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1 [13 pts.] Short questions

1. [3 pts.] If the embedded market is larger than the general-purpose computing market, why is it common
for embedded systems designers to work on smaller teams? Select the single most correct answer.

⃝ Embedded systems are generally less expensive than general-purpose computers so the total
market capitalization for embedded systems is lower, leading to less money to hire embedded
systems engineers.

⃝ The market is fragmented, with more varieties of applications and products. This increases
the number of teams required, reducing the number of embedded systems designers per team.

⃝ Embedded system designers are more productive than general-purpose computer system
designers, so fewer are needed to accomplish the same amount of work.

⃝ Debugging complexity is linearly related to processor clock frequency, making low-frequency
embedded microcontroller based systems much easier to debug than high-frequency general-
purpose systems.

⃝ There are a very wide range of general-purpose processors available, but only a few embedded
processors. This enables fewer embedded system designers to manage processor-based design
complexity.

⃝ Unlike general-purpose computer system designers, embedded systems designers use FPGAs
in the prototyping process, making it easy for fewer designers to complete the same work.

2. [3 pts.] Indicate all system design decisions that will likely increase total design and debugging time.

⃝ Adding assertions for facts that appear to be obviously correct to one’s code.

⃝ Deferring all error checking to run-time.

⃝ Adding infinite loop traps to unused ISRs that should never be invoked.

⃝ Writing special values to memory locations to enable checking whether they were inappro-
priately overwritten.

⃝ Ensuring that all tests are done on the entire system in a realistic environment approximating
its expected future use.

3. [3 pts.] Consider a virtual timer system in which the bookkeeping information on individual timers
is stored in a container sorted in order of increasing timer firing times. You must decide whether to
implement the container using an array or linked list. Indicate all the application characteristics that
indicate that an array would be better, or for which a linked list would provide no advantages over an
array.

⃝ Virtual timers will most frequently be periodic/recurring.

⃝ New timers will always have firing times greater than all previously created timers.

⃝ The application requires floating point math.

⃝ The number of virtual timers required is unknown and unbounded at compile time.

⃝ The timers must execute callbacks provided via function pointers.

4. [2 pts.] If we were to model the debugging time of a complex system as 2e+v minutes where v is the
number of vertices and e is the number of edges in a component interaction graph, then what is the
expected debugging time (in minutes) for a system with four components, each of which may interact
with any other component? Treat this as an undirected graph, i.e., an interaction between A and B is
captured by the same edge as an interaction between B and A.
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5. [2 pts.] Continuing from the prior question, if we were to limit the number of interactions to two per
component, what would the expected debugging time (in minutes) be?

2 [10 pts.] MMIO

1. [5 pts.] Indicate all of the following that are true.

⃝ Accessing MMIO requires special load and store instructions.

⃝ Accessing MMIO can be slower than accessing physical memory.

⃝ All MMIO transactions happen entirely on the AHB.

⃝ Using MMIO is always faster than using a dedicated I/O bus.

⃝ MMIO is only used to communicate with peripherals external to the microcontroller.

2. [5 pts.] Consider the following code segment.

volatile uint32_t *addr = 0x1234ABCD;

uint32_t x = *addr;

x = *addr;

Use at most one sentence to indicate what may go wrong if the volatile keyword on the first line were
not used.

3 [20 pts.] APB

You are designing a smart brooder for chicks. You are given an APB memory-mapped I/O hardware device
that has three distance sensors and three LEDs. Each distance sensor is configured to output a high signal
when one or more chicks is near it and a low signal when no chick is near it. The goal is to allow remote
monitoring of chick locations to enable adjustment to brooder temperature profiles. The LEDs are active
low. Each distance sensor has an associated read-only 32-bit memory address, with the sensor’s output
transmitted in bit 31. The LEDs have a shared write-only 32-bit memory address. LEDs A, B, and C are
controlled by bits in positions 0, 1, and 2, respectively. Below is the implementation of the Verilog module
that can be controlled by writing to the memory-mapped I/O registers.
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module chicks_in_a_house (

input PCLK, PRESERN, PSEL, PENABLE, PWRITE

output PREADY, PSLVERR,

input [7:0] PADDR,

input [31:0] PWDATA,

output [31:0] PRDATA,

input dist_sen_a, dist_sen_b, dist_sen_c,

output led_a, led_b, led_c);

assign PSLVERR = 0;

assign PREADY = PENABLE;

wire enable, read_a_en, read_b_en, read_c_en;

assign enable = PSEL & PENABLE & PWRITE & (PADDR == 0);

assign read_a_en = PSEL & PENABLE & ~PWRITE & (PADDR == 4);

assign read_b_en = PSEL & PENABLE & ~PWRITE & (PADDR == 8);

assign read_c_en = PSEL & PENABLE & ~PWRITE & (PADDR == 12);

assign PRDATA[31] =

(read_a_en) ? dist_sen_a :

(read_b_en) ? dist_sen_b :

(read_c_en) ? dist_sen_c :

1’bz;

always @(posedge PCLK) begin

if (enable) begin

led_a <= PWDATA[0];

led_b <= PWDATA[1];

led_c <= PWDATA[2];

end

end

endmodule

1. [12 pts.] In the following sub-problems, you will write a C program that reads in the state of the
distance sensors and turns on the corresponding LED. Distance sensor A is associated with LED A, B
with B, and C with C. Assume that PSEL is configured to be high when memory locations 0x80080000–
0x8008000F are accessed. You may assume that the distance sensor measurement will not change while
the functions are running.
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(a) [4 pts.] Write the body of a function that reads one of the distance sensors, where the sensor
selection index ranges from 0-2.

uint32_t read_distance_sensor (uint32_t index) {

}

(b) [4 pts.] Write the body of a function that writes to the LED indicated by the index.

void write_led (uint32_t index, uint32_t val) {

}
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(c) [4 pts.] Write a function that uses the read_distance_sensor and write_led functions to set
the LEDs appropriately based on the distance sensor states.

void update_leds {

}

2. [8 pts.] Fill in the unspecified signals in the timing diagram bwlow for a read from distance sensor B.
The PWRITE and CLK signals are provided.

T0 T1 T2 T3 T4 T5

PENABLE

PRDATA

PREADY

PSEL

PWRITE

PADDR

PCLK
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4 [20 pts.] Embedded ANSI C

Your friend is writing ANSI C for an ARM Cortex M4 microcontroller. Assume access to a linker script that
gives the following memory layout.

High memory address
Heap 1KB
Data 50KB
Stack 1KB
Text 100KB
Low memory address

Assume the stack grows toward lower memory addresses. Your friend has written the following main.c file.

1 #include <stdint.h>

2

3 #define SIGNIFICANT_VALUE 0xDEADBEEF

4

5 /* Adds el to buffer at index, then increments index, wrapping

6 * around if needed.

7 * Implementation not shown, assume it is correctly implemented */

8 extern void pushCircularBuffer(char* buffer, int size, uint32_t* index, char el);

9

10 #define BUFFER_SIZE 10000

11 uint32_t currentIndex = 0;

12

13 int main(void) {

14 uint32_t *peripheralRegister = (uint32_t *) 0x40000000;

15 char circularBuffer[BUFFER_SIZE];

16

17 while (1) {

18 if (*peripheralRegister == SIGNIFICANT_VALUE) {

19 incrementCounter();

20 pushCircularBuffer(circularBuffer, BUFFER_SIZE, &currentIndex, ’Y’);

21 } else {

22 pushCircularBuffer(circularBuffer, BUFFER_SIZE, &currentIndex, ’N’);

23 }

24 }

15 }

16

17 void incrementCounter(void) {

18 static int counter = 0;

19 ++counter;

20 }

1. [8 pts.] For the following symbols, indicate what region of memory their underlying value is stored in.
If a symbol doesn’t correspond to something stored in memory, write “n.a.”. If a value is a pointer,
indicate where the pointer is stored, not the address it points to.

Page 7



Symbol Region
peripheralRegister

currentIndex

circularBuffer

incrementCounter

SIGNIFICANT VALUE

2. [4 pts.] Your friend attempts to cross-compile and link their program with the ARM GNU toolchain,
and uses the -O3 and -Werror flags. The program fails to compile. Give the number of one line of the
program that can be changed to correct the compilation problem, and write the new contents of the
line. It is fine to replace any numbered line, even one that is currently empty.

Line number:

New line contents:

3. [4 pts.] After your change, the binary is successfully built and flashed to the microcontroller. However,
a HARD FAULT signal is generated soon after the program starts execution. Describe the most likely
cause of the hard fault, and indicate the change you would make to correct it. Reference line numbers
when possible.

4. [4 pts.] After your change, the program no longer faults. However, after single-stepping with a
debugger, you observe unexpected behavior: the counter doesn’t increment despite the peripheral
register holding SIGNIFICANT VALUE. Modify one line to fix the unexpected behavior. Indicate the
line you changed, write the revised version, and explain why your solution is correct below.

Line number:

New line contents and explanation:
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5 [25 pts.] Assembly and ABI

1. [10 pts.] Assembly.

The function rand is an ABI compliant function with the following prototype: int rand(void). The
function swap_randomly has the following prototype: void swap_randomly(int *a, int *b). The
following ARM assembly code attempts to implement the swap_randomly function. The empty boxes
are places where you might later add code; ignore them for now.

1 swap_randomly:

2

3 ldr r6, [r0] // load int from a

4 ldr r7, [r1] // load int from b

5

6 bl rand

7

8 and r0, r0, #1

9 cmp r0, #0

10

11 beq end

12 str r7, [r0]

13 str r6, [r1]

14

15 end:

16

17 bx lr

Unfortunately, swap_randomly it is not ABI-compliant. Make the additions in the boxes above needed
for it to be ABI compliant, correct, and efficient. There exists a correct solution in which only four
lines of code are added in total to some of the numbered but empty lines in the version shown above.

2. [15 pts.] ABI.

Write an ARM assembly language procedure that implements the C function naive_shuffle in an
ABI-compliant manner. Clearly comment code and label which registers each value represents. Code
comments enable partial credit. Assume that we are using the ABI-compliant implementation of the
function swap_randomly.
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void naive_shuffle(int *array, int input_size) {

int i = 1;

while (i < input_size) {

int *a = array + i;

int *b = a - 1;

swap_randomly(a, b);

++i;

}

}

Although you are not required to use the following assembly instructions, some might be helpful: ADD,
B, BEQ, BGE, BL, BX, CMP, LDR, LSL, MUL, MOV, POP, PUSH, SUB, and STRB.
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6 [12 pts.] Interrupts

1. [3 pts.] Which of the following maps interrupt numbers to ISR addresses?

⃝ NVIC

⃝ MMIO

⃝ APB bus

⃝ AHB bus

⃝ EXTI controller

2. [5 pts.] A single interrupt occurs during the execution of a process. Label the following 1–5 in the
order in which they happen. 1 is what happens first and 5 is what happens last. One blank will have
two numbers in it.

• Interrupt pending bit goes high.

• External event in the world.

• Executing in ISR mode.

• Executing in thread mode.

3. [4 pts.] Use at most three sentences to describe a scenario in which tail chaining happens. Be specific
and include relative times of when events happen. How does tail chaining improve performance of a
system?
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This page may be used for work. Please hand it in with the exam and reference it from the associated
questions if you would like it to be considered when determining partial credit.
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