
ccurate and low-cost sensor localization is a critical requirement for the deployment of
wireless sensor networks in a wide variety of applications. Low-power wireless sensors

may be many hops away from any other sensors with a priori location information.
In cooperative localization, sensors work together in a peer-to-peer manner to

make measurements and then form a map of the network. Various application
requirements (such as scalability, energy efficiency, and accuracy) will influence the design of sen-
sor localization systems. In this article, we describe measurement-based statistical models useful
to describe time-of-arrival (TOA), angle-of-arrival (AOA), and received-signal-strength (RSS)
measurements in wireless sensor networks. Wideband and ultra-wideband (UWB) measurements,
and RF and acoustic media are also discussed. Using the models, we show how to calculate a
Cramér-Rao bound (CRB) on the location estimation precision possible for a given set of measure-
ments. This is a useful tool to help system designers and researchers select measurement tech-
nologies and evaluate localization algorithms. We also briefly survey a large and growing body of
sensor localization algorithms. This article is intended to emphasize the basic statistical signal
processing background necessary to understand the state-of-the-art and to make progress in the
new and largely open areas of sensor network localization research. 

INTRODUCTION
Dramatic advances in RF and MEMS IC design have made possible the use of large networks of
wireless sensors for a variety of new monitoring and control applications [1]–[5]. For example,
smart structures will actively respond to earthquakes and make buildings safer; precision agricul-
ture will reduce costs and environmental impact by watering and fertilizing only where necessary
and will improve quality by monitoring storage conditions after harvesting; condition-based

IEEE SIGNAL PROCESSING MAGAZINE [54] JULY 2005 1053-5888/05/$20.00©2005IEEE

Locating the Nodes
[Cooperative localization in wireless sensor networks]

[Neal Patwari, Joshua N. Ash, Spyros Kyperountas, 

Alfred O. Hero III, Randolph L. Moses, and 

Neiyer S. Correal]

© DIGITALVISION

A



maintenance will direct equipment servicing exactly when and
where it is needed based on data from wireless sensors; traffic
monitoring systems will better control stoplights and inform
motorists of alternate routes in the case of traffic jams; and envi-
ronmental monitoring networks will sense air, water, and soil
quality and identify the source of pollutants in real time.

Automatic localization of the sensors in these wireless net-
works is a key enabling technology. The overwhelming reason is
that a sensor’s location must be known for its data to be mean-
ingful. As an additional motivation, sensor location information
(if it is accurate enough) can be extremely useful for scalable,
“geographic” routing algorithms. Note also that location itself is
often the data that needs to be sensed; localization can be the
driving force for wireless sensor networks in applications such
as warehousing and manufacturing logistics.

To make these applications viable with possibly vast numbers
of sensors, device costs will need to be low (from a few dollars to
a few cents depending on the application), sensors will need to
last for years or even decades without battery replacement, and
the network will need to organize without significant human
moderation. Traditional localization techniques are not well
suited for these requirements. Including a global positioning
system (GPS) receiver on each device is cost and energy prohibi-
tive for many applications, not sufficiently robust to jamming
for military applications, and limited to outdoor applications.
Local positioning systems (LPS) [6] rely on high-capability base
stations being deployed in each coverage area, an expensive bur-
den for most low-configuration wireless sensor networks.

Instead, we consider the problem in which some small
number m of sensors, called reference nodes, obtain their

coordinates (either via GPS or from a system administrator
during startup) and the rest, n unknown-location nodes, must
determine their own coordinates. If sensors were capable of 
high-power transmission, they would be able to make meas-
urements to multiple reference nodes. Positioning techniques
presented in other articles in this special issue, for cellular
mobile station (MS) location or location in wireless local area
networks (WLANs), could be applied. However, low-capability,
energy-conserving devices will not include a power amplifier,
will lack the energy necessary for long-range communication,
and may be limited by regulatory constraints on transmit
power. Instead, wireless sensor networks, and thus localization
techniques, will be multihop (a.k.a. “cooperative” localization),
as shown in Figure 1. Rather than solving for each sensor’s
position one at a time, a location solver (analogous to the sys-
tem of masses connected by springs shown in Figure 2) will
estimate all sensor positions simultaneously.

Such localization systems are an extension of techniques used
in or proposed for WLAN and cellular MS location, as described
elsewhere in this issue. We still allow unknown-location devices
to make measurements with known-location references, but in
cooperative localization, we additionally allow unknown-location
devices to make measurements with other unknown-location
devices. The additional information gained from these measure-
ments between pairs of unknown-location devices enhances the
accuracy and robustness of the localization system. In the con-
siderable literature, such systems have alternatively been
described as “cooperative,” “relative,” “distributed,” “GPS-free,”
“multihop,” or “network” localization; “self-localization;” “ad-
hoc” or “sensor” positioning; or “network calibration.” In this
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[FIG1]  (a) Traditional multilateration or multiangulation is a special case in which measurements are made only between an unknown-
location sensor and known-location sensors. In (b) cooperative localization, measurements made between any pairs of sensors can be
used to aid in the location estimate. 
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article, we use “cooperative” localization [7] to emphasize the
communication and measurements between many pairs of sen-
sors required to achieve localization for all sensors.

MOTIVATING APPLICATION
EXAMPLE: ANIMAL TRACKING
If cooperative localization can be implemented as described above,
many compelling new applications can be enabled. For the pur-
poses of biological research, it is very useful to track animals over
time and over very wide ranges [8]. Such tracking can answer
questions about animal behavior and interactions within their
own species as well as with other species. Using current practices,
tracking is a very difficult, expensive process that  requires bulky
tags that rapidly run out of energy. A typical practice is to attach
VHF transmitter collars to the animals to be tracked and then tri-
angulate their location by driving (or flying) to various locations
with a directional antenna. Alternatively, GPS-based collars can be
used, but these are limited by cost concerns and offer only a short
lifetime due to high energy consumption. Using wireless sensor
networks can dramatically improve the abilities of biological
researchers (as demonstrated by “ZebraNet” [8]). Using multihop
routing of location data through the sensor network enables low
transmit powers from the animal tags. Furthermore, interanimal
distances, which are of particular interest to animal behaviorists,
can be estimated using pair-wise measurements and cooperative

localization methods without resorting to GPS. The end result of
the longer battery lifetimes is less frequent recollaring of the ani-
mals being studied.

MOTIVATING APPLICATION EXAMPLE: LOGISTICS
As another example, consider deploying a sensor network in an
office building, manufacturing floor, and warehouse. Sensors
already play a very important role in manufacturing. The moni-
toring and control of machinery has traditionally been wired, but
making these sensors wireless reduces the high cost of cabling
and makes the manufacturing floor more dynamic. Automatic
localization of these sensors further increases automation.

Also, boxes and parts to be warehoused as well as factory and
office equipment are all tagged with sensors when first brought
into the facility. These sensors monitor storage conditions (tem-
perature and humidity) and help control the heating, ventila-
tion, and air conditioning (HVAC) system. Sensors on mobile
equipment report their location when the equipment is lost or
needs to be found (e.g., during inventory), and even contact
security if the equipment is about to “walk out” of the building.
Knowing where parts and equipment are when they are critically
required reduces the need to have duplicates as backup, savings
which could pay for the wireless sensor network itself.

Radio-frequency identification (RFID) tags, such as those
now required by Walmart on pallets and cartons entering its

warehouses [9], represent a first step in warehouse
logistics. RFID tags are only located when they
pass within a few feet of a reader, thus remaining
out of access most of their time in the warehouse.
Networked wireless sensors, however, can be
queried and located as long as they are within
range (on the order of 10 m) of the closest other
wireless sensor.

The accuracy of cooperative localization
increases with the density of sensors, as we show
later in a numerical example. Thus, having hetero-
geneous sensors of varied purposes, all participat-
ing in the same network helps drive localization
errors down.

COOPERATION REQUIREMENT:
STANDARDIZATION
One way to ensure that heterogeneous sensors can
“cooperate” to improve localization performance is
to pursue standardization of wireless sensor net-
works. Two major sensor network standards are
the IEEE 802.15.4 physical (PHY) layer and medi-
um access control (MAC) layer standard for low-
rate wireless personal area networks (LR-WPANs)
and the ZigBee networking and application layer
standard [10]. These standards enable localization
information to be measured between pairs of sen-
sors. In particular, RSS can be measured in the
802.15.4 PHY standard via the link quality indica-
tion (LQI), which reports the signal strength
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[FIG2] Cooperative localization is analogous to finding the resting point of (a)
masses (spools of thread) connected by a network of (b) springs. First, reference
nodes are nailed to their known coordinates on a board. Springs have a natural
length equal to measured ranges and can be compressed or stretched. They are
connected to the pair of masses whose measured range they represent. After
letting go, the (c) equilibrium point of the masses represent a minimum-energy
localization estimate; the actual node locations are indicated by ⊗.
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associated with a received packet to higher layers. Finally, we
note that these standards are specifically tailored to low-power,
long-life sensors. The 802.15.4 standard allows duty cycles of
less than 0.1%; in active mode, devices will consume on the
order of 40 mA, and in sleep mode, on the order of 40 µA.

PROBLEM STATEMENT
Before going into detail, it is useful to formally state the cooper-
ative sensor location estimation problem. The two-dimensional
(2-D) localization problem demonstrated in Figures 1 and 2 is
the estimation of 2n unknown-location node coordinates
θθθ = [θθθ x, θθθ y]

θθθ x = [x1, . . . , xn], θθθ y = [y1, . . . , yn] (1)

given the known reference coordinates [xn + 1 , . . . , xn + m ,
yn + 1, . . . , yn + m], and pair-wise measurements {Xi, j}, where
Xi, j is a measurement between devices i and j. While we treat
the 2-D case here, extension to a three-dimensional (3-D) case
appends a vector θθθ z to parameter vector θθθ [11]. Measurements
Xi, j could be any physical reading that indicates distance or rel-
ative position, such as TOA, AOA, RSS, or connectivity (whether
or not two devices can communicate). We do not assume full
measurements, so we define the set H(i) to be the set of sensors
with which sensor i makes measurements. Clearly, i /∈ H(i), and
H(i) ⊂ {1, . . . , n + m}. Note that these measurements could be
attained via different modalities, e.g., RF, infrared (IR), acoustics
[12], [13], or a combination of these [14]. Finally, TOA can be
measured using different signaling techniques, such as direct-
sequence spread-spectrum (DS-SS) [15], [16] or UWB [17]–[19].
We discuss these measurement methods in the section on meas-
urement characterization.

Some research has further assumed that various nodes may
have imperfect prior information about their coordinates; for
example, reference coordinates obtained from GPS may be ran-
dom, but from a known distribution. Also, other localization
research has focused on truly “relative” location, i.e., when no
references exist (m = 0) and an arbitrary coordinate system can
be chosen. This is also called “beacon-free” sensor localization in
the article by Sun et al. [88]. These are important directions of
research, but to simplify the discussion in this article, we leave
these extensions to [12], [20], and [21].

MOTIVATION AND OUTLINE
The main goal of this article is to provide an introduction to the
sensor location estimation problem from a signal processing
perspective. We review both theoretical estimation bounds and
methods and the algorithms being applied to the cooperative
localization problem. We believe that signal processing methods
will be very useful for aiding system design decisions as well as
in localization algorithms themselves.

We discuss reasons for unavoidable limits to localization
accuracy and present measurement-based statistical models for
RSS, TOA, and AOA measurements. We then use these models

to present lower bounds on sensor location estimation variance.
The scope of this article does not include a detailed description
of localization algorithms for sensor networks. We do, however,
describe the main categories of approaches and provide refer-
ences to the growing literature on localization algorithms.

WHY ARE MEASUREMENTS RANDOM?
Range and angle measurements used for localization are meas-
ured in a physical medium that introduces errors. Generally,
these measurements are impacted by both time-varying errors
and static, environment-dependent errors. Time-varying errors
(e.g., due to additive noise and interference) can be reduced by
averaging multiple measurements over time. Environment-
dependent errors are the result of the physical arrangement of
objects (e.g., buildings, trees, and furniture) in the particular
environment in which the sensor network is operating. Since
the environment is unpredictable, these errors are unpre-
dictable and we model them as random. However, in a particular
environment, objects are predominantly stationary. Thus, for a
network of mostly stationary sensors, environment-dependent
errors will be largely constant over time.

The majority of applications of wireless sensor networks
involve mostly stationary sensors. Because time delay is
acceptable in these applications, each pair of sensors will make
multiple measurements over time and average the results
together to reduce the impact of time-varying errors. We must
characterize the statistics of these measurements after time-
averaging to determine the performance of localization in
wireless sensor networks.

Measurement experiments have provided much data about
the statistics of RSS, TOA, and AOA in sensor networks, which we
will discuss in this article. We begin by discussing the methodol-
ogy of these measurement experiments.

MEASUREMENT CHARACTERIZATION
Ideally, statistical characterization of sensor network measure-
ments would proceed as follows: 1) Deploy K wireless sensor
networks, each with N sensors positioned with the identical
geometry in the same type of environment, but with each net-
work in a different place. For example, we might test a sensor
network deployed in a grid in K different office buildings. 2) In
each deployment, make many measurements between all possi-
ble pairs of devices. 3) Repeat each measurement over a short
time period and compute the time average. 4) Then, the joint
distribution (conditional on the particular sensor geometry) of
the time-averaged measurements could be characterized. To our
knowledge, no such wide-scale measurements have been pre-
sented due to the huge scale of the task. First, a large K would
be required to characterize the joint distribution. Second, the
result would only be valid for that particular N and those partic-
ular sensor coordinates. Each different geometry would require
a different measurement experiment!

Measurements attained to date have made simplifying
assumptions about the measurement model. Basically, it is
assumed that measurements in a network are independent and



from the same family of distributions. The independence
assumption, which says that observing an error in one link does
not provide any information about whether or not errors occur
in different links, is a simplifying assumption [22]. Large
obstructions may affect a number of similarly positioned links in
a network. Considering correlations between links would make
the analysis more difficult, and future research is needed to
characterize the effects of link dependencies.

The second simplifying assumption is the choice of a family
of distributions. We tend to subtract from each measurement its
ensemble mean and then assume that the error (the difference)
is characterized by a particular parameterized distribution (such
as a Gaussian, log-normal, or mixture distribution). We then use
the measurements to estimate the parameters of the distribu-
tion, such as the variance. With this method, one set of parame-
ters can be used to characterize the whole set of measurements.

Other articles in this issue also discuss statistical models
for location measurements. Compared to Gustafsson  and
Gunnarsson [87], who present models for RSS, TOA, and AOA 
measurements useful for cellular mobile system (MS) location
and tracking, our focus is on the shorter-range, low-antenna,
sensor network environment. Gezici et al. investigate UWB
measurement models for both RSS and TOA in much greater
detail than in this article, in which UWB is just one of multi-
ple measurement modalities [89].

As an online supplement to this article [23], we provide a set
of TOA and RSS measurements from a 44-node indoor sensor
network originally reported in [24], to allow researchers to test
localization algorithms on measured data. Next, we discuss what
those measurements and many other measurements of RSS,
TOA, and AOA have indicated about the distributions of the
error in pair-wise sensor measurements.

RSS
RSS is defined as the voltage measured by a receiver’s received
signal strength indicator (RSSI) circuit. Often, RSS is equiva-
lently reported as measured power, i.e., the squared magnitude
of the signal strength. We can consider the RSS of acoustic, RF,
or other signals. Wireless sensors communicate with neighbor-
ing sensors, so the RSS of RF signals can be measured by each
receiver during normal data communication without presenting
additional bandwidth or energy requirements. RSS measure-
ments are relatively inexpensive and simple to implement in
hardware. They are an important and popular topic of localiza-
tion research. Yet, RSS measurements are notoriously unpre-
dictable. If they are to be a useful part of a robust localization
system, their sources of error must be well understood.

MAJOR SOURCES OF ERROR
In free space, signal power decays proportional to d−2, where d is
the distance between the transmitter and receiver. In real-world
channels, multipath signals and shadowing are two major sources
of environment dependence in the measured RSS. Multiple signals
with different amplitudes and phases arrive at the receiver, and
these signals add constructively or destructively as a function of the

frequency, causing frequency-selective fading. The effect of this
type of fading can be diminished by using a spread-spectrum
method (e.g., direct-sequence or frequency hopping) that averages
the received power over a wide range of frequencies. Spread-spec-
trum receivers are an acceptable solution since spread-spectrum
methods also reduce interference in the unlicensed bands in which
wireless sensors typically operate. The measured received power
using a wideband method (as the bandwidth → ∞) is equivalent
to measuring the sum of the powers of each multipath signal [25].

Assuming that frequency-selective effects are diminished,
environment-dependent errors in RSS measurements are
caused by shadowing, such as the attenuation of a signal due to
obstructions (furniture, walls, trees, buildings, and more) that a
signal must pass through or diffract around on the path between
the transmitter and receiver. As discussed at the start of this sec-
tion, these shadowing effects are modeled as random (as a func-
tion of the environment in which the network is deployed). An
RSS model considers the randomness across an ensemble of
many deployment environments.

STATISTICAL MODEL
Typically, the ensemble mean received power in a real-world,
obstructed channel decays proportional to d−np, where np is the
path-loss exponent, typically between two and four. The ensem-
ble mean power at distance d is typically modeled as

P̄(d) = P0 − 10np log
d
d0

, (2)

where P0 is the received power (dBm) at a short reference
distance d0.

The difference between a measured received power and its
ensemble average, due to the randomness of shadowing, is mod-
eled as log-normal (i.e., Gaussian if expressed in decibels). The
log-normal model is based on a wide variety of measurement
results [24], [26]–[28] and analytical evidence [29]. The standard
deviation of received power (when received power is expressed in
dBm), σdB, is expressed in units of dB and is relatively constant
with distance. Typically, σdB is as low as four and as high as 12
[27]. Thus, the received power (dBm) at sensor i transmitted by
j, Pi, j is distributed as

f
(
Pi, j = p|θθθ) = N

(
p; P̄(di, j), σ

2
dB

)
, (3)

where N (x; y, z) is our notation for the value at x of a Gaussian
probability density function (pdf) with mean y and variance z, θθθ
is the coordinate parameter vector from (1), and the actual
transmitter-receiver separation distance di, j is given by

di, j =
√

(xi − xj)
2 + (yi − yj)

2. (4)

The most important result of the log-normal model is that
RSS-based range estimates have variance proportional to their
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actual range. This is not a contradiction of the earlier state-
ment that σdB is constant with range. In fact, constant stan-
dard deviation in decibels means that the multiplicative factors
are constant with range; this explains the proportionality. For
example, consider a multiplicative factor of 1.5. At an actual
range of 100 m, we would measure a range of 150 m and an
error of 50 m; at 10 m, the measured range would be 15 m
with an error of 5 m, a factor of ten smaller. This is why RSS
errors are referred to as multiplicative, in comparison to the
additive TOA errors presented in the section on TOA. Clearly,
RSS is most valuable in high-density sensor networks.

CALIBRATION AND SYNCHRONIZATION
In addition to the path loss, measured RSS is also a function
of the calibration of both the transmitter and receiver.
Depending on the expense of the manufacturing process,
RSSI circuits and transmit powers will vary from device to
device. Also, transmit powers can change as batteries deplete.
Sensors might be designed to measure and report their own
calibration data to their neighbors. 

Alternatively, each sensor’s transmit power can be consid-
ered an unknown parameter to be estimated. This means that
the unknown vector θθθ described earlier is augmented to
include the actual transmit power of each sensor along with its
coordinates. Or, analogous to time difference of arrival (TDOA)
measurements, we can consider only the differences between
RSS measured at pairs of receivers [30]. The RSS difference
between two sensors indicates information about their relative
distance from the transmitter and removes the dependency on
the actual transmit power. We leave discussion of localization
algorithms to a later section.

TOA
TOA is the measured time at which a signal (RF, acoustic, or
other) first arrives at a receiver. The measured TOA is the time
of transmission plus a propagation-induced time delay. This
time delay, Ti, j, between transmission at sensor i and reception
at sensor j, is equal to the transmitter-receiver separation dis-
tance, di, j, divided by the propagation velocity, vp. This speed
for RF is approximately 106 times as fast as the speed of sound;
as a rule of thumb, for acoustic propagation, 1 ms translates to
1 ft (0.3 m), while for RF, 1 ns translates to 1 ft.

The cornerstone of time-based techniques is the receiver’s
ability to accurately estimate the arrival time of the line-of-sight
(LOS) signal. This estimation is hampered both by additive noise
and multipath signals.

MAJOR SOURCES OF ERROR: ADDITIVE NOISE
Even in the absence of multipath signals, the accuracy of the
arrival time is limited by additive noise. Estimation of time
delay in additive noise is a relatively mature field [31].
Typically, the TOA estimate is the time that maximizes the
cross-correlation between the received signals and the known
transmitted signal. This estimator is known as a simple cross-
correlator (SCC). The generalized cross-correlator (GCC)

derived by Knapp and Carter [32] (the maximum likelihood
estimator (MLE) for the TOA) extends the SCC by applying
prefilters to amplify spectral components of the signal that
have little noise and attenuate components with large noise. As
such, the GCC requires knowledge (or estimates) of the signal
and noise power spectra.

For a given bandwidth and signal-to-noise ratio (SNR), our
time-delay estimate can only achieve a certain accuracy. The
CRB provides a lower bound on the variance of the TOA esti-
mate in a multipath-free channel. For a signal with bandwidth B
in (hertz), when B is much lower than the center frequency, Fc

(Hz), and signal and noise powers are constant over the signal
bandwidth [33]

var(TOA) ≥ 1

8π2 B Ts F2
c SNR

, (5)

where Ts is the signal duration in seconds. By designing the sys-
tem to achieve sufficiently high SNR, the bound predicted by the
CRB in (5) can be achieved in multipath-free channels. Thus (5)
provides intuition about how signal parameters like duration,
bandwidth, and power affect our ability to accurately estimate
the TOA. For example, doubling either the transmission power
or the bandwidth will cut ranging variance in half. This CRB on
TOA variance is complementary to the bound that will be pre-
sented for location variance because the location variance bound
requires, as an input, the variance of the TOA estimates.

MAJOR SOURCES OF ERROR: MULTIPATH
TOA-based range errors in multipath channels can be many times
greater than those caused by additive noise alone. Essentially, all
late-arriving multipath components are self-interference that
effectively decrease the SNR of the desired LOS signal. Rather
than finding the highest peak of the cross-correlation, in the mul-
tipath channel, the receiver must find the first-arriving peak
because there is no guarantee that the LOS signal will be the
strongest of the arriving signals. This can be done by measuring
the time that the cross-correlation first crosses a threshold.
Alternatively, in template-matching, the leading edge of the cross-
correlation is matched in a least-squares (LS) sense to the leading
edge of the auto-correlation (the correlation of the transmitted
signal with itself) to achieve subsampling time resolutions [16].
Generally, errors in TOA estimation are caused by two problems:

■ Early-arriving multipath. Many multipath signals arrive
very soon after the LOS signal, and their contributions to the
cross-correlation obscure the location of the peak from the
LOS signal.
■ Attenuated LOS. The LOS signal can be severely attenuated
compared to the late-arriving multipath components, causing
it to be “lost in the noise” and missed completely; this leads to
large positive errors in the TOA estimate.

In dense sensor networks, in which any pair of sensors can
measure TOA, we have the distinct advantage of being able to
measure TOA between nearby neighbors. As the path length
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decreases, the LOS signal power (relative to the power in the
multipath components) generally increases [34]. Thus, the
severely attenuated LOS problem is only severe in networks
with large intersensor distances.

While early-arriving multipath components cause smaller
errors, they are very difficult to combat. Generally, wider signal
bandwidths are necessary to obtain greater temporal resolution.
The peak width of the autocorrelation function is inversely pro-
portional to the signal bandwidth. A narrow autocorrelation peak
enhances the ability to pinpoint the arrival time of a signal and
helps in separating the LOS signal cross-correlation contribution
from the contributions of the early-arriving multipath signals.
Wideband direct-sequence spread-spectrum (DS-SS) or UWB sig-
nals (see “Ultra-Wideband and Localization”) are popular tech-
niques for high-bandwidth TOA measurements. However, wider
bandwidths require higher speed signal processing, higher device
costs, and possibly higher energy costs. Standards proposed to
the IEEE 802.15 Alternative PHY Task Group 3a quote receiver
power consumptions on the order of 200 mW [35]. And,
although high-speed circuitry typically means higher energy
consumption, the extra bandwidth can be used to lower the time-
average power consumption. Transferring data packets in less
time means spending more time in standby mode.

Finally, note that time delays in the transmitter and receiver
hardware and software add to the measured TOA. While the
nominal delays are typically known, variance in component
specifications and response times can be an additional source of
TOA variance.

STATISTICAL MODEL
Measurements have shown that for short-range measurements,
measured time delay can be roughly modeled as Gaussian

f
(
Ti, j = t|θ) = N

(
t; di, j/vp + µT, σ

2
T

)
, (6)

where µT and σ 2
T are the mean and variance of the time delay

error, θθθ is defined in (1), di, j is given in (4), and vp is the prop-
agation velocity. Wideband DS-SS measurements reported in
[24] supported the Gaussian error model and showed
µT = 10.9 ns and σT = 6.1 ns. UWB measurements conducted
on a mostly empty Motorola factory floor showed µT = 0.3 ns
and σT = 1.9 ns. This mean error µT can be estimated (as a
nuisance parameter) by the localization algorithm so that it
can be subtracted out [17].

However, the presence of large errors can complicate the
Gaussian model. These errors make the tails of the distribution
of measured TOA heavier than Gaussian and have been modeled
using a mixture distribution. With a small probability, the TOA
measurement results from a different, higher-variance distribu-
tion, as described in [36] as well as by Gustafsson and
Gunnarsson [87]. Localization systems should be designed to be
robust to these large errors, also called NLOS errors. For TOA
measurements made over time in a changing channel, the TOAs
that include excess delays can be identified and ignored [36].
Even in static channels, if the number of range measurements to
a device is greater than the minimum required, the redundancy
can be used to identify likely NLOS errors [37], [38]. Localization
algorithm robustness is further addressed in a later section.

CALIBRATION AND SYNCHRONIZATION
If wireless sensors have clocks that are accurately synchronized,
then the time delay is determined by subtracting the known
transmit time from the measured TOA. Sensor network clock
synchronization algorithms have reported precisions on the
order of 10 µs [39]. Because of the difference in propagation
speed, such clock accuracies are adequate for acoustic signals
[14] but not for RF signals.

For TOA in asynchronous sensor networks, a common prac-
tice is to use two-way (or round-trip) TOA measurements. In
this method, one sensor transmits a signal to a second sensor,
which immediately replies with its own signal. At the first sen-
sor, the measured delay between its transmission and its recep-
tion of the reply is twice the propagation delay plus a reply delay
internal to the second sensor. This internal delay is either
known, or measured and sent to the first sensor to be subtract-
ed. Multiple practical two-way TOA methods have been reported
in the literature [15], [18], 40], [41]. Generally each pair of sen-
sors measures round-trip TOA separately in time. But, if the first
sensor has the signal processing capability, multiple sensors can
reply at the same time, and two-way TOAs can be estimated
simultaneously using multiuser interference cancellation [40].

The state of each sensor’s clock (its bias compared with
absolute time) can also be considered to be an unknown param-
eter and included in the parameter vector θθθ . In this case, one-
way TOA is measured and input to a localization algorithm that
estimates both the sensor coordinates and the biases of each
sensor’s clock [42]. The difference between the arrival times of

ULTRA-WIDEBAND AND LOCALIZATION

UWB communication employs narrow pulses of very short
(subnanosecond) duration that result in radio signals that are
broadly spread in the frequency domain. The article by Gezici
et al. [89] provides a detailed overview of UWB-based local-
ization. A signal is considered to be UWB if either its fraction-
al bandwidth (the ratio of its bandwidth to its center
frequency) is larger than 0.2 or if it is a multiband signal with
total bandwidth greater than 500 MHz. In 2003, the U.S.
Federal Communications Commission (FCC) approved the
commercialization and operation of UWB devices for public
safety and consumer applications. Among the envisaged
applications are wireless networking and localization.
Standardization of UWB is underway, including the develop-
ment of a high-bit-rate UWB physical layer that supports
peer-to-peer ranging, in IEEE task group 802.15.3a, and
potentially in IEEE task group 802.15.4a [35].

The very high bandwidth of UWB leads to very high tempo-
ral resolution, making it ideal for high-precision radiolocation
applications. Implementations of UWB-based range measure-
ments, reported in [17]–[19] and [41], have demonstrated
RMS ranging errors of 0.4 to 5 feet (0.12 to 1.5 m).
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the same signal at two sensors is called the TDOA. A TDOA
measurement does not depend on the clock bias of the transmit-
ting sensor. For decades, TDOA methods have been used in
source localization for locating asynchronous transmitters; they
find application in GPS and cellular localization. Under certain
weak conditions, it has been shown that TOA with clock bias
(treated as an unknown parameter) is equivalent to TDOA [43].

AOA
By providing information about the direction to neighboring
sensors rather than the distance to neighboring sensors, AOA
measurements provide localization information complementary
to the TOA and RSS measurements discussed above.

There are two common ways that sensors measure AOA (as
shown in Figure 3). The most common method is to use a sen-
sor array and employ so-called array signal processing tech-
niques at the sensor nodes. In this case, each sensor node is
comprised of two or more individual sensors (microphones for
acoustic signals or antennas for RF signals) whose locations
with respect to the node center are known. A four-element Y-
shaped microphone array is shown in Figure 3(a). The AOA is
estimated from the differences in arrival times for a transmitted
signal at each of the sensor array elements. The estimation is
similar to time-delay estimation discussed in the section on TOA
measurements but generalized to the case of more than two
array elements. When the impinging signal is narrowband (that
is, its bandwidth is much less than its center frequency), then a
time delay τ relates to a phase delay φ by φ = 2π fcτ where fc is
the center frequency. Narrowband AOA estimators are often for-
mulated based on phase delay. See [44]–[46] for more detailed
discussions on AOA estimation algorithms and their properties.

A second approach to AOA estimation uses the RSS ratio
between two (or more) directional antennas located on the sen-
sor [see Figure 3(b)]. Two directional antennas pointed in differ-
ent directions, such that their main beams overlap, can be used
to estimate the AOA from the ratio of their individual RSS values.

Both AOA approaches require multiple antenna elements,
which can contribute to sensor
device cost and size. However,
acoustic sensor arrays may
already be required in devices for
many environmental monitoring
and security applications, in
which the purpose of the sensor
network is to identify and locate
acoustic sources [47]. Locating
the sensors themselves using
acoustics in these applications is
a natural extension. RF antenna
arrays imply large device size
unless center frequencies are
very high. However, available
bandwidth and decreasing manu-
facturing costs at millimeter-
wave frequencies may make them

desirable for sensor network applications. For example, at 60
GHz, higher attenuation due to oxygen absorption helps to
mitigate multipath and accurate indoor AOA measurements
have been demonstrated [48].

MAJOR SOURCES OF ERROR AND STATISTICAL MODEL
AOA measurements are impaired by the same sources discussed
in the TOA section: additive noise and multipath. The resulting
AOA measurements are typically modeled as Gaussian, with
ensemble mean equal to the true angle to the source and stan-
dard deviation σα . Theoretical results for acoustic-based AOA
estimation show standard deviation bounds on the order of
σα = 2◦ to σα = 6◦, depending on range [49]. Estimation errors
for RF AOA on the order of σα = 3◦ have been reported using
the RSS ratio method [50].

CALIBRATION AND SYNCHRONIZATION
It is not likely that sensors will be placed with known orienta-
tion. When sensor nodes have directionality, the network local-
ization problem must be extended to consider each sensor’s
orientation as an unknown parameter to be estimated along
with position. In this case, the unknown vector θθθ is augmented
to include the orientation of each sensor.

The models presented earlier are sufficient to find bounds on
localization performance in cooperative localization. These
lower bounds are not a function of the particular localization
algorithm employed. Thus we present some of these perform-
ance limits in the following section before discussing current
algorithm research.

LIMITS ON LOCALIZATION COVARIANCE
The CRB provides a means for calculating a lower bound on the
covariance of any unbiased location estimator that uses RSS,
TOA, or AOA measurements. Such a lower bound provides a
useful tool for researchers and system designers. Without test-
ing particular estimation algorithms, a designer can quickly find
the “best-case” using particular measurement technologies.
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[FIG3] AOA estimation methods. (a) AOA is estimated from the TOA differences among sensor
elements embedded in the  node; a four-element Y-shaped array is shown. (b) AOA can also be
estimated from the RSS ratio RSS1/RSS2 between directional antennas.
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Researchers who are testing localization algorithms, like those
presented in the later section on algorithms for location estima-
tion, can use the CRB as a benchmark for a particular algo-
rithm. If the bound is nearly achieved, then there is little reason
to continue working to improve that algorithm’s accuracy.
Furthermore, the bound’s functional dependence on particular

parameters helps to provide insight into the behavior of cooper-
ative localization.

The bound on estimator covariance is a function of the 
following: 

1) number of unknown-location and known-location sensors
2) sensor geometry
3) whether localization is in two or three dimensions 
4) measurement type(s) implemented (i.e., RSS, TOA, or
AOA)
5) channel parameters (such as σdB and np in RSS, σT in
TOA, or σα in AOA measurements) 
6) which pairs of sensors make measurements (network con-
nectivity) 
7) nuisance (unknown) parameters that must also be 
estimated (such as clock bias for TOA or orientation for AOA
measurements).
As an online supplement to this article, we provide public

access to a multifeatured MATLAB-based code and GUI for the
calculation of the localization CRB [53], as shown in Figure 4.
This code can determine bounds when any combination of RSS,
TOA, and AOA measurements is used. It allows the inclusion of
device orientation and clock biases as unknown nuisance
parameters. Sensors can be arranged visually using the GUI and
the bound can be calculated. For each sensor, the GUI displays
the CRB by plotting the lower bound on the 2-σ uncertainty
ellipse. The tool also includes the ability to run Monte Carlo
simulations that estimate sensor parameters and coordinates
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WHAT IS THE CRAMÉR-RAO BOUND?

The Cramér-Rao bound (CRB) provides a lower bound on the variance achievable by any unbiased location estimator [54]. The bound is
useful as a guideline: knowing the best an estimator can possibly do helps us judge the estimators that we implement. Essentially, the
CRB is a general uncertainty principle that we apply in this article to location estimation. It is surprising, to those without a priori
knowledge of the CRB, that we can calculate the lower bound on estimation variance without ever considering a single estimation
method. All that is needed to calculate a CRB is the statistical model of the random measurements, i.e., f (X|θθθ), where X is the random
measurement and θθθ are the parameters that are to be estimated from the measurements. Any unbiased estimator θ̂θθ must satisfy 

Cov(θ̂) ≥ {
E

[ − ∇θ (∇θ ln f (X|θ))T]}−1
, (11)

where Cov(θ̂θθ) is the covariance of the estimator,
E[·] indicates expected value, ∇θθθ is the gradient
operator w.r.t. the vector θθθ , and superscript T

indicates transpose. 
The bound is very similar to sensitivity analysis,

applied to random measurements. The CRB is
based on the curvature of the log-likelihood
function, ln f (X|θ). Intuitively, if the curvature of
the log-likelihood function is very sharp like the
example plot in Figure 5(b), then the optimal
parameter estimate can be accurately identified.
Conversely, if the log-likelihood is broad with
small curvature like the graph in Figure 5(a), then estimating the optimal will be more difficult.

The CRB is limited to unbiased estimators. Such estimators provide coordinate estimates that, if averaged over enough realizations,
are equal to the true coordinates. Although unbiased estimation is a very desirable property, some bias might be tolerated to reduce
variance; in such cases, the bound can be adapted [55].

[FIG4] Lower bounds and Monte Carlo ML estimates can be
calculated interactively using this MATLAB-based GUI developed
by Joshua Ash at Ohio State University and freely available
online [53]. Sensors can be placed arbitrarily and their
capabilities and a priori location information given. The user may
select any combination of AOA, TOA, and RSS measurements.

[FIG5] Example log-likelihood functions for two-parameter estimation with
(a) small and (b) large curvature.  The variance bound will be higher in
example (a) than in (b).
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using the MLE that will be discussed. The Monte Carlo coordi-
nate estimates are plotted on screen for comparison with the
covariance bound.

In this section, we present some analytical results for the
CRB. Our purpose is both to show how simple it is to calculate
and to demonstrate it as a means to compare the three measure-
ment methods presented earlier. To keep the formulation short,
we make two simplifying assumptions: first, we address 2-D
(rather than 3-D) localization and, second, we assume that
channel and device parameters (orientation for AOA, transmit
powers and np for RSS, and clock biases for TOA) are known.
Analysis of bounds without these assumptions are left to [11],
[12], [42], [51], and [52], which have presented details of these
analytical CRBs for a variety of different measurement types.

CALCULATING THE CRB IN THREE STEPS
Under these two simplifying assumptions, the variance bounds
based on measurements of RSS, TOA, and AOA are remarkably
similar. Particular differences demonstrate how localization per-
formance varies by measurement type. We show how to calcu-
late the CRB for the estimate of θθθ as given in (1) in three steps:

STEP 1: CALCULATE FISHER INFORMATION SUBMATRICES
First, form three n × n matrices: Fxx , Fxy , and Fyy . As intro-
duced earlier, n is the number of unknown-location sensors.
The k, l element of each matrix is calculated as follows:

[
Fxx

]
k,l

=
{

γ
∑

i∈H(k)(xk − xi)
2/ds

k,i k = l

−γ IH(k)(l)(xk − xl)
2/ds

k,l k �= l[
Fxy

]
k,l

=
{

γ
∑

i∈H(k)(xk − xi)(yk − yi)/ds
k,i k = l

−γ IH(k)(l)(xk − xl)(yk − yl)/ds
k,l k �= l[

Fyy

]
k,l

=
{

γ
∑

i∈H(k)(yk − yi)
2/ds

k,i k = l

−γ IH(k)(l)(yk − yl)
2/ds

k,l k �= l.
(7)

Here, γ is a channel constant and s is an exponent, both of
which are functions of the measurement type and are given in
Table 1; dij is the true distance between i and j given in (4); and
IH(k)(l) is the indicator function, (which allows us to include
the information only if sensor k made a measurement with sen-
sor l), IH(k)(l) = 1 if l ∈ H(k), or 0 if not.

STEP 2: MERGE SUBMATRICES TO FORM THE FIM
Next, we form the 2n × 2n Fisher information matrix (FIM) F
corresponding to the 2n coordinates in θθθ that need to be esti-
mated. For TOA or RSS, we select F = FTR, while for AOA, we
select F = FA, where

FTR =



Fxx Fxy

FT
xy Fyy


 , FA =




Fyy −Fxy

−FT
xy Fxx


 , (8)

where Fxx, Fxy, and Fyy are given in (7), and we use the super-
script T to indicate matrix transpose.

STEP 3: INVERT THE FIM TO GET THE CRB
The CRB matrix is equal to F−1, the matrix inverse of the FIM.
The diagonal of F−1 contains 2n values that are the variance
bounds for the 2n parameters of θθθ . To say this more precisely, let
an estimator of sensor i’s coordinates be ẑi = [x̂i, ŷi]T. If we
define the location variance of the estimator to be σ 2

i ,

σ 2
i

�= tr
{
covθ (ẑi)

} = Varθ (x̂i) + Varθ ( ŷi), (9)

then the CRB asserts that,

σ 2
i ≥

(
F−1

)
i,i

+
(

F−1
)

i+n,i+n
. (10)

RESULTS SEEN FROM THE CRB
Even without calculating the CRB for a particular sensor net-
work geometry, we can explore the scaling characteristics of the
variance bound. What happens when the geometry and connec-
tivity of the network and kept constant, but the dimensions of
the network are scaled up proportionally?

■ TOA: TOA bounds will remain constant with a scaling of
the dimensions. Note that since s = 2 for TOA, the frac-
tions in (7) are unitless; if units of the coordinates were feet
or even centimeters instead of meters, the ratios would be
identical. Instead, the units come from the variance of
ranging error, vpσT.
■ RSS and AOA: These bounds on standard deviation are
proportional to the size of the system. Since s = 4 for RSS
and AOA, the geometry ratios in (7) have units of
1/distance2, so the variance bound (the inverse) takes its
units of distance2 directly from this ratio. Note that the
channel constant γ is unitless for both RSS and AOA.

Of course, channel parameters will change slowly as the path
lengths change (TOA measurements over kilometer links would
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CRB AND GEOMETRIC DILUTION OF PRECISION

The geometric dilution of precision (GDOP), commonly used
to describe localization performance of an estimator, is closely
related to the CRB. If an estimator uses range measurements
with variance σ 2

d and achieves a location variance [as defined
in (9)] of σ 2

i at sensor i, then its GDOP is defined as
GDOP = σi/σd. If the estimator was efficient (an efficient esti-
mator is one that achieves the CRB), then the CRB on stan-
dard deviation is σi = σdGDOP.

CHANNEL CONSTANT γ EXPONENT s FIM F

TOA γ = 1/(vpσT )2 s = 2 F = FTR

RSS γ =
(

10np

σdB log10

)2
s = 4 F = FTR

AOA γ = 1/σ 2
α s = 4 F = FA

[TABLE 1]  DIFFERENCES IN CRB BY MEASUREMENT TYPE.
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have higher variance than over 10-m links), but these scaling
characteristics are good first-order approximations.

Finally, note that the bound on standard deviation of local-
ization error is proportional to (1/γ )1/2. It makes sense that
the localization error is proportional to σT for TOA and σα for
AOA. While not as obvious, we also find from the CRB that for
RSS, the proportionality is to σdB/np. An RSS-based localiza-
tion system operating in a high-path-loss exponent environ-
ment (often found when using ground-level antennas), while
requiring higher transmit powers from sensors, also allows
more accurate sensor localization.

NUMERICAL EXAMPLE
Consider a sensor network in a 20-m by 20-m area, with
K2sensors arranged into K rows and K columns, as shown in
Figure 6. The four sensors in the corners are reference nodes,
while the remaining K2 − 4 are unknown-location nodes. Let’s
consider what happens to the localization variance bound as K
increases, for the cases when measurements are: 

1) RSS with σdB/np = 1.7 [24]
2) TOA with σT = 6.1 ns and vp = 3 · 108(m/s) [24]
3) AOA with σα = 5◦.
As presented above, the lower bounds for RSS, TOA, and AOA

are proportional to these three channel parameters. We start by
assuming that each sensor makes measurements with every
other sensor in the network. We calculate the RMS value of the
localization bound, i.e., ((1/n)trF−1)1/2, which gives an average
of the bound over the entire K2 − 4 unknown-location sensors.
The result is shown in the solid lines in Figure 7 labeled as
r = ∞. Next, we consider the realistic case in which each sensor
only makes measurements to those sensors located within
r = 10 m of itself. Of course, sensors will not really know exactly
which sensors are within 10 m, but the connectivity implied by
the 10-m radius provides a realistic test. In this case, the bound
is shown as dotted lines in Figure 7 and labeled as r = 10 m.

Comparing performance of the measurement methods for
the chosen parameters, AOA outperforms TOA and RSS, while
RSS can perform as well as TOA at high sensor densities. Of
course, these comparisons are based on the chosen values of the
measurement parameters and the chosen geometry shown in
Figure 6. As described earlier, these bounds are proportional to
1/

√
γ where γ is the channel constant given in 

Table 1. For example, if it was assumed that σα = 10◦ instead of
5◦, the standard deviation bound for AOA would be twice that
shown in Figure 7. Note that RSS and AOA bounds decrease
more rapidly than TOA as the density increases. Also, for RSS
and AOA, the difference between the r = 10 m and r = ∞ lines
decreases dramatically as density increases. At high densities,
the results show that little additional information comes from
the distant sensors (> 10 m). For TOA, however, even distant
sensors’ measurements can provide significant localization
information.

LOCATION ESTIMATION ALGORITHMS
This article has presented performance bounds for location esti-
mators without mentioning particular algorithms. Detailed
reviews of such algorithms could easily consume an entire arti-
cle; in fact, such localization algorithm reviews have been pre-
sented [21], [56]. The article by Sun et al. [88] also presents
details of many sensor localization algorithms. This article,
however, does attempt to describe the general signal processing
tools that have been deemed useful in reported cooperative
localization algorithms.

While positioning and navigation have a long history (as evi-
denced in this issue), cooperative localization algorithms must
extend existing methods by finding ways to use measurements
(of range or angle) between pairs of unknown-location nodes.

[FIG7]  Lower bounds for localization standard deviation for the
example described in the text when measurements are RSS (with
σdB/np = 1.7 [24]), TOA (with σT = 6.3 ns [24]), and AOA (with
σα = 5◦). Parameter r is the radius of connectivity; only pairs of
sensors closer than r make measurements, and for r = ∞, all
pairs make measurements.
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[FIG6] Diagram showing layout of the K2 sensors from the
numerical example given in the test, with four reference sensors
(×) and K2 − 4 unknown-location sensors (•) in a L × L square
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The challenge is to allow sensors that are not in range of any
known-location devices to be located and, further, to improve
the location estimates of all sensors. 

If all sensors were in range of multiple reference nodes,
they could directly calculate their own locations. For exam-
ple, in [57], nodes measure RSS from a dense network of ref-
erence nodes and calculate their location to be the mean of
the locations of the in-
range reference nodes. Yet,
in most wireless sensor net-
works, to minimize instal-
lation expenses, reference
nodes will be sparse. Also,
low-energy sensors general-
ly will not be in range of
enough references (three or
four for 2-D or 3-D localization, respectively).

We divide cooperative localization into centralized algo-
rithms, which collect measurements at a central processor
prior to calculation, and distributed algorithms, which require
sensors to share information only with their neighbors, but
possibly iteratively.

CENTRALIZED ALGORITHMS
If the data is known to be described well by a particular sta-
tistical model (e.g., Gaussian or log-normal), then the MLE
can be derived and implemented [24], [12]. One reason that
these estimators are used is that their variance asymptotical-
ly (as the SNR ratio goes high) approaches the lower bound
given by the CRB. As indicated by the name, the maximum of
a likelihood function must be found. There are two difficul-
ties with this approach.

1) Local maxima: Unless we initialize the MLE to a value
close to the correct solution, it is possible that our maximiza-
tion search may not find the global maxima.
2) Model dependency: If measurements deviate from the
assumed model (or model parameters), the results are no
longer guaranteed to be optimal.

One way to prevent local maxima is to formulate the localization
as a convex optimization problem. In [58], convex constraints
are presented that can be used to require a sensor’s location esti-
mate to be within a radius r and/or angle range [α1, α2] from a
second sensor. In [42], linear programming using a “taxi metric”
is suggested to provide a quick means to obtain rough localiza-
tion estimates. More general constraints can be considered if
semidefinite programming (SDP) techniques are used [59]. One
difficulty that must be overcome in both techniques is their
high computational complexity. Toward this end, a distributed
SDP-based localization algorithm was presented in [60].

Multidimensional scaling (MDS) algorithms (and Isomap)
[61] formulate sensor localization from range measurements
as an LS problem [62], [63]. In classical MDS, the LS solution
is found by eigen-decomposition, which does not suffer from
local maxima. To linearize the localization problem, the clas-
sical MDS formulation works with squared distance rather

than distance itself, and the end result is very sensitive to
range measurement errors. Other MDS-based techniques, not
based on eigen-decomposition, can be made more robust by
allowing measurements to be weighted according to their
perceived accuracy [20].

While MDS and Isomap have complexity O(N3), where
N = n + m is the total number of sensors, other manifold

learning methods (such as
local linear embedding (LLE)
[64]) are also based on eigen-
decomposition, but of sparse
matrices, and are O(N2) .
Manifold learning perform-
ance has been presented for
the case when sensor data
records are used as location

information [65], and will likely play an important role when
using other types of measurements. Also adapted from the
statistical learning area, supervised learning approaches local-
ization as a series of detection problems [66]. The covered
area is split into smaller, overlapping regions; based on the
measurements, each region detects whether or not the sensor
is within its boundaries.

DISTRIBUTED ALGORITHMS
There are two big motivations for developing distributed local-
ization algorithms. First, for some applications, no central
processor (or none with enough computational power) is avail-
able to handle the calculations. Second, when a large network of
sensors must forward all measurement data to a single central
processor, there is a communication bottleneck and higher
energy drain at and near the central processor. 

Distributed algorithms for cooperative localization generally
fall into one of two categories.

1) Network multilateration: Each sensor estimates its multi-
hop range to the nearest reference nodes. These ranges can
be estimated via the shortest path between the sensor and ref-
erence nodes, i.e., proportional to the number of hops or the
sum of measured ranges along the shortest path [67]–[69].
Note that finding the shortest path is readily distributed
across the network. When each sensor has multiple range
estimates to known positions, its coordinates are calculated
locally via multilateration [70], [71]. 
2)  Successive refinement: These algorithms try to find the
optimum of a global cost function, e.g., LS, weighted LS
(WLS) [20], or maximum likelihood (ML). Each sensor esti-
mates its location and then transmits that assertion to its
neighbors [7], [72], [73]. Neighbors must then recalculate
their location and transmit again, until convergence. A
device starting without any coordinates can begin with its
own local coordinate system and later merge it with neigh-
boring coordinate systems [74]. Typically, better statistical
performance is achieved by successive refinement com-
pared to network multilateration, but convergence issues
must be addressed. 
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SIGNAL PROCESSING METHODS WILL BE
VERY USEFUL FOR AIDING SYSTEM DESIGN
DECISIONS AS WELL AS IN COOPERATIVE

LOCALIZATION ALGORITHMS THEMSELVES.
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Bayesian networks (or factor graphs) provide another distrib-
uted successive refinement method to estimate the probability
density of sensor network parameters. These methods are particu-
larly promising for sensor localization—each sensor stores a con-
ditional density on its own coordinates, based on its
measurements and the condi-
tional density of its neighbors
[75]. Alternatively, particle fil-
tering methods (or Monte
Carlo estimation methods)
have each sensor store a set of
“particles,” i.e., candidate rep-
resentations of its coordi-
nates, weighted according to
their likelihood [76], [77]. These methods have been used to accu-
rately locate and track mobile robots [78]; they will likely find
application in future sensor localization and tracking research.

COMPARISON
Both centralized and distributed algorithms must face the high
relative costs of communication. The energy required per trans-
mitted bit could be used, depending on the hardware and the
range, to execute 1,000 to 30,000 instructions [47]. Centralized
algorithms in large networks require each sensor’s measurements
to be passed over many hops to a central processor, while distrib-
uted algorithms have sensors send messages only one hop (but
possibly make multiple iterations). The energy efficiency of cen-
tralized and distributed estimation approaches can be compared
[79]; in general, when the average number of hops to the central
processor exceeds the necessary number of iterations, distributed
algorithms will likely save communication energy costs.

There may be hybrid algorithms that combine centralized and
distributed features to reduce the energy consumption beyond
what either one could do alone. For example, if the sensor network
is divided into small clusters, an algorithm could select a processor
from within each cluster to estimate a map of the cluster’s sensors.
Then, cluster processors could operate a distributed algorithm to
merge and optimize the local estimates, such as described in [80].
Such algorithms are a promising topic for future research.

FUTURE RESEARCH NEEDS AND CONCLUSION
Ultimately, actual localization performance will depend on many
things, including the localization algorithm used, the size and
density of the network, the quantity of prior coordinate informa-
tion, the measurement method chosen, and the accuracies pos-
sible from those measurements in the environment of interest
(the γ of Table 1). However, based on the characteristics of the
variance bounds presented in the section on limits on localiza-
tion covariance, we can make some broad generalizations. It
appears that TOA measurements will be most useful in low-den-
sity sensor networks, since they are not as sensitive to increases
in interdevice distances as RSS and AOA. Both AOA and TOA are
typically able to achieve higher accuracy than RSS; however, that
accuracy can come with higher device costs. Because of their
scaling characteristics, localization based on RSS and AOA

measurements can, without sacrificing much accuracy, avoid
taking measurements on longer-distance links; instead, they
focus on those links between nearest neighbors. RSS measure-
ments will allow accurate localization in dense networks, and
will be very attractive due to their low cost to system designers.

Considerable literature
has studied cooperative local-
ization with an emphasis on
algorithms; less research has
placed the emphasis on local-
ization as estimation.
Accordingly, bias and variance
performance are often sec-
ondary concerns. While a

notable algorithm comparison is seen in [81], in general, it is
difficult to compare the performance of localization algorithms
in the literature. Reporting both bias and variance performance
along with the Cramér-Rao lower bound (CRLB) will help pro-
vide a reference for comparison.

While simulation will be very valuable, the next step in coop-
erative localization research is to test algorithms using meas-
ured data. However, measurements of RSS, TOA, and AOA in
wireless sensor networks have only begun to be reported, largely
because of the complexity of such measurement campaigns. To
conduct measurements in a N-sensor network requires O(N2)

measurements, and multiple sensor networks must be meas-
ured to develop and test statistical models. Despite the complex-
ity, data from such measurement campaigns will be of key
importance to sensor network researchers.

Such measurements should consider joint statistics of RSS,
TOA, and AOA. While this article has considered them separately,
multiple modalities measured together may provide more infor-
mation than just the sum of their parts. For example, together,
angle and time (spatio-temporal) measurements can cross-
check for NLOS errors; if at the leading edge in the receiver’s
cross-correlation, power from multiple angles are measured,
then it is apparent that the leading edge is not a direct LOS sig-
nal. This example is part of a bigger issue of determining suffi-
cient statistics of joint spatio-temporal-signal strength
measurements, which is still an open research topic.

Three other future directions for cooperative localization
research are suggested: mobile sensor tracking, the use of con-
nectivity measurements, and routing using virtual coordinates.

MOBILE SENSOR TRACKING
This article has not discussed sensor mobility. Mobility creates
the problem of locating and tracking moving sensors in real
time, and also the opportunity to improve sensor localization.
Detecting movement of a sensor in a network of communication
or energy-constrained nodes is a distributed detection problem
that has yet to be fully explored. For the problem of passive
tracking of sources in the environment, a review is presented in
[47]; but the problem of tracking active sensors has not been
sufficiently addressed as a collaborative signal processing prob-
lem. The sensor tracking problem is an important aspect of

WE SHOW HOW TO CALCULATE A 
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many applications, including the animal tracking and logistics
applications discussed earlier.

If a sensor makes multiple measurements to its neighbors as
it moves across space, it has the opportunity to reduce environ-
ment-dependent errors by averaging over space. The multiple
measurements are useful to help improve coordinate estimates
for other sensors in the network, not just the mobile node.
Researchers have tested schemes that use mobile sources and
sensors to achieve cooperative localization [82], [83]; however,
further opportunities to exploit mobility remain to be explored.

CONNECTIVITY MEASUREMENTS
Connectivity (a.k.a. proximity) is a binary measurement of
whether or not two devices are in communication range of
each other. Typical digital receivers have a minimum received
power below which it is unlikely that a packet will be correctly
decoded. Connectivity can be considered to be a binary quanti-
zation of RSS. As a good approximation, when the RSS is
below a power threshold, two devices will not be connected;
when the RSS is above the threshold, two devices will be con-
nected. As a binary quantization of RSS, it is clear that connec-
tivity is less informative than RSS and will result in higher
localization variance bounds [84]. Research in connectivity-
based localization is often called “range-free” localization. The
assumption that connectivity does not suffer from the same
fading phenomena as RSS, and instead that radio coverage is a
perfect circle around the transmitter, can be a valuable simpli-
fication during algorithm development. However, this assump-
tion cannot be used to accurately test the performance of such
algorithms. Range-free localization algorithms can be simulat-
ed by generating measurements of RSS between each pair of
sensors using the log-normal model of (3) and then consider-
ing each pair with an RSS measurement above a threshold
power to be connected.

ROUTING USING VIRTUAL COORDINATES
Geographic routing is an application of sensor localization. The
use of the coordinates of sensors can reduce routing tables and
simplify routing algorithms. Localization errors, however, can
adversely impact routing algorithms, leading to longer paths
and delivery failures [85]. For the purposes of routing efficiency,
actual geographical coordinates may be less useful than “virtu-
al” coordinates [86] (i.e., a representation of a sensor’s ‘location’
in the graph of network connectivity). These virtual coordinates
could be in an arbitrary dimension, possibly higher than two or
three. There are often paths in multihop wireless networks that
consume less power than the shortest, straightest-line path
between two nodes, and virtual coordinates may enable a better
representation of the network connectivity. The virtual coordi-
nate estimation problem is a dimension reduction problem that
inputs each sensor’s connectivity or RSS measurement vector
and outputs a virtual coordinate in an arbitrary low dimension,
optimized to minimize a communication cost metric. Such
research could enable more energy-efficient scalable routing
protocols for very large sensor networks.

CONCLUSION
Cooperative localization research will continue to grow as
sensor networks are deployed in larger numbers and as appli-
cations become more varied. Localization algorithms must be
designed to achieve low bias and as low of variance as possi-
ble; at the same time, they need to be scalable to very large
network sizes without dramatically increasing energy or com-
putational requirements.

This article has provided a window into cooperative localiza-
tion, which has found considerable application in ad-hoc and
wireless sensor networks. We have presented measurement-
based statistical models of TOA, AOA, and RSS, and used them
to generate localization performance bounds. Such bounds are
useful, among other design considerations, as design tools to
help choose among measurement methods, select neighbor-
hood size, set minimum reference node densities, and compare
localization algorithms.
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