , and let and

be even, then

Proof of Lemma B.1: First, we have

Hence, what remains is to show that

It is always the case that “ ” holds, so we need only show that

Let where , then
which implies that .

ACKNOWLEDGMENT

The authors wish to thank F. Lin, A. Overkamp, K. Rudie,
J. H. van Schuppen, and D. Teneketzis for stimulating discus-
sions on the topics of decentralized information and decentral-
ized control with communication. The authors would also like to
acknowledge the useful comments of the anonymous reviewers.
Special thanks go to K. Rudie for suggesting that a proof accom-
pany the alternate expression of coobservability in Appendix A.

REFERENCES
[1] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, “Supervisory con-

trol of discrete-event processes with partial observations,” IEEE Trans.
Automa. Contr., vol. 33, pp. 249–260, Mar. 1988.

[2] K. Inan, “An algebraic approach to supervisory control,” Math. Contr.,
Signals, and Syst., vol. 5, no. 2, pp. 151–164, 1992.

[3] P. Kozák and W. M. Wonham, “Fully decentralized solutions of super-
visory control problems,” IEEE Trans. Automatic. Contr., vol. 40, pp.
2094–2097, Dec. 1995.

1638 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEPTEMBER 2000

[4] F. Lin and W. Wonham, “Decentralized supervisory control of discrete-
event systems,” Information. Sci., vol. 44, pp. 199–224, 1988.

[5] , “Decentralized control and coordination of discrete-event systems
with partial observations,” IEEE Trans. Automat. Contr., vol. 35, pp.
1330–1337, Dec. 1990.

[6] A. Overkamp and J. H. van Schuppen, “A characterization of maximal
solutions for decentralized discrete event control problems,” in Proc.
Int. Workshop on Discrete Event Syst., Edinburgh, UK, Aug. 1996, pp.
278–283.

[7] J. H. Prosser, M. Kam, and H. G. Kwatny, “Decision fusion and super-
visor synthesis in decentralized discrete-event systems,” in Proc. 1997
Amer. Contr. Conf., June 1997, pp. 2251–2255.

[8] K. Rudie and J. C. Willems, “The computational complexity of decen-
tralized discrete-event control problems,” IEEE Trans. Automat. Contr.,
vol. 40, pp. 1313–1318, July 1995.

[9] K. Rudie and W. Wonham, “Think globally, act locally: Decentralized
supervisory control,” IEEE Trans. Automat. Contr., vol. 37, pp.
1692–1708, Nov. 1992.

[10] S. Takai, “On the language generated under fully decentralized supervi-
sion,” IEEE Trans. Automat. Contr., vol. 43, pp. 1253–1255, Sept. 1998.

[11] Y. Willner and M. Heymann, “Supervisory control of concurrent dis-
crete-event systems,” Int. J. Contr., vol. 54, no. 5, pp. 1143–1169, 1991.

[12] S. L. Ricker and K. Rudie, “Know means no: Incorporating knowledge
into decentralized discrete-event control,” in Proc. 1997 Amer. Contr.
Conf., June 1997, pp. 2348–2353.

[13] K. Rudie, S. Lafortune, and F. Lin, “Minimal communication in a dis-
tributed discrete-event control system,” in Proc. 1999 IEEE ACC, 1999,
pp. 1965–1970.

[14] J. H. van Schuppen, “Decentralized supervisory control with informa-
tion structures,” in Proc. Int. Workshop on Discrete Event Syst., Cagliari,
Italy, Aug. 1998, pp. 36–41.

[15] K. C. Wong and J. H. van Schuppen, “Decentralized supervisory control
of discrete event systems with communication,” in Proc. Int. Workshop
on Discrete Event Syst., Edinburgh, UK, Aug. 1996, pp. 284–289.

[16] D. Teneketzis, “On information structures and nonsequential stochastic
control,” CWI Quarterly, vol. 9, no. 3, pp. 241–260, 1996.

[17] C. G. Cassandras and S. Lafortune, Intro. Discrete Event
Syst.. Norwell, MA: Kluwer, 1999.

[18] R. Kumar and V. K. Garg, Modeling and Contr. Logical Discrete Event
Syst.. Norwell, MA: Kluwer, 1995.

[19] P. Ramadge and W. Wonham, “The control of discrete event systems,”
Proc. IEEE, vol. 77, pp. 81–98, Jan. 1989.

[20] H.Witsenhausen, “Separation of estimation and control for discrete time
systems,” Proc. IEEE, vol. 59, no. 11, pp. 1557–1566, 1971.

[21] H. Witsenhausen, “Equivalent stochastic control problems,” in Math.
Contr., Signals, and Syst.: Springer-Verlag, 1988, vol. 1, pp. 3–11.

[22] T.-S. Yoo and S. Lafortune, A New Architecture for Decentralized Su-
pervisory Contr., 1999.

[23] A. Arnold, Finite Trans. Syst.. Englewood Cliffs, NJ: Prentice Hall,
1994.

[24] Z. Kohavi, Switching and Finite Automata Theory, 2nd ed. New York:
McGraw-Hill, 1978.

[25] G. Barrett and S. Lafortune, “A novel framework for decentralized su-
pervisory control with communication,” in Proc. IEEE I. Conf. Syst.,
Man, Cybern., San Diego, CA, 1998, pp. 617–620.

[26] , “On the synthesis of communicating controllers with decentral-
ized information structures for discrete-event systems,” in Proc. 37th
IEEE Conf. Dec. Contr., Tampa, FL, 1998, pp. 3281–3286.

[27] R. Debouk, S. Lafortune, and D. Teneketzis, “On an optimization
problem in sensor selection for failure diagnosis,” Department of
Electrical Engineering and Computer Science, University of Michigan,
http://www.eecs.umich.edu/umdes, 1999.

[28] A. Haji-Valizadeh and K. A. Loparo, “Minimizing the cardinality of an
events set for supervisors of discrete-event dynamical systems,” IEEE
Trans. Automat. Contr., vol. 41, pp. 1579–1593, Nov. 1996.

[29] R. Sengupta and S. Lafortune, “An optimal control theory for discrete
event systems,” SIAM J. Contr. Optim., vol. 46, pp. 488–541, Mar. 1998.

[30] G. Barrett and S. Lafortune, “Bisimulation, the supervisory control
problem and strong model matching for finite state machines,” Discrete
Event Dyn. Syst.: Theory and Appl., vol. 8, pp. 377–429, Dec. 1998.

[31] J. N. Tsitsiklis, “On the control of discrete event dynamical systems,”
Math. Contr. Signals and Syst., vol. 2, no. 2, pp. 95–107, 1989.

George Barrett (S’90-M’99) received two M.S. de-
grees from North Carolina State University in 1994
and a Ph.D. degree in electrical engineering systems
from theUniversity ofMichigan, AnnArbor, in 1999.
He currently holds a position of Senior Research

Scientist in the System and Information Sciences
Group (RSI) at the Johns Hopkins University
Applied Physics Laboratory. In 1998, he won
the Student Best Paper Contest at the 37th IEEE
Conference on Decision and Control. He has been
a consultant to industry, and he holds a U.S. Patent.

His current research interests are fundamental limitations and applications
of resource allocation, communication and coordination in decentralized and
distributed systems.

Stéphane Lafortune (M’86-SM’97-F’99) received
the B.Eng. degree fromÉcole Polytechnique deMon-
tréal in 1980, theM.Eng. degree fromMcGill Univer-
sity in 1982, and the Ph.D. degree from the University
of California at Berkel in 1986, all in electrical engi-
neering.
Since September 1986, he has been with the

University of Michigan, Ann Arbor, where he is a
Professor of electrical engineering and computer
science. His research interests are in discrete event
systems and in intelligent transportation systems. He

co-authored, with C. Cassandras, the textbook Introduction to Discrete Event
Systems (Norwell, MA: Kluwer, 1999). Recent publications are available at the
website www.eecs.umich.edu/umdes.

