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ABSTRACT
Real database systems can often be very complex. A person
wishing to access data from an unfamiliar database has the
daunting task of understanding its schema before being able
to pose a correct query against it. A schema summary can
be of great help, providing a succinct overview of the entire
schema, and making it possible to explore in depth only the
relevant schema components.

In this paper we formally define a schema summary and
two desirable properties (in addition to minimizing size)
of a summary: presenting important schema elements and
achieving broad information coverage. We develop algo-
rithms that allow us to automatically generate schema sum-
maries based on these two goals. We further develop an
objective metric for assessing the quality of a schema sum-
mary using query information. Experimental evaluation us-
ing this metric demonstrates that the summaries produced
by our algorithms can significantly reduce the amount of
user effort required to formulate a query through schema
exploration.

1. INTRODUCTION
Real databases often have extremely complex schemas. How-
ever, a complex schema is difficult to comprehend, limiting
the database accessibility (in terms of both querying and
data exchange) to a small number of people, who have spent
a significant amount of time understanding the schema. Con-
sider the example schema based on the XMark [12] bench-
mark in Figure 1. The schema is small compared to that
of most production databases, and a significant portion of
the schema has in fact been suppressed. Even so, a user
unfamiliar with the XMark dataset will take time to figure
out the major themes of the schema.

Typically, a user has a query need that depends on a portion
of the schema. But to be able to express this query need,
the user has to study the entire complex schema and dis-
cover the schema elements of interest. For example, a user
who wishes to find out the end time for an open auction
in the XMark database, has to study the schema and filter
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away irrelevant information about items and persons. These
problems become much worse for more complex schemas, es-
pecially when the schema can no longer be presented to the
user in its entirety at a reasonable information density [15].

In this paper, we propose the notion of schema summary
to address the above problems. As shown in Figure 2(A),
a summary utilizes abstract elements and abstract links to
summarize a complex schema and provide the users with a
concise overview for better understanding. Each abstract
element in the summary corresponds to a cluster of original
schema elements (and other lower level abstract elements in
the case of a multi-level summary), and each abstract link
represents one or more links between the schema elements
within those abstract elements. A user presented with the
summary in Figure 2(A) can immediately understand that
the schema is about auctions, along with the items and per-
sons related to the auctions. Furthermore, if the user is
interested in only information about open auctions, she can
selectively expand that abstract element, as shown in Fig-
ure 2(C). She will then get more detailed information for
that particular part of the schema alone, without being ex-
posed to other unrelated details.

While schema summaries are useful, creating a good sum-
mary is a non-trivial task. A schema summary should be
concise enough for users to comprehend, yet it needs to con-
vey enough information for users to obtain a decent under-
standing of the underlying schema and data. Consider the
two schema summaries in Figure 2(A & B). While both have
the same number of abstract elements, A is intuitively a bet-
ter summary than B because A informs the user about the
bidder element in the schema, which corresponds to much
more information (i.e., the bidders) in the database than the
region element in B. In this paper, we capture this intu-
ition formally through the notions of summary importance
and summary coverage. Along with the intuitive notion of
summary size, they describe the effectiveness of a summary
for a complex schema and the database associated with it.

Humans can be good at summarization, and the database
designer could generate a schema summary at the time the
schema is being specified. In fact, a design summary (usually
expressed in ER diagram) is sometimes created as part of the
design process. However, such internal documents are un-
likely to be made available, in a heterogeneous environment,
to external users who may be permitted database access. On
the other hand, it is exactly such users who would benefit
most from having a schema summary available. Therefore,
we have little choice but to generate summaries from existing
databases. One possible approach is to generate summaries
manually, but this is labor-intensive, and is impractical in
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Figure 1: Example schema based on XMark. Nodes, solid arrows, and dashed arrows represent schema elements (or

attributes, with prefix ‘@’), structural links, and value links, respectively. Elements with suffix ‘*’ are of SetOf type.

site

item*

person*

open_auction*

bidder*

site

item*

person*

open_auction*
regions

A

B

open_auctions

open_auction*

seller
itemref

bidder*
item

@person

…
initial

site

item*

person*

C

@id

Figure 2: Two full schema summaries (A & B) and an

expanded schema summary (C) for the XMark schema

in Figure 1. All elements in A & B are abstract elements

(except site), while dashed boxes indicate abstract el-

ements in C. Dashed arrows indicate value links or ab-

stract links representing at least one value link.

situations where schemas evolve. Leaving summary genera-
tion to a manual process also leaves open the possibility that
the summary will not be updated when the schema (and/or
the database) is updated, resulting in a supposed summary
that is actually outdated and misleading. In short, we would
like to have automatic summary generation. In this paper,
we design and implement a system that can accomplish this
for schemas in both relational and hierarchical data models.

While summarizing schema, whether relational or hierar-
chical, has never been studied before, several studies have
focused on ER model abstraction [13, 1, 3, 4, 11]. Those

methods aim to cluster ER entities into abstract entities
and rely heavily on the semantic types of the relationships
between entities. For example, two entities linked with an
is-a relationship are typically grouped together. Unlike
ER models, however, relational or hierarchical schemas do
not have semantic meanings attached to the structural or
value links. Therefore, the above methods can not be ap-
plied to schema summarization. Furthermore, the ER model
abstraction can not take advantage of semantic information
embedded in the data since it only considers the structural
information inside the ER model. Our notions of summary
importance and coverage address these problems by taking
into consideration both schema structure and data distribu-
tion for generating effective summaries automatically.

Main contributions and paper outline: We make the
following main contributions: I. We formally define the no-
tion of schema summary (Section 2); II. We introduce sum-
mary importance and summary coverage as desirable prop-
erties for a good schema summary (Section 3); III. We de-
sign novel algorithms for automatic generation of summaries
that balance importance and coverage (Section 4); IV. We
propose a query-based metric for objectively evaluating the
quality of schema summary and demonstrate, through a
comprehensive set of experiments, that automatic summaries
generated by our system significantly reduce user effort re-
quired in formulating a query (Section 5).

2. SCHEMA SUMMARY
We consider schemas as labeled directed graphs (Figure 1),
which model both relational and hierarchical (XML) schemas.
Each node in the graph corresponds to: 1) a relation or an
attribute column for relational schemas; 2) an element or
an attribute for hierarchical schemas. The edges correspond
to structural links (e.g., parent-child links) and value links
(e.g., foreign key constraints). A special node is designated
as “root.” It has no incoming structural link, and corre-



sponds to the root of a hierarchical schema. For relational
schemas, we introduce an artificial root node with outgoing
structural links to all relation nodes. Formally, we have:

Definition 1 (Schema). A schema is defined to be a
labeled directed graph, SG = 〈E ,S,V, r〉, where:
− E is a finite set of elements. Each e ∈ E has a la-

bel l and a type τ , where τ is a regular expression: τ ::=
SetOf τ | Simple | (Rcd | Choice)[e1 : τ1, ..., en : τn];
− S is a finite set of structural links between elements.

Each link (e1 →S e2) ∈ S, e1, e2 ∈ E, is a result of e1

having an associated type of τ or SetOf τ , where τ ::=
(Rcd|Choice)[..., e2 : τ ′, ...], e1 is called parent element and
e2 is called child element;
− V is a finite set of value links between elements. Each

link (e1 →V e2) ∈ V, e1, e2 ∈ E, is a result of an inclusion
constraint τ1[e

′
1] ⊆ τ2[e

′
2], where τ1 ::= (Rcd|Choice)[..., e′1 :

τ ′
1, ...] is a type associated with e1, τ2 ::= (Rcd|Choice)[..., e′2 :

τ ′
2, ...] is a type associated with e2, and τ ′

1, τ
′
2 ::= Simple |

SetOf Simple, e1 is called referrer element and e2 is called
referee element;
− r ∈ E, called the root element, is the only element with

no incoming structural link.

Type Simple is the atomic value type (e.g., str, int, etc.)
representing relational columns, XML attributes, and XML
elements with atomic values. Furthermore, in relational
schemas, elements with SetOf Rcd type are used to represent
relations. And in hierarchical schemas, elements with SetOf
type represent schema elements with maxOccurs greater
than one, while elements with Rcd and Choice types repre-
sent the “all” and “choice” model-groups, respectively. We
ignore order and represent the “sequence” model-group as
elements with Rcd type. Furthermore, for n-ary value links,
we simply decompose them into multiple unary value links.
Extensions that consider element order and n-ary value links
are not conceptually difficult, but are notationally cumber-
some and hence not presented here. Finally, while value
links in Figure 1 always connect two simple elements, they
are considered as links between the two parent elements con-
taining those simple elements. This is necessary because, se-
mantically, the connection is between the two parents, and
the simple elements are introduced because of syntactic ne-
cessity. For example, the semantics of the value link be-
tween bidder/@person and person/@id in Figure 1 is
that each bidding action is performed by a person: a con-
nection between bidder and person.1 Extending the def-
inition of schema, we have:

Definition 2 (Schema Summary). A summary of
schema SG = 〈E ,S,V, r〉 is defined to be a labeled directed
graph, SS = 〈E ′,S ′,V ′,M,AE ,AL, r′〉, where:
− r′ = r;
− E ′ ⊆ E, S ′ ⊆ S, V ′ ⊆ V;
− M is a finite set of correspondences between original

schema elements and abstract elements, each (e � e′) ∈
M, where e ∈ E and e′ ∈ AE, means that e is directly or
indirectly represented by e′ in the summary;
− AE is a finite set of abstract elements;

1Note that, semantically, the bidder element represents the
bidding action, and the actual information about the bidder
itself is stored at the person element, which is connected
via a value link.

− Each e ∈ E ′ ∪ AE has a label l and a type τ , where τ is
a regular expression: τ ::= Abstract τ | SetOf τ | Simple |
(Rcd | Choice)[e1 : τ1, ..., en : τn], and each e ∈ AE has an
associated type Abstract τ or SetOf Abstract τ .
− For each e ∈ E: 1) e ∈ E ′, or 2) there exists e′ ∈ AE,

s.t. (e � e′) ∈ M. Similarly, for each e′ ∈ AE, there exists
e ∈ E s.t. (e � e′) ∈ M;
− AL is a finite set of abstract links;
− For each ls = (e1 →S e2), ls ∈ S: 1) ls ∈ S ′, or 2)

there exists (e′1 →AL e′2) ∈ AL, where (e1 � e′1) ∈ M (or
e1 = e′1 ∈ E ′) and (e2 � e′2) ∈ M (or e2 = e′2 ∈ E ′), or 3)
e1 and e2 are represented by the same e ∈ AE;
− For each lv = (e1 →V e2), lv ∈ V: 1) lv ∈ V ′, or 2)

there exists (e′1 →AL e′2) ∈ AL, where (e1 � e′1) ∈ M (or
e1 = e′1 ∈ E ′) and (e2 � e′2) ∈ M (or e2 = e′2 ∈ E ′), or 3)
e1 and e2 are represented by the same e ∈ AE.

Intuitively, each abstract element in a schema summary rep-
resents a group of original schema elements and a single el-
ement is chosen as the representative of each group. The
abstract element assumes the identity of the representative
element and the remaining elements are hidden from view.
Links between elements within the group are also hidden,
while links connecting elements inside the group with out-
side elements are consolidated and represented as abstract
links. An original schema element is directly represented
by an abstract element if it is chosen as the representative
element (e.g., element person for the abstract person ele-
ment in Figure 2(A)). Otherwise, it is indirectly represented
(e.g., element profile, which is indirectly represented by
the abstract person element). The goal of schema sum-
marization is to select appropriate schema elements as the
set of abstract elements, and to determine which of the re-
maining schema elements each abstract element represents.
Elements in a summary are also called summary elements,
regardless whether they are abstract or not.

A schema summary is a full summary (e.g., Figure 2(A))
if it contains only abstract elements (except root); other-
wise, it is an expanded summary (e.g., Figure 2(C)). An ex-
panded summary can be especially helpful for users seek-
ing detailed information within a confined component of
the schema. In addition, an abstract element can itself be
represented by another abstract element, thus creating a
multi-level summary, which can be helpful for a user facing
extremely large schemas. We note here that the original
schema itself can be regarded as a fully expanded summary
with empty M,AE ,AL. Similarly, a full summary can be
considered to have an empty E ′ (except root), S ′,V ′. In
this paper, we focus on automatic generation and objec-
tive evaluation of full summaries and believe that the same
techniques can be applied to expanded and multi-level sum-
maries with relatively simple extensions.

3. SCHEMA SUMMARY QUALITY
Having defined a schema summary formally, we can now
turn to the discussion of summary properties that influence
its quality. The first obvious property is the summary com-
plexity, which can be defined as the number of elements in
the summary (i.e., summary size). The more elements a
summary contains, the more complex it is for the user to
comprehend. Therefore, all other properties being equal, a
smaller summary is always preferred to a larger summary. In



addition to summary complexity, we would like a summary
to be informative, in that a user, looking at the summary,
should get a good idea of the overall structure of the schema.
What does “good idea” mean? There are a few desiderata:
we should select elements that are “important,” or in other
words, more representative of the schema, in preference to
nodes that are not; and we should select elements that are
broadly distributed throughout the schema: a collection of
elements in one local component of the schema is not likely
to be a good summary for all the users. Based on these
desiderata, we define two main properties in the next two
subsections: Summary Importance and Summary Coverage.

3.1 Summary Importance
Not all schema elements are created equal. Consider the
schema element person in the XMark schema in Figure 1 as
an example. Most people would agree that person is more
important than both element watch and element people.
Trying to advance an objective reason for this intuition, we
notice that person is much better connected in the schema
than the element watch, and it is also higher up in the
hierarchy. Meanwhile, people is even higher in the hierar-
chy than person, but in a typical database we expect few
instances of the former and many instances of the latter,
making it more likely that person rather than people will
be the query focus.

In other words, the importance of a schema element is re-
flected in two aspects – its connectivity in the schema and its
cardinality in the database. The connectivity of an element
in the schema graph provides a count of the number of other
elements that are directly connected to it (via either struc-
tural or value links). An important element is likely to be
one from which many other elements can be reached easily.
The cardinality of a schema element is the number of data
nodes it corresponds to. If there are many data nodes of a
schema element in the database, then that element is likely
to be of greater importance than another one with very few
data nodes. We note that, unlike connectivity, cardinality is
determined by the data distribution and not by the schema
structure.

As we attempt to develop a single comprehensive notion of
importance that combines these two aspects, we notice some
similarities to the web. The importance of a web page is
determined by both the goodness of the match of the search
terms on the page itself (“cardinality” of search terms on the
page) and the links connecting to it from other important
pages (“connectivity” of the page) [2]. Adapting this idea
to our context, we can similarly define:

Formula 1 (Schema Element Importance). The
importance of a schema element e, written as Ie, w.r.t. a
schema and a database conforming2 to the schema, depends
on its connectivity in the schema and its cardinality in the
database, and can be calculated with the following iterative
formula until convergence is reached:

Ir
e = p ∗ Ir−1

e + (1 − p) ∗
�

j

Wej→e ∗ Ir−1
ej

where Wej→e =
RC(ej→e)

�
k RC(ej→ek)

.

2We adopt the notion of conformance defined in [16].

W is the neighbor weight, which is the relative weight of
an element (e) from an element (ej) it directly connects,
compared with all other elements (ek) directly connected to
the latter; r denotes the number of iterations; j ranges over
all the schema elements connected to e; for each such ele-
ment ej, k ranges over all the schema elements connected
to ej (including e itself); RC(ej → ek) calculates the rela-
tive cardinality, i.e., the average number of ek data nodes
connected to each ej data node; and finally, 0 ≤ p ≤ 1 is a
tuning parameter we call neighborhood factor. The lower
the p, the more the importance of an element is affected by
the elements it is connected to. For all elements, the initial
importance I0

e is set to the cardinality of the element in the
database. �

There are two things worth mentioning here. First, the rela-
tive cardinality RC(e1 → e2) is calculated from the database
as the average number of e2 data nodes connected to each
e1 data node3. For example, the relative cardinality from
open auction to bidder can be 5 (i.e., on average 5 bid-
ding actions per auction), and the relative cardinality from
bidder to open auction is 1 (a bidding action is always
tied to one auction). Second, the sum of the importance
values of all schema elements remains unchanged from iter-
ation to iteration: it is simply the sum of the cardinalities
of all schema elements in the database.

Intuitively, an element will have a high importance value if:
1) it connects to many other elements (because more ele-
ments will contribute their importance values to it), espe-
cially important elements; 2) it has a high relative cardinal-
ity from another element, in comparison with other elements
connected to that element, because a majority of the im-
portance from the latter will be transferred to it due to the
high neighbor weight. Considering the XMark schema being
used as our running example, the most important elements
are bidder, item, and person, in that order, with im-
portance scores of 190292, 143881, and 128465, respectively
(calculated with a dataset generated using scale factor of 1).

Based on schema element importance, the summary impor-
tance can be defined as:

Definition 3 (Summary Importance). The
importance of a schema summary SS w.r.t. a schema SG
and a database conforming to the schema, written as RSS, is
defined as the ratio between the total importance of (abstract
and non-abstract) elements in the summary versus the total
element importance in the original schema:

RSS =
Σi(Iei | ei ∈ SS.E ′ ∪ SS.AE)

Σj(Iej | ej ∈ SG.E)

A very small summary should contain only important el-
ements and should still have an importance value that is
significant. As the size of the summary increases, we expect
its importance value to increase as well, rapidly at first,
but then slower and slower, until it asymptotically reaches a
value of 1 when the summary size becomes equal to the orig-
inal schema size. Note that the denominator of the fraction
for importance is really the sum of all element cardinalities
in the database.

3While sometimes the schema can provide this information,
in general, it can only be derived from the database itself.



3.2 Summary Coverage
Intuitively, a summary is not good if all the summary el-
ements are immediate neighbors in a high cardinality por-
tion of the schema graph, leaving the rest of the schema
very poorly covered in the summary. Consider the schema
elements address and interest (both are descendants of
person) in the running example in Figure 1. Due to its
high connectivity (it has a total of 5 child elements, only
one is shown in the figure for simplicity), element address
may gather enough importance value to make it more im-
portant than interest. However, if element person is
already selected into the summary, then address is a less
desirable candidate to be selected into the summary than
interest because of the closeness between person and
address. This closeness is to a certain extent reflected in
the fact that each person has only one address, imply-
ing that address is semantically attached to person, and
therefore is “covered” by person in the summary.

While summary importance measures how much a summary
captures important schema elements, it clearly does not cap-
ture how well the summary covers the overall schema and
database content. To understand this notion of coverage,
we first look at the closeness between schema elements.

The most straightforward metric for closeness between two
nodes in a graph is the minimum number of (structural and
value) links it takes (i.e., the steps) to traverse from one
to the other. This, however, is an ineffective metric for
measuring the closeness between schema elements. Consider
again the running example, and the elements bidder and
seller. While both are one step away from open auction,
semantically, bidder is further away from open auction
than seller, because each open auction has exactly one
seller but multiple bidders. Based on this observation, we
argue that the closeness between two schema elements is a
combination of both the number of steps between the two
and the relative cardinality along each of those steps. For-
mally, we have:

Formula 2 (Schema Element Affinity). The affin-
ity of schema element ea to schema element eb, written as
Aea→eb , w.r.t. a schema and a database conforming to the
schema, can be calculated with the following formula:

Aea→eb = max
i

(Apathi
ea→eb

)

Apathi
ea→eb

=
1

ni

ni�

j=2

1

RC(ej−1 → ej)

where i ranges over all possible paths between ea and eb, for
each pathi of length ni, j ranges over all elements along
the path, e1 = ea and eni = eb. For the special case where
ea = eb, Aea→ea = 1. �

If there are multiple paths from one element to the other,
only the path resulting in the highest affinity is considered.
The affinity along any path is obtained as the product of
the edge affinities, but is also divide by the length of the
path. This division is necessary to penalize longer paths –
even if each individual edge along a path has affinity 1, we
intuitively would not want the affinity between the elements
at the end of a long chain still to be 1.

Also, note that schema element affinity is directed, and
Aea→eb is often different from Aeb→ea . This is not surprising
since the affinity of a child element toward a parent element
is intuitively different from the affinity of the parent toward
the child: each child has only one parent while each parent
may have multiple children and therefore be less close to any
single one of them.

With the notion of affinity, two things are now possible.
First, given a set of schema elements selected into the sum-
mary (to become summary elements), each remaining schema
element can be assigned to the summary element toward
which it has the highest affinity. This produces element
groups, specifying which schema elements are represented
by which summary element. Second, each summary ele-
ment can now be considered as covering the elements that it
represents, with the amount of coverage determined by the
affinity it has toward the element being covered:

Formula 3 (Summary Element Coverage). The
coverage of schema element eb by schema element ea, writ-
ten as Cea→eb , w.r.t. a schema and a database conforming
to the schema, can be calculated with the following formula:

Cea→eb = Cardeb ∗ max
i

(Cpathi
ea→eb

)

Cpathi
ea→eb

=

ni�

j=2

(Aej−1→ej ∗ Wej→ej−1)

where i ranges over all possible paths between ea and eb, for
each pathi of length ni, j ranges over all elements along
the path, e1 = ea and eni = eb. For the special case where
ea = eb, Cea→ea = Cardea . �

We could have used affinity for coverage directly, but good
affinity toward an element does not guarantee good cover-
age, as we shall see in the example below. Instead, we have
chosen to weight the affinity of each edge along a coverage
path with its neighbor weight (W ) as defined in Formula 1.
The neighbor weight from ea to eb essentially captures the
relative amount of information flowing from ea that is dis-
tributed to eb, among all the elements that are connected to
ea. Intuitively, affinity measures the internal ability an ele-
ment has to cover the other element, while neighbor weight
measures the competition an element faces in covering the
other element.

Consider the elements (b)idder and (o)pen auction in
the running example in Figure 1. Assume the RC(b → o)
and RC(o → b) are 1 and 2, respectively, and o has, in ad-
dition to b, a total of 10 children, each with a relative car-
dinality of 1. The affinities Ab→o and Ao→b will be close to
1.0 and 0.5, respectively. Since they are directly connected,
the coverage can simply be calculated as the product of the
cardinality, the affinity, and the neighbor weight. The cov-
erage Co→b can therefore be calculated as Cardb ∗ 0.5 ∗ 1

1
=

0.5 ∗ Cardb. Here, the affinity is multiplied by the factor
1
1
: o is the only parent element that b has. On the other

hand, the coverage Cb→o is calculated as Cardo∗1.0∗ 2
10+2

=
0.17 ∗ Cardo. Here, the affinity is multiplied by the factor

2
10+2

: b is only one of the many child elements that o has.
As we can see from this example, while coverage is closely
related to affinity, the higher affinity that b has for o does
not result in greater coverage. This is not surprising, es-
pecially for child elements, because even though they are



very close to their parents, the information content at their
parents are typically beyond their scope.

With schema element affinity and coverage, we can now for-
mally define summary coverage:

Definition 4 (Summary Coverage). The coverage
of a schema summary SS, written as CSS, w.r.t. to a schema
SG and a database conforming to the schema, is the ratio
between the total coverage of all schema elements by ele-
ments in the summary and the total coverage of all schema
elements by the original schema (which is the same as the
total cardinality of all schema elements):

CSS =

�
i

�
j(Cei→ej | (ej � ei) ∈ SS.M or ei = ej ∈ SS.E ′)

�
k(Cek→ek | ek ∈ SG.E)

Intuitively, summary coverage reflects how well all the sum-
mary elements collectively cover the schema being summa-
rized, with each individual summary element responsible for
the schema elements it represents. In the original schema,
which can be viewed as a fully expanded summary, each el-
ement is represented by itself only, and the total coverage
is equal to the total cardinality of all the schema elements
(the denominator).

3.3 Discussion
To summarize, we consider two properties of goodness for a
summary: importance and coverage. These two properties
are somewhat correlated, but are inherently different, and
it is certainly possible to find two summaries where one has
more importance but the other has better coverage: an ideal
summary should balance these two properties. In our sys-
tem, we achieve the balance by selecting important elements
that do not substantially overlap with another element al-
ready in the summary.

Using the database content (i.e., data distribution) as one
of the criteria guiding summary generation has never been
attempted before, both because previous studies have fo-
cused on ER model abstraction where data is not available,
and because of traditional boundaries separating work fo-
cused on schema and work focused on data. We show here
that while schema structure is of vital importance in sum-
marization, data distribution often provides important in-
sights that significantly improve the summary quality. One
consequence of using data distributions is that the gener-
ated summary may evolve when the database is updated
even though the schema stays the same. We view this as
an advantage instead of an disadvantage. If the summary
is generated based on a database of sufficient size, minor
changes to the database will not affect the summary. In fact,
if the changes follow the same data distribution as the old
database, the summary will not be affected even when the
changes are major. When the data distribution has changed
significantly because of changes to the database, we argue
that the focus of the database has been shifted, and as a
result, a change in the summary is indeed appropriate.

4. EFFICIENT SCHEMA SUMMARIZA-
TION

Based on the formulas presented in Section 3, we design al-
gorithms to automatically generate schema summaries given

Function annotateSchema(SG, D):
1. foreach element e ∈ SG.E:
2. e.Card = 0;
3. foreach (structural or value) link l of e: e.l.Card = 0;
4. Visit D in a depth-first preorder traversal using a stack;
5. let n ∈ D be the data node currently being visited:
6. let e ∈ SG.E be the schema element for n;
7. let e′ ∈ SG.E be the parent element for e;
8. let e′′ ∈ SG.E be the referee element for e;
9. e.Card++;

10. let links e.l1, e′.l2 = (e′ →S e):
11. e.l1.Card++; e′.l2.Card++;
12. let links e.l3, e′′.l4 = (e →V e′′):
13. e.l3.Card++; e′′.l4.Card++;
14. foreach link l = (e1 → e2) ∈ SG.S ∪ SG.V:

15. RC(e1 → e2) =
e1.l.Card
e1.Card ; RC(e2 → e1) =

e2.l.Card
e2.Card ;

16. return SG

Figure 3: Function annotateSchema: SG is the schema

graph to be annotated and D is the database conforming

to SG.

a target summary size. The key issue here is how to se-
lect schema elements to be included in the schema summary
as the representatives of the abstract groups. Algorithm
MaxImportance (Section 4.2) iteratively computes the im-
portance values for all schema elements until convergence
and selects elements for a schema summary with the maxi-
mum summary importance. Algorithm MaxCoverage (Sec-
tion 4.3) adopts a dominance-based pruning strategy to se-
lect elements for a schema summary with the highest sum-
mary coverage. Finally, in Section 4.4, we provide a heuris-
tic for combining these two and select elements for a schema
summary that balances importance and coverage.

Given the set of selected schema elements, which serve as
the abstract elements in the summary, generating schema
summary is simply assigning each remaining schema element
to its closest abstract element and establishing abstract links
between those elements. The algorithm is straightforward
and not presented due to space limitations.

4.1 Annotating Schema Graph
Before we introduce the algorithms, we first need to anno-
tate the schema graph with relative cardinalities required
in all the formulas. As shown in Figure 3, we perform a
depth-first traversal of the database. During the visit of
each node, we update the cardinality of its corresponding
schema element and the cardinality of each link connecting
that element with its parent or referee element. Notice that
the cardinality of a link pointing to the child or referrer ele-
ment is updated only when the nodes corresponding to the
child or referrer elements are visited. Finally, the relative
cardinalities are calculated based on element cardinalities
and link cardinalities.

4.2 Maximizing Summary Importance
There are two parts to computing a schema summary with
highest summary importance. The first part is to compute
the importance values of each schema element. The second
part is to choose the K most important elements to obtain
a summary of size K, which just requires a simple (partial)
sort, and is trivial. The first part involves initializing the
importance of each schema element to its cardinality in the
data set and then iteratively applying Formula 1 until the
importance values converge (i.e., for each element, the dif-
ference between the old and the new importance value is less



Algorithm MaxImportance:
Input: Schema SG, Database D, summary size K
1. SG = annotateSchema(SG, D);
// SG is represented as an array of elements

2. foreach element e ∈ SG.E:
3. Icur

e = e.Card;
4. done = false;
5. while (!done): // a limit on the # iterations can also be set
6. done = true;
7. foreach element e ∈ SG.E:
8. calculate Inew

e using Formula 1;

9. if
|Inew

e −Icur
e |

Icur
e

> c: done = false; // typically, c = 0.1%

10. Icur
e = Inew

e ;
11. Sort elements according to their importance values;
Output: E, the set of K most important elements

Figure 4: Algorithm MaxImportance.

than some threshold). As shown in Figure 4, we represent
the schema graph as an array of elements, each with an ar-
ray of links pointing to the elements connected directly to
it. At each iteration, the algorithm scans through the graph
and computes the new importance values.

Convergence and Complexity: The proof of convergence is
similar to the one used in [8]. For the schemas we have
tested, the algorithm typically converges within several hun-
dred iterations for p = 0.5 and threshold c = 0.1%. At
each iteration, the algorithm essentially visits each link twice
(once for each end), and therefore has a time complexity of
O(N2) per iteration, where N is the number of elements in
the schema. However, the worst case complexity is only en-
countered when the schema is almost fully connected: for
typical schemas with an average fanout of f , the average
complexity is O(fN). The complexity of the second part
is no worse than O(N logN) and we can typically do better
since we only need the top K values.

4.3 Maximizing Summary Coverage
Generating a schema summary of K elements with the high-
est summary coverage, on the other hand, is more compli-
cated. Simply selecting the top K schema elements with
the highest element coverage for other elements, and putting
them together, does not guarantee us a summary with the
highest summary coverage. This is because two high cover-
age elements may have a significant overlap in their cover-
age, producing a summary coverage4 much smaller than the
sum of individual element coverages. An optimal strategy
therefore must generate candidate sets of K elements from
a total of N elements in the schema, compute the summary
coverage for each set, and select the set with the highest
summary coverage. The number of sets to be examined is
O(CK

N ), which is approximately O(NK) for K
N . For each
candidate set, a two step computation is required. First,
the affinity is computed from each unselected element to
each selected element. Based on this, we can assign each
unselected element to a selected element to which the for-
mer has greatest affinity. Second, the coverage is computed
for each selected element, with regard to each unselected ele-
ment that is assigned to it. Together, they result in O(KN2)

4Recall from Definition 4 that in calculating the summary
coverage, an element in the original schema can only be
covered by exactly one summary element, toward which it
has the highest affinity.

people

person*

profile

interest*

address
name

education

street

@category

city
state

income

watches

watch*

open_auction

site

Figure 5: Partial schema extracted from Figure 1.

time complexity5. Therefore, the overall complexity of this
simple algorithm is O(KN2CK

N ). For complex schemas with
large N , this naive algorithm becomes impractical, and we
design a novel pruning strategy to reduce the time cost.

Candidate Set Pruning: It turns out that the number
of candidate sets can be greatly reduced because certain
schema elements are dominated by other elements in terms
of coverage, and therefore are less worthy of appearance in
a summary. We define element eA dominates element eB

to be the following: for any summary SS, if only eB is in
SS, then we can always replace eB with eA and obtain a
new summary SS′, which has a higher summary coverage
than SS. The dominance relationship can be determined
according to Theorem 1:

Theorem 1. For any two schema elements e1 and e2.
Let E be the set of schema elements (including e2) with
higher coverage by e2 than by e1, ec be the schema ele-
ment, besides e1 itself, with the highest coverage of e1, C1 =�

j(Ce1→ej | ej ∈ E), C2 =
�

j(Ce2→ej | ej ∈ E), e1 dom-
inates e2 in terms of coverage if:
- C2 − C1 ≤ Carde1 − Ce2→e1 , and
- C2 − C1 ≤ Carde1 − Cec→e1 if ec �= e2.

Proof: Consider two otherwise identical summaries, SS2

containing e2 and SS1 replacing e2 with e1. By choosing SS1

over SS2, we lose coverage for elements in E, but also gain
coverage for at least e1. The difference C2−C1 represents the
maximum decrease in coverage if we choose SS1 over SS2.
If ec = e2, then the minimum increase in summary coverage
is Carde1 −Ce2→e1 . If ec �= e2, then Carde1 −Cec→e1 repre-
sents the minimum summary coverage increase if ec is in the
summary. Satisfying the two conditions guarantees that the
minimum coverage increase is greater than the maximum
coverage decrease, therefore SS1 has a higher coverage than
SS2. �

Consider the schema shown in Figure 5, which is a par-
tial extraction of the running example schema. We as-
sume all relative cardinalities are 1, except for three links:
RC(profile → interest), RC(watches → watch), and
RC(people → person), which are greater than 1 (meaning

5We ignore here the path length l and number of alternative
paths n between elements for the simplicity of analysis: if
considered, the complexity is O(l2n2KN2).



Algorithm MaxCoverage:
Input: Schema SG, Database D, summary size K
1. SG = annotateSchema(SG, D);
2. Visit SG in depth first order and for each element e,

calculate the total coverage it has for all the
elements within its subtree, store as e.cov;

3. Initialize CS = SG.E, DS = ∅;
4. for each pair of elements e1, e2 ∈ SG.E:
5. if e1, e2 are ancestor-descendants (let e1 be the ancestor):
6. select ec from among the elements e1 directly

connects as the one with highest coverage of e1;
7. C1 = e2.cov; // see Theorem 1 for meanings of C1, C2
8. C2 = Ce1→e2 ∗ C1;
9. foreach element e′ along the path from e1 to e2:

10. if Ce2→e′ > Ce1→e′ : update C1, C2 based on e′.cov;

11. determine if e1 dominates e2 based on Theorem 1;
12. if e2 is dominated: remove e2 from CS; add (e1, e2) to DS;
13. foreach set E of K elements from CS:
14. compute its summary coverage
Output: E, the set of K elements with highest summary coverage

among mutually non-dominant elements;
DS, the set of element pairs with dominance relationship.

Figure 6: Algorithm MaxCoverage.

each profile node will have multiple interest nodes as-
sociated with it, for example). We can examine whether
element @category is dominated by element interest,
where E={@category}, ec=profile. Assume both con-
ditions are satisfied. For a summary containing @category,
but not interest, the summary coverage contributed by
@category is the coverage of itself, plus the coverages of all
elements represented by @category in the summary. There
are two scenarios: @category represents interest or it
does not, which depends on whether profile is in the sum-
mary. In the first scenario, both @category and interest
are now represented by interest in the new summary, and
the decrease in the coverage of @category will be offset by
the increase in the coverage of interest according to the
first condition. Furthermore, if there is any other element
represented by @category (e.g., education) in the old
summary, the new summary will have its coverage increased
further. In the second scenario, in the worst case, interest
is represented by profile in the summary. Due to the sec-
ond condition, the increase in the coverage of interest by
switching from profile to interest again offsets the de-
crease in the coverage of @category. Therefore, we can be
assured that the replacing @category with interest in
the summary will produce a higher coverage.

The dominance relationship reflects significant overlap be-
tween the coverages of two schema elements, and can be used
to greatly reduce the number of candidate schema elements
to be examined. However, pairwise computation of domi-
nance between each pair of schema elements is in itself still
expensive. We observe that a dominance relationship is most
often due to an element being dominated by an ancestor6.
Therefore, we restrict the search for dominance between ele-
ments with ancestor-descendant relationships. As a result of
this heuristic, we may miss some dominance relationships,
and unnecessarily retain some dominated elements, but this
will not decrease the quality of the final result computed.
Figure 6 sketches the algorithm for obtaining the set of K
elements that has the highest combined coverage.

6Ancestor in terms of both structural links and value links.
For values links, the referee element is considered equivalent
to a parent element.

Algorithm BalanceSummary:
Input: Schema SG, Database D, summary size K
1. SG = annotateSchema(SG, D);
2. Initialize E = ∅;
3. Obtain list I of schema elements ordered by importance

using Algorithm MaxImportance;
4. Obtain set DS of element pairs with dominance relationship

using Algorithm MaxCoverage;
5. foreach element e ∈ I in the order of importance:
6. if e is dominated by some e′ ∈ E according to DS:
7. continue; // e is skipped
9. else if e dominates e′ ∈ E according to DS:
0. remove e′ from E;
0. add all elements skipped due to e′ back to I;
8. else add e to E;
9. if size of E = K: break;
Output: E, the set of K elements for the balanced summary.

Figure 7: Algorithm BalanceSummary.

Complexity: The time complexity for the pruning compo-
nent is O(dpN), where d is the average depth of a schema
element and p is the average number of paths a schema el-
ement is involved. The time complexity for examining the
remaining candidate sets is O(KN2CK

N′), where N ′ is the
number of schema elements not dominated by any other el-
ement. We typically see over 50% reduction from N to N ′.

4.4 Balancing Importance and Coverage
Maximizing both importance and coverage is often impos-
sible and there is no single optimal way to balance the two
desired criteria. We achieve this balance by adopting a
heuristic, which selects elements that are important while
avoiding having two elements in the summary where one el-
ement dominates the other in coverage. The algorithm is
shown in Figure 7 and is straightforward. The time com-
plexity of the algorithm, according to previous analyses, is
O(N logN +(c+dp)N) – note that we only need to generate
the dominance pairs in Algorithm MaxCoverage.

5. EVALUATING SCHEMA SUMMARY
While the usefulness of summarization for complex schemas
is intuitive, measuring the quality of a schema summary is
a non-trivial task. One of the ultimate measurements of
the summary quality is how much benefit it can provide to
the user in her querying for the desired information. This
can be indirectly measured by asking expert users, who are
knowledgable about the schema and the frequently asked
queries, to manually generate “good” summaries (i.e, sum-
maries that they believe can best help them in querying).
This creates a “gold standard” set of summaries, against
which our automatic summaries can be compared and ana-
lyzed (Section 5.2). Still, an objective measurement of qual-
ity is desired because it can provide an automatic way of
evaluating schema summaries. This allows us to assess the
quality of a large number of schema summaries of varying
properties and can help engineer a better summarizer. To-
ward this goal, we design a schema summary quality metric,
query discovery cost, based on the benefit a schema sum-
mary can provide to the user in formulating queries that are
consistent with the database schema (Section 5.3). We then
perform a comprehensive analysis of our summarization sys-
tem and show that summaries generated by the system can
significantly reduce the query discovery cost (Section 5.4).
The details of the datasets and summaries generated here
are also available at the project website7.

7http://www.eecs.umich.edu/db/schemasummary/



XMark TPC-H MiMI
# Schema elements 327 70 155

# Data elements (in 000s) 1,573 12,550 7,055
# Queries 20 22 52

Avg. query intention size 3.65 13.4 3.35

Table 1: Dataset statistics.

5.1 Datasets
We start by introducing the datasets being used for evalu-
ation. In fact, finding appropriate datasets is itself a non-
trivial task. A suitable dataset must: 1) come with both
data and schema information; 2) be complex enough for its
summaries to be meaningful, and 3) have a set of known
queries associated with it. While there are many publicly
available sets of real data, it is difficult to obtain associated
query sets for these. Benchmark datasets come with query
sets, but are usually designed with simple schema since the
emphasis is on data manipulation performance. In the end,
we chose two benchmarks, one XML and one relational, and
one real dataset, with relatively complex schema, for which
we had the query trace available. Specifically, they are: 1)
XMark, an XML benchmark dataset [12] derived from an
auction site, with a set of 20 queries. We have also used
this as a running example in this paper. 2) TPC-H, a rela-
tional benchmark dataset [14] for a decision support system,
with a set of 22 queries. 3) MiMI, a real world scientific
dataset [10] on protein interaction information that is built
and deployed by us at University of Michigan. MiMI inte-
grates a variety of biological data sources (with emphasis
on protein information) and provides a common schema to
users for uniform access to the underlying heterogeneous
data. MiMI has been deployed online since July 2005 and
we collected query trace from August 2005 to January 2006.
A total of 2167 queries were issued by users during this 6-
month period, among which 1024 queries were distinct. We
further clustered the queries by consolidating two queries
into the same cluster if they differed only in their variable
names or constants in the conditions. This resulted in a
total of 52 query groups and we selected one query from
each group for evaluation. The detailed statistics about the
datasets are shown in Table 18.

5.2 Comparison with Expert Summaries
We enlisted two sets of expert users (three each) to gener-
ate “gold standard” summaries for the MiMI and XMark
datasets. For MiMI, the experts are simply the administra-
tors. For XMark, the experts have worked with the XMark
benchmark extensively. Summaries of different sizes were re-
quested: 5, 10, 15 elements. Correspondingly, we generated
automatic summaries at the same sizes and measured the
agreement between those and the expert summaries. The
agreement between two schema summaries is defined as the
percentage of the number of elements selected by both the
user and the system over the summary size. Finally, a user
consensus summary of a particular size is generated by com-
bining all user summaries and retaining only elements se-
lected by a majority of the users (in this case, at least two
users). This experiment was not done for the TPC-H dataset
because users familiar with it were not locally available.

8For synthetic datasets, we intentionally selected medium
scale factors for data generation: 1 and 0.1 for XMark and
TPC-H, respectively. The reason is that for those datasets,
the scale factor does not affect the relative distribution of
the data and thus it has no impact on the summarization.

XMark 5-element 10-element 15-element

User 1 vs. Auto. 100% 70% 67%
User 2 vs. Auto. 60% 80% 67%
User 3 vs. Auto. 100% 80% 87%
User Agreement 60% 50% 53%

Consen. vs. Auto. 100% 70% 80%
MiMI 5-element 10-element 15-element

User 1 vs. Auto. 100% 90% 87%
User 2 vs. Auto. 80% 70% 67%
User 3 vs. Auto. 80% 90% 87%
User Agreement 80% 70% 60%

Consen. vs. Auto. 80% 80% 87%

Table 2: Agreement between automatic summaries and

expert summaries on XMark and MiMI datasets. User

agreement measures the percentage of elements all three

experts agree on.

Results: The results are shown in Table 2. We see that
humans do not always agree on what is the best summary,
though they do tend to have quite a bit of commonality.
Furthermore, the percentage in common decreases slightly
as the size of summary increases – humans agree more on
what are the most important aspects of the database, but
somewhat less on the next level. Our system was in reason-
able consonance with human experts: the difference between
the system and any human was no greater than that between
pairs of humans. In short, our automated “summarizer” was
able to produce summaries at different sizes that appear to
be similar to what a human may have produced.

5.3 Query Discovery Cost
Comparing automatic summaries with expert summaries is
always subjective and the results may often be considered
anecdotal. In this section, we present a metric for objective
evaluation of the quality of schema summaries. The met-
ric is based on the notion of Query Discovery, which mod-
els how an ordinary user, defined as one with little schema
knowledge about the database, formulates a concrete query
specification given the information need she has in mind.
We assume each ordinary user to have an implicit query in-
tention as her information need, and she is then required to
explore the schema (or schema summary) to convert this im-
plicit intention into explicit specifications conforming to the
schema. In our model, query intention is represented as a
set of schema elements the user would like to query upon but
doesn’t know where in the schema they are exactly. Query
discovery is then the process of finding the exact locations
(i.e., paths) for those schema elements. For example, given
the following XMark query expressed in English:

Return the name of the person with id ‘person0’.

The query intention is {person,name,id}, and the query
discovery process is to find the schema paths for these ele-
ments so that a complete XQuery specification can be gen-
erated as the following:

for $b in doc(“auc.xml”)/site/people/
person[@id=‘person0’]

return $b/name/text()

The effort required on the user to locate these schema ele-
ments is a reflection of the availability and quality of query
discovery support available. Specifically, we assume that the
user “visits” one schema element at a time, and charge one
unit for each element visited that is not in the query (inten-
tion). The cost of query discovery for a particular query is



the total charge accumulated by the time all elements in the
query intention are visited.

A naive approach to schema exploring is to scan through all
the elements until the ones of interest are found. However,
if there is some structure to the schema, one can do bet-
ter. XML schema, for example, has a hierarchical structure
and a tree-traversal from the root following structural links
is more appropriate. We implemented depth-first pre-order
and breadth-first pre-order strategies as a baseline. For rela-
tional schemas, which do not contain structural links (except
those from the system-introduced root), we can adopt value
links for traversal instead. Furthermore, the label of an el-
ement at an intermediate node in the schema graph will be
indicative of the nature of elements to be found in the sub-
tree rooted at it. E.g. someone looking for the end date of
an auction is not likely to look under person. A good tree
traversal need to make use of such information and explore
first the sub-tree that looks most promising, in a “best-first”
strategy. To obtain a firm cost for such a traversal we make
the optimistic assumption that the label of each sub-tree
root perfectly indicates whether an element of interest to
the user is in the sub-tree. Thus, in a pre-order best-first
traversal, the user starts from the root, and at each stage
examines children of the current node one at a time until it
finds one that it should visit. This child node now becomes
the current node and the process above repeats.

Query discovery with schema summary: A schema summary
provides support for query discovery by presenting early on,
to the user, elements that are more likely to be queried,
and elements that are more closely related to other schema
elements likely to be queried. As a result, users can locate
schema elements of interest easier. Query discovery with
a schema summary proceeds just as with regular schema,
except that now the traversal also includes abstract elements
in addition to original elements. When an abstract element
of interest is visited, it can be expanded, and the enclosed
original elements visited. One unit of cost is applied to every
abstract element visited as well as to every original element
visited that is not in the query intention.

Limitations: There are several limitations to the proposed
query discovery cost metric that cause our cost estimate to
deviate from the true user effort involved in the process of
query formulation. First, our model assumes that the user
knows the labels of the schema elements in their query in-
tention9: it’s the schema locations of those elements that
are unknown. In practice, a naive user may not know the
exact labels of those elements and will need to compare mul-
tiple schema elements before the right one can be selected.
Second, it assumes that the user can unerringly determine
whether a schema element of interest is a descendant of a
candidate (abstract) element being examined. In practice,
users will make some wrong decisions and pursue paths that
do not lead to any element of interest. Both limitations are
caused by user behaviors that are difficult to quantify with
an objective metric. While we do not attempt to consider
these in our model, we note here that both limitations lead
our best first traversal model to under-estimate the true

9Actually, the model assumes that a user will know that
a schema element is a desired one as soon as she visits it,
which has the same effect.

Avg. cost XMark TPC-H MiMI

w/o summary - - -
Depth First 75.35 74.95 50.27

Breadth First 37.15 67.36 30.23
Best First 11.90 18.41 10.38

w/ summary 6.65 12.05 3.90
size (Summ.%) 10 (3.1%) 5 (7.0%) 10 (6.5%)

# Rounds 160 45 426
Saving% 44.1% 34.5% 62.4%

Table 3: Average cost of Query Discovery w/o and with

schema summaries. Saving% are compared with cost

w/o schema summary using best first strategy.

cost of query discovery, and we believe their impact is at
least comparable for query discovery without schema sum-
mary and with schema summary, if not more on the former;
because a user is more likely to visit unnecessary schema
elements in the original schema than in the schema sum-
mary, which is much smaller than the former. Finally, our
model does not consider the effort required after the desired
schema elements are located, i.e., fully formulating the query
according to the target query language and the desired logic.
This cost is universal to all query discovery processes, with
or without schema summary, and is therefore outside the
scope of this study.

5.4 Summary Benefits for Query Discovery
For each dataset and each query in its query set, we man-
ually generated the query intention comprising the set of
schema elements referenced in the query. This set can be
extracted from the English description of the query (e.g.,
XMark) or be reverse engineered from the actual query itself
(e.g., TPC-H and MiMI). We then computed the number of
original/summary elements that must be explored to locate
the schema elements in the query intention.

Results: Table 3 shows the benefits of automatic sum-
maries that are generated at the sizes of 5 (for TPC-H) and
10 (for XMark and MiMI) using Algorithm BalanceSum-
mary. We see that depth-first is a poor strategy for query
discovery – much cost can be incurred traversing irrelevant
portions of schema space. Breadth-first is not too bad, but
best-first is substantially better. Summary decreases the
cost of query discovery (using best-first) by about a factor
of two. We observe that the query discovery cost is sub-
stantially higher for the TPC-H dataset than for the other
datasets. This is because the queries on TPC-H involve
a substantially higher percentage of schema elements (Ta-
ble 1). Because of this, the opportunity for cost reduction
is less, making schema summary not quite as effective as
for the other cases. Schema summarization was most ef-
fective for the one real data set we used, compared to the
two benchmarks. We believe this is because benchmarks, by
design, “spread their queries” around the schema, whereas
real queries on real databases tend to focus on the important
elements. However, our experiments do not provide enough
information to verify this conjecture. In the next four sec-
tions, we provide a comprehensive evaluation of the auto-
matically generated summaries by analyzing the impacts of
various parameters affecting the summary generation.

Impact of Summary Size: Different schema summary
sizes lead to different levels of effectiveness in supporting
query discovery, which are reflected in the query discovery
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Figure 8: Impact of summary size on Query Discovery.

costs. We examine such impact by evaluating summaries of
various sizes using the MiMI dataset. The result is shown in
Figure 8. As expected, a summary with very small size (less
than 5 elements, or 3% of schema size) does not achieve full
effectiveness in decreasing query discovery cost – substantial
amount of information has been abstracted away. As the size
grows, the summary approaches its full effectiveness (lowest
query discovery cost) and stays relatively stable in this ef-
fectiveness for a fairly large range (9-17 elements). As the
size grows further, too many elements are being included in
the summary, which in fact start reducing the effectiveness.
The cost continues to increase along with the summary size,
until it reaches the full schema cost.

Schema Structure and Data Distribution: We now
consider the effect of the way importance is calculated. By
varying the neighborhood factor p and other parameters in
Formula 1, the algorithm MaxImportance (which provides
BalanceSummary with the list of important elements) can
be adjusted between being fully data driven (i.e., ignoring
schema structure) to fully schema driven (i.e., ignoring data
distribution). Full Data Driven: p = 1. By setting p to 1,
all of the importance is determined by the data distribution.
Elements are selected into the summary according to their
cardinalities in the database, regardless of the schema struc-
ture. Full Schema Driven: ∀i, j, RC(i → j) = 1, ∀i, Imp0

ei
=

1. By setting relative cardinalities between any two schema
elements to 1 and ignoring the initial data distribution, the
model will now consider only the schema structure. Ele-
ments are included into the summary according to their con-
nectivity in the schema, regardless of the data distribution.
We also evaluated the quality of the summary for a wide
range of p values between the two extremes. We found, for
all three datasets, that the relative importance of elements
remained the same for all values of p between 0.1 and 0.9.
As a result, the schema summary generated remained stable
as well. We show the results for a representative mid-point
with p = 0.5 (data-and-schema driven) and the above two
extreme strategies in Figure 9. We find that data driven
summarization works very poorly for XMark, and schema
driven summarization works very poorly for MiMI. How-
ever, the complementary summarization is effective in both
datasets. Overall, the data-and-schema driven summary is
much more effective than a summary based on either data
or schema alone.

We also note here that when p is close to 0, the system
takes a long time to converge on the final importance value,
providing one more reason not to choose too small a p value.
Our suggestion is to use a p value around 0.5 in practice –
the results should not be too sensitive to the precise value
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Figure 9: Impact of schema structure and data distri-

bution on Query Discovery cost. Summaries are of size

5 for TPC-H and 10 for XMark and MiMI.

Avg. cost XMark TPC-H MiMI

w/o summary 11.90 18.41 10.38
Summ. size (summ.%) 10 (3.1%) 5 (7.0%) 10 (6.5%)

w/ BalanceSummary 6.65 12.05 3.90
Saving% 44.1% 34.5% 62.4%

w/ MaxImportance 8.35 12.36 5.56
Saving% 29.8% 32.9% 46.4%

Saving Reduction% 32.4% 4.6% 25.6%
w/ MaxCoverage 10.20 12.18 5.78

Saving% 14.3% 33.8% 44.3%
Saving Reduction% 67.6% 2.0% 29.0%

Table 4: Impact of balancing importance and coverage

on Query Discovery cost. Summaries are of size 5 for

TPC-H and 10 for XMark and MiMI.

chosen for this parameter.

Balancing Importance and Coverage: We further eval-
uated whether balancing importance and coverage is indeed
necessary. We generated summaries using one of the three
algorithms: MaxImportance, MaxCoverage, and Balance-
Summary, and examined their query discovery costs. The
results are shown in Table 4. As expected, when only one of
the two factors are considered, the effectiveness of the sum-
mary is significantly reduced for XMark and MiMI datasets:
the reduction percentage ranges from 25% to 70%, validat-
ing that the two factors are indeed complementary and both
are necessary to generate a good summary. The reduction
for TPC-H dataset is trivial, this is due to the fact that,
for this particular dataset, the set of elements with highest
importance values significantly overlaps with the set of el-
ements with highest coverage, leading to almost the same
summary being generated by all three algorithms.

Data Evolution: We also examined the impact of data evo-
lution on the resulting schema summary. The MiMI dataset
has evolved over time to incorporate more and more data
sources, these archived versions of MiMI dataset allow us to
compare summaries generated based on different data dis-
tributions and check the stability of the summaries. As we
can see from Table 5, the summaries being generated re-
main stable with the evolving database. During October
2005, information regarding protein domains were imported
into the database, and the summaries evolved accordingly,
and as desired, to reflect this change.

Comparison with ER Model Abstraction: While our
work is the first to study relational or XML schema summa-
rization, conceptual schema (ER diagram) abstraction (clus-



change% 5-ele. 10-ele. 15-ele.

Apr 04 vs. Jan 05 50% 100% 100% 100%
Apr 04 vs. Now 75% 100% 90% 87%
Jan 05 vs. Now 17% 100% 90% 87%

Table 5: Agreement between summaries on different

versions of MiMI dataset. Current version is Jan 2006.

Avg. cost MiMI

with BalanceSummary (Saving%) 3.90 (62.4%)
TWBK [13] w/o human (Saving%) 9.32 (10.2%)
TWBK [13] with human (Saving%) 4.38 (57.8%)

CAFP [4] w/o human (Saving%) 8.56 (17.5%)
CAFP [4] with human (Saving%) 3.90 (62.4%)

Table 6: Comparing against ER model abstraction tech-

niques on MiMI. Summaries are of size 10.

tering) has a long history. We examined the applicability
of its representative techniques, namely [13] and [4], in our
schema summarization scenario. One challenge immediately
facing us is to provide, for both techniques, semantic labels
to the structural and value links, such that the links can be
assigned proper weights, which are used to estimate element
closeness. While some labeling can be done unsupervised by
exploring linguistic techniques and data information, most
can not be done automatically. In fact, even humans can
find the labeling task difficult and ambiguous. Nevertheless,
once the labeling is done properly (with significant human
efforts), those techniques do produce schema summaries of
comparable qualities. Table 6 shows the results of compar-
ing those techniques (with or without human efforts) against
our system in summarizing the MiMI schema.

Discussion: First, in addition to schema structure and
data distribution, another potentially important input to
automatic schema summarization algorithms is historical
queries. By analyzing the query history, important elements
can be extracted as the most frequently queried elements.
While we believe query history will be useful, we also note
that it is typically not available when a database is newly
created, and it is often slow to adapt to the changes in the
schema or database. Second, due to space limitation, we do
not provide detailed performance information here. We will
simply report that the schema annotation process runs in
time linear to the database size, while the actual summa-
rization process finishes within 5 minutes on a 2.0GHz P4
PC with 1GB RAM for all three datasets evaluated.

6. RELATED WORK
In [5], Feldman and Miller proposed entity model cluster-
ing, a systematic methodology for manually grouping enti-
ties into clusters according to semantic closeness. The tech-
nique was extended and improved upon by Teorey et al in
[13], where various grouping operations were further defined.
The amount of human effort required in those techniques,
as discussed before, is significant, making them unsuitable
for a heterogeneous and evolving environment. Automated
systems for entity clustering have since been proposed, in-
cluding [7, 6, 1, 3, 4, 11]. Most of those systems rely heavily
on the semantics embedded in the relationships to guide the
process and are therefore not truly automated. There are
few evaluation methodologies of ER abstractions, with one
notable exception in [11], where the authors proposed nine
principles for judging the goodness of an ER diagram de-
composition. Most of the principles, however, are features

naturally resulting from good clustering algorithms and may
not correspond to the actual benefits to the user. Finally,
the iterative formula for importance calculation are inspired
by Google PageRank [2] and the Similarity Flooding algo-
rithm by Melnik et al [9].

7. CONCLUSION
Modern database systems can often have complex schema.
In this paper, we have proposed a notion of schema sum-
mary to manage this complexity. We have suggested impor-
tance and coverage as two relevant properties by which to
judge the quality of a schema summary. We have presented
an algorithm to automatically compute high quality schema
summaries, using notions of summary importance and cov-
erage. An experimental assessment of our summaries, both
subjectively, and objectively using a query discovery cost
metric we define, shows that our algorithm is able to find
good summaries for a given schema and database. An out-
line or overview is key to human understanding of complex
material. The notion of schema summary we suggest in this
paper has the potential to be a really valuable means to in-
troduce humans to new databases. We believe that schema
summaries can also be helpful in schema matching, and in-
tend to explore this issue in the future.
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