
EECS 373 Midterm 1

Winter 2023

9 February 2023

No calculators, reference material, internet, or communicating with others about the exam (except course staff).

Name

UM Uniqname

Sign below to acknowledge the Engineering Honor Code: “I have neither given nor received aid on this examination,
nor have I concealed a violation of the Honor Code.”

Signature

The number of points per problem are not well correlated to the time required. This is intentional, as we want students with
good basic knowledge to get reasonably high scores, but for students with deeper understanding to receive higher scores.

1

1 Short questions (12 points)

Embedded system definition and market Technology trends Embedded applications

1. Why is it common for an embedded system development team to be smaller than a team developing a general-purpose
microprocessor? Select one. (3 points)

⃝ The entire embedded systems market is smaller than the general-purpose computing market, so the design
teams must be smaller.

⃝ Embedded systems typically have fewer and looser design constraints than general-purpose computing sys-
tems, reducing the number of designers needed.

⃝ To be general-purpose, there must be numerous variants of the microprocessor design that are dynamically
selected at run time. Each variant must be designed, requiring a large design team.

⃝ The embedded systems market is fragmented, so a particular embedded design may have a smaller market
than a single microprocessor design, thus constraining the total pay justified for an engineering team.

⃝ Embedded systems have real-time constraints, which simplifies their design process.

2. The following list of common requirements for embedded systems was presented in the first lecture. Indicate one that
is equally applicable to general-purpose computers. (3 points)

⃝ Timely (hard real-time).

⃝ Wireless.

⃝ Reliable.

⃝ First time correct.

⃝ Rapidly implemented.

⃝ Low price.

⃝ High performance.

⃝ Low power.

⃝ Embodying deep domain knowledge.

⃝ Beautiful.

3. In what context would you most likely find an LPWAN used? Select one. (3 points)

⃝ Wireless video streaming security application.

⃝ Low data rate agricultural sensor network spanning several acres.

⃝ Sensor network within an automobile.

⃝ Infrastructure-powered home automation network.

⃝ Wearable device communicating with a smartphone carried by the user.

4. Is it possible for peripherals on an open-collector bus that produce high outputs simultaneously (i.e., at incorrect times)
but are otherwise correctly designed to produce a short-circuit? (3 points)

⃝ Yes.

⃝ No.

Page 2

2 Debugging and Aspects of ANSI C related to Embedded Systems (12
points)

1. When debugging a hardware-software system, which of the following options is generally more effective? (3 points)

⃝ Focusing on the the debugging style with which you are most proficient, e.g., gathering information or
reasoning about potential causes.

⃝ Periodically switching between gathering information and reasoning about potential causes.

2. When debugging a hardware-software system, if you have no reason to believe that any of the following potential
problems are more likely to be the cause of a persistant error than the others, which one should you test first. (3
points)

⃝ A coding error in a machine learning algorithm running on your microcontroller.

⃝ A defect in the DRAM memory chip being used to store data for the machine learning algorithm.

⃝ A faulty DC-DC converter providing your system with power and ground.

⃝ A faulty microphone being used as input to the microcontroller.

⃝ A nearby wireless transmitter that may be a source of interference with the embedded system’s communication
signals.

3. Indicate all the lines that very likely hold bugs in the following C program. Presume that the addresses indicated in
lines 1 and 2 are valid MMIO addresses. (6 points)

⃝ 1 ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5 ⃝ 6 ⃝ 7 ⃝ 8 ⃝ 9 ⃝ 10

typedef enum {

RETURN_TO_DEFAULT, LEFT, RIGHT, HALT, SAFE_SHUTDOWN

} gimbal_command_t;

#define GIMBAL_MAX_ROTATION 5326

1 volatile int *gimbal_mmio_address = (volatile int *)(0x123450);

2 const int *gimbal_mmio_rotation = (const int *)(0x123460);

3 void write_gimbal(gimbal_command_t command) {

4 gimbal_mmio_address = command;

}

5 double gimbal_relative_orientation(void) {

6 return *gimbal_mmio_rotation / GIMBAL_MAX_ROTATION;

}

int main(void) {

7 write_gimbal(RETURN_TO_DEFAULT);

8 if (gimbal_relative_orientation() > 0.5) {

9 write_gimbal(SAFE_SHUTDOWN);

} else {

10 write_gimbal(HALT);

}

return 0;

}

Page 3

3 ARM assembly (12 points)

Write an ARM assembly language procedure that implements the C function “move alnum” in an ABI compliant manner.
Clearly comment your code. Label which registers each value represents. Code comments enable partial credit. The function
“isalnum” is an ABI compliant function with the following prototype.

int isalnum (char c);

uint32_t move_alnum(char * input,

uint32_t input_size) {

char * output = input;

uint32_t output_size = 0;

int i = 0;

while (i != input_size) {

char c = *(input + i);

// Continue reading in next column.

int isalnum = isalnum(c);

if (isalnum != 0) {

*(output + output_size) = c;

++output_size;

}

++i;

}

return output_size;

}

Provide your answer here. Although you are not required to use the following assembly instructions, some might be useful
in your answer: ADD, B, BEQ, BL, CMP, LDRB, MOV, POP, PUSH, and STRB.

Page 4

4 Building (10 points)

Based on the following nm symbol listing, indicate all of the following files that may be simultaneously linked with main.o
without linking errors. This question is not asking for the minimal set of files that can be linked to main.o without errors;
it’s asking for the maximal set.

⃝ a.o

⃝ b.o

⃝ c.o

⃝ d.o

⃝ e.o

a.o:

0000000000000000 T func_a

b.o:

0000000000000000 T _Z6func_ai

c.o:

0000000000000000 t func_a

d.o:

0000000000000000 T func_b

e.o:

0000000000000000 T main

main.o:

U func_a

0000000000000000 T main

5 Interrupts (15 points)

1. Fill in the circle marking the method you should use to associate interrupts with ISRs for the ARM processor we are
using in lab. The “B” instruction branches to the target address. (5 points)

◦ ◦
g pfnVectors: g pfnJumps:
.word estack B estack
.word Reset Handler B Reset Handler
.word NMI Handler B NMI Handler
.word HardFault Handler B HardFault Handler
.word MemManage Handler B MemManage Handler
.

2. Considering the code below, what condition will the data structure referenced by G slhdr be in if the ISR executes
at ***B*** when called from ***A***. [X]→NULL indicates a slnode with data X and a next pointer to NULL.
[X]→[Y]→NULL indicates an slnode with data X and a next pointer to another slnode with data Y and a next pointer
to NULL. Show your work, e.g., in the space to the right of the code. (5 points)

⃝ [NULL]→[7]→[5]→NULL

⃝ [NULL]→[unallocated memory]

Page 5

⃝ [NULL]→[5]→NULL

⃝ [NULL]→[5]→[unallocated memory]

⃝ [NULL]→NULL

⃝ [7]→[5]→NULL

#include <malloc.h>

#include <assert.h>

struct slnode {

void * data;

struct slnode * next;

};

typedef struct slnode slnode;

slnode * create_slnode(void * data, slnode * next) {

slnode * new_nd = malloc(sizeof(slnode));

assert(new_nd);

new_nd->data = data;

new_nd->next = next;

return new_nd;

}

slnode * create_slist_header(void) {

return create_slnode(NULL, NULL);

}

slnode * slist_insert_after(slnode * loc_nd, void * data) {

slnode * new_nd = create_slnode(data, loc_nd->next);

// ***B***

loc_nd->next = new_nd;

return new_nd;

}

void slist_delete_after(slnode * loc_nd) {

slnode * delete_target = loc_nd->next;

loc_nd->next = loc_nd->next->next;

free(delete_target);

}

static slnode * G_slhdr = NULL;

void __attribute__((interrupt)) ISRFunc(void) {

slist_delete_after(G_slhdr);

}

int main(void) {

int x = 5;

int y = 7;

G_slhdr = create_slist_header();

slist_insert_after(G_slhdr, &x);

slist_insert_after(G_slhdr, &y);

slist_insert_after(G_slhdr, &x); // ***A***

return 0;

}

Page 6

3. After the previous example, select one bubble to indicate whether there will be memory leaks, i.e., heap-allocated
objects that are no longer referenced and are therefore impractical to free? (5 points)

⃝ No memory leaks.

⃝ One slnode will leak.

⃝ Two slnodes will leak.

⃝ One slnode and one integer will leak.

⃝ Two slnodes and two integers will leak.

⃝ One slnode and one void will leak.

6 MMIO and APB (17 points)

You are given an APB memory-mapped input-output hardware interface that has three push buttons and one LED. Each
push button has its own read-only 32-bit memory address and is mapped to bit position 31. The LED has its own write-only
32-bit memory address and is mapped to bit position 0.

Below is the implementation of the Verilog module that can be controlled to by writing to the memory-mapped input-output
registers.

module hello_world_module(

input PCLK, input PRESERN, input PSEL, input PENABLE, input [7:0] PADDR,

output PREADY, output PSLVERR,

input PWRITE,

input [31:0] PWDATA,

output [31:0] PRDATA,

input button_a, input button_b, input button_c,

output led);

assign PSLVERR = 0;

assign PREADY = PENABLE;

wire enable, read_a_en, read_b_en, read_c_en;

assign enable = PSEL & PENABLE & PWRITE & (PADDR == 0);

assign read_a_en = PSEL & PENABLE & ~PWRITE & (PADDR == 4);

assign read_b_en = PSEL & PENABLE & ~PWRITE & (PADDR == 8);

assign read_c_en = PSEL & PENABLE & ~PWRITE & (PADDR == 12);

assign PRDATA[31] =

(read_a_en) ? button_a :

(read_b_en) ? button_b :

(read_c_en) ? button_c :

1’b0;

always @(posedge PCLK) begin

if (enable) begin

led <= PWDATA[0];

end

end

endmodule

1. Write a C function that reads in the state of three buttons and turns on the LED if all of them are pressed simultaneously.
Assume that PSEL is configured to be high when memory locations 0x40050000–0x4005000F are accessed. The buttons
and LEDs are active low. You may assume that the buttons will not change states during the duration of this function
call. (9 points)

Page 7

void hello world fx(void) {

}

Page 8

2. Which control signal uniquely identifies this bus transaction (or uniquely targets this device)? No explanation is needed.
(2 point)

3. Which control signal is used to distinguish between idle, setup, and access states? No explanation is needed. (2 point)

4. Which control signal is used by the peripheral to signal the processor that it is available for access? No explanation is
needed. (2 point)

5. How many wait states does this hardware generate? Justify using at most two sentences. (2 points)

Page 9

7 ABI (12 points)

Consider the function “integer binary logarithm” below.

int integer_binary_logarithm(uint32_t x);

void print_debug(uint32_t current_num, int counter);

integer_binary_logarithm:

PUSH {LR}

MOV r1, #-1

while:

BL print_debug

CMP r0, #0

BEQ result

LSR r0, #1

ADD r1, r1, #1

B while

result:

MOV r0, r1

POP {PC}

It has one argument, uint32 t x, and one return value, which is an integer that is ⌊log2(x)⌋ (note: when x = 0, the function
is allowed to return -1). The function “integer binary logarithm” calls an ABI compliant function called “print debug,”
implemented by your lab partner, that takes in two integers as arguments to print out. The implementation of “print debug”
is not shown. You create a test suite, and on your first round of testing, you find out that integer binary logarithm is behaving
as expected and is returning the correct values. You conduct further testing, but this time, you replace your implementation
of “print debug” with your friend’s implementation of “print debug,” which is still ABI compliant. You run the same test
suite as before for a second round of testing. However, this time, “integer binary logarithm” returns incorrect output. Use
at most two sentences to explain why your function failed to reveal the bug.

Page 10

8 Timers (10 points)

Consider a count-down timer that fires an interrupt and copies the value in MMIO register TOP to its COUNTER register
when the COUNTER register reaches zero. The PRESCALER register holds an integer, n. The CPU crystal frequency of
1024 kHz is divided by 2n before being used to clock the counter. n is 8. If you would like the timer to wait five seconds, fire an
interrupt, then periodically fire interrupts once per second after that time, what values should you initialize the COUNTER
and TOP registers to? You may only initialize those two registers and you may only write each once, i.e., you may not update
them within your ISR. Show your work in the empty space below the question. The registers are large enough to hold any
of the unsigned ints listed below.

• COUNTER: ⃝ 0 ⃝ 400 ⃝ 500 ⃝ 1000 ⃝ 4000 ⃝ 5000 ⃝ 20000 ⃝ 25000

• TOP: ⃝ 0 ⃝ 400 ⃝ 500 ⃝ 1000 ⃝ 4000 ⃝ 5000 ⃝ 20000 ⃝ 25000

Page 11

	Short questions (12 points)
	Debugging and Aspects of ANSI C related to Embedded Systems (12 points)
	ARM assembly (12 points)
	Building (10 points)
	Interrupts (15 points)
	MMIO and APB (17 points)
	ABI (12 points)
	Timers (10 points)

