Instructor: Stephen C. Rand Course Homepage: http://www.eecs.umich.edu/courses/eecs638 Coverage This course uses density matrix analysis to cover atom-field interactions; quantum theory of radiation including spontaneous emission; optical Bloch equations; laser cooling; theory of resonance fluorescence; dressed atoms and squeezed states; hole-burning; electromagnetically-induced transparency; pump-probe spectroscopy, four-wave mixing and special topics in nonlinear optics. Textbook(s) Rand, S. C. Lectures on Light: Nonlinear and Quyantum Optics Using the Density Matrix. Oxford UP, 2010. Syllabus
- Review of quantum mechanics: problems, solutions, strategies and QM representations
for describing optical interactions with atoms.
- Simple atom-field interactions: perturbation theory, transition rates, the
density matrix, Bloch equations, signal fields, line-broadening, and differences
between real atoms and model (2,3-level) systems.
- Coherent optical transients: free induction, nutation, photon echoes.
- Coherent interactions of fields and atoms: saturation of stationary 2- and
3-level atoms, saturation of moving atoms, 3-level coherence, pump-probe spectroscopy,
4-wave mixing, Feynman diagrams.
- Quantized Fields and Coherent States: field quantization, spontaneous emission,
Weisskopf-Wigner Theory, Glauber states, squeezed states, quantum statistics,
quantized reservoir theory, reduced density matrices, resonance fluorescence,
dressed atoms.
- Applications of "dark" states in adiabatic rapid passage, electromag-netically-induced
transparency and laser cooling. Mechanical effects of light, optical tweezers,
magnetic interactions, Doppler & sub-Doppler laser cooling, cavity quantum
electrodynamics (QED).
|