
EECS 373 Midterm 1

Winter 2022

10 February 2022

No calculators or reference material.

Name

UM Uniqname

Sign below to acknowledge the Engineering Honor Code: “I have neither given nor received aid on this examination,
nor have I concealed a violation of the Honor Code.”

Signature

1



1 ABI (7 pts.)

void foo(int i, int adjustment, char z)

foo:

push {r3, r4, r6, LR}

mov r6, r1

add r4, r0, #5

mov r5, r2

loop:

cmp r0, r4

beq end

push {r0}

sub r2, r5, r6

mov r0, r2

bl print

pop {r0}

add r0, #1

b loop

end:

pop {r3, r4, r6, PC}

You are conducting a code review of a function, “foo”, from Team Apple, one of two development teams you manage. It
calls an ABI compliant “print” from Team B. The function “foo” has arguments, two integers and a character, and has no
outputs. It prints the character, adjusted by the second integer argument, a total of 5 times. The function “print” takes a
single character as an input and has no outputs. The “print” function has already been validated, and while Team Apple
assures you that their function is functionally correct, they have a history of introducing defects into shipped products. Your
job is to determine whether the “foo” function is a valid ABI-compliant function and to justify your answer.

Is it a valid, ABI-compliant function?

© Yes. © No.

Justify in one terse sentence.

“No. The function is not ABI compliant because it uses a callee-saved register, r5, without preserving its
contents.”

Note that the function correctly restores the LR when it pops the PC at the end of the function. The
function pushes caller-saved r3 onto the stack and pops it at the end; while unconventional, this is consistent
with the ABI.

2 Assembly and memory layout (10 pts.)

The Table 1 represent two sections of memory in a Cortex-M processor. For convenience the memory values in the address
0x08000XXX block have been decoded into instructions. Label locations are indicated in italics. Assume that the Program
Counter (PC) is 0x08000104 and the Stack Pointer is 0x20000000. Determine the value of R0, R1, R2, and the values of the
memory addresses in the right table (i.e., 0x20000000 to 0x1FFFFFD0) when the PC = 0x08000114. Leave any unknown
memory values blank.

The stack pointer starts at 0x20000000, so the next push will put the register contents at 0x1FFFFFFC.

Page 2



Table 1: Memory and Register Contents

Address Instruction Address / Value
Register

0x08000104 MOV R0, #3 0x20000000

0x08000108 MOV R1, #7 0x1FFFFFFC 0x08000114

0x0800010C MOV R2, #3 0x1FFFFFF8 0x7

0x08000110 BL funA 0x1FFFFFF4 0x3

0x08000114 done: B done 0x1FFFFFF0 0x6

0x08000118 funA: PUSH {R0,R1,R2,LR} 0x1FFFFFEC 0x2

0x0800011C loop: CMP R0, #0 0x1FFFFFE8 0x5

0x08000120 BEQ next 0x1FFFFFE4 0x1

0x08000124 POP {R0} 0x1FFFFFE0 0x3

0x08000128 BL funB 0x1FFFFFDC 0x4

0x0800012C PUSH {R0} 0x1FFFFFD8 0x0

0x08000130 B loop 0x1FFFFFD4

0x08000134 next: MOV R0, #6 0x1FFFFFD0

0x08000138 loop2: CMP R0, #0

0x0800013C BEQ endA R0 6

0x08000140 POP {R1} R1 3

0x08000144 SUB R0, #1 R2 7

0x08000148 B loop2

0x0800014C endA: POP {R0,R1,R2,PC}
0x08000150 funB: POP {R1,R2}
0x08000154 PUSH {R1}
0x08000158 PUSH {R2}
0x0800015C PUSH {R0}
0x08000160 SUB R0, R1, #1

0x08000164 BX LR

3 Interrupts (10 pts.)

1. Use at most two sentences to describe the main purpose of the Nested Vector Interrupt Controller (NVIC).

The NVIC controls the proper handling of interrupt requests, such as resolving priorities, handling
interrupts that occur while other interrupts are being executed, and restoring code to its previous state
once the interrupts have been handled. Other functions handled by the NVIC are tail-chaining and
stack management (when transitioning states). The NVIC also reduces latency because it can perform
operations at the same time as the main processor.

Page 3



Many answers described the role of the Interrupt Vector Table (IVT): a map that stores the addresses of
the interrupt routines and provide a way to know what function should be executed given an interrupt
request. This does not completely answer the question though: the IVT is a part of the NVIC, but the
IVT simply stores values while the NVIC actively coordinates execution of interrupt requests. Partial
credit was given to students who gave this answer.

2. Use at most two sentences to explain why it is good practice for interrupt handlers to terminate quickly.

Answer: If an interrupt handler has a large latency, it can interfere with time-sensitive tasks like data
collection and serial communication. Depending on how time-sensitive the interrupted tasks are, this
can make the resulting data incorrect/unusable or result in a catastrophic error in the code’s operation.

The answer required students to specify that a task was “time-sensitive” rather than “important” or
“a main task”, because there are many situations in which it is perfectly acceptable for tasks to take a
long time to execute when there is no time sensitivity.

An answer that received slight penalty was that longer execution times waste energy. This is true, but
not the focus of the question or the main reason for interrupt handlers to be quick.

Another acceptable answer was that high latency increases the likelihood that two tasks access the same
data and make it unusable. The standard way to resolve this type of issue is to use “semaphores”. If
you are curious, more information on semaphores can be found here:
https://www.baeldung.com/cs/semaphore

3. On a Cortex M4 processor there are two IRQ handling routines, named IRQ A and IRQ B. IRQ A is set to trigger
when signal X transitions from low to high, and has an execution time of 1 clock cycle. IRQ B is set to trigger when
signal Y transitions from low to high, and has an execution time of 2 clock cycles. Each of these interrupt handlers
sets GPIO A and B, respectively, to HIGH at the start of execution and LOW and the end of execution. Given the
following waveforms for X and Y, draw the waveforms for GPIO A and GPIO B given the following preemption priority
assignments, where a lower number indicates a higher priority. Assume the processor uses tail chaining. Appended are
some excerpts from the ARMv7 Architecture Reference Manual that may be useful.

Figure 1: The main point was that subpriorities break ties, but cannot preempt other tasks of equal or
higher preemption priority.

Figures 2 and 3: This question could have been answered in two ways depending on whether the
exception handlers were synchronous or asynchronous; we took both answers. If the exception handler
were synchronous, the interrupt request at t=3 would be ignored, while if it was asynchronous handler
B would take on the “active & pending” state at t=3. Although the two functions were tail chained
together, the GPIO would still have a small dip during the chaining because inside of the handler it
must still pass over the “set GPIO to low” and “set GPIO to high” at the end and start of execution.
However, a mistake on this part could easily be due to slight misinterpretation of the question so very
few points were deducted for not having a dip. One aspect of the question that caused confusion was
whether GPIO’s signal should go low while GPIO A preempted it. Because handler B only sets the
GPIO to low at the end of execution, and preemption interrupts it in the middle of execution, there is
no code that can tell GPIO B to go low during this process.

Page 4



0 1 2 3 4 5 6 7 8 9

X

Y

A

B

Figure 1: Timing diagram in which GPIO A has a preempt priority of 0 and a subpriority of 0 and GPIO B has a preempt
priority of 0 and a subpriority of 1.

0 1 2 3 4 5 6 7 8 9 10 1

X

Y

A

B

Figure 2: Synchronous version of timing diagram in which GPIO A has a preempt priority of 0 and a subpriority of 1 and
GPIO B has a preempt priority of 1 and a subpriority of 0.

Page 5



0 1 2 3 4 5 6 7 8 9 10 1

X

Y

A

B

Figure 3: Asynchronous version of timing diagram in which GPIO A has a preempt priority of 0 and a subpriority of 1 and
GPIO B has a preempt priority of 1 and a subpriority of 0.

Page 6



4 Build process (8 pts.)

Add directed edges between nodes in Figure 4 to illustrate the flow of information, i.e., data or metadata such as file
modification times, in the standard embedded system build process. Don’t include edges for command executions, e.g.,
“Make” should not have an arc to “Linker”. We have added a few correct edges to help you get started.

Figure 4: Incompletely specified embedded development board build process.

Information flow implies data or metadata flowing from one file or application to another. For example, the
Make application reads the Makefile but the Makefile does not read or accept information from the Make
application. Directionality is crucial for this question, so undirected edges were not given credit. If the
distinction between directed and undirected graphs is not clear, please see me in office hours: I can explain
the different types of graphs that engineers commonly encounter. I accepted answers indicating that the
C compiler produces an assembly file (A option in the figure) or an object file (B option in the figure).
The second is possible as an optimization for commonly encountered build systems. To better understand
this material, I recommend reviewing the in-class example files posted to the website, the manpages for the
relevant commands, e.g., make, and the associated lecture videos. I can also explain the process during office
hours.

Page 7



3 V

0 V

Rpullup

1 k Ohm

Vout

Figure 5: Circuit diagram for open collector bus line.

5 Debugging (4 pts.)

You have implemented an ISR to handle a button press interrupt. The ISR uses a persistent (static) variable in memory to
track the state of an LED; it inverts (!=) that variable and writes the new value to an LED interface on the APB, turning
on or off the LED. However, on boot the LED is off and pressing the button never turns the LED on, or off. What is the
first thing you would do with a debugger to determine whether the ISR is executing? Use at most one sentence.

Many solutions were accepted. Setting a breakpoint at the ISR is what I would expect most engineers to
try first, but there were other legitimate answers, which I gave credit for.

6 Open-collector style buses and voltage division (5 pts.)

You have implemented an open-collector style bus. In your system, VDD is 3 V. By convention, voltages below 1 V signify
activity and voltages above 2 V signify inactivity. Several components are connected to a bus line, each controlling a transistor
that electrically connects the line to ground when activated. However, by using a multimeter, you find that when a single
component’s transistor is turned on, the line voltage decreases to 1.5 V and never drops below 1 V. Your component interface
drivers have output resistances of 1 kΩ.

1. What is the pull-up resistance on the bus line?

2. What pull-up resistance would enable an active device to reduce the voltage to 0.5 V.

There are two parts to this problem: understanding the high-level problem and doing the basic circuit
analysis necessary to solve it.

At a high level, it is necessary to understand what an open-collector bus style is and thus understand
that the circuit diagram in Figure 5 is under consideration. Please review the lectures and lab material
on open-collector bus design style to better understand this. I would also be very happy to help review
it in office hours.

The key detailed concept required to answer this question is an understanding of voltage dividers, i.e.,
determining how voltage is divided by series resistors. The general expression (assuming a grounded
node) follows.

Vout =
Vtop ·Rbottom

Rbottom + Rtop
. (1)

For this problem, Vtop = 3 V and Rbottom = 1 kΩ allowing us to simplify Equation 1 as follows:

Vout =
3 V · 1 kΩ

1 kΩ + Rpullup
. (2)

Page 8



We can solve the first sub-problem by fixing Vout to 1.5 V and solving for Rpullup.

1.5 V =
3 V · 1 kΩ

1 kΩ + Rpullup
, (3)

1 kΩ + Rpullup =
3 V · 1 kΩ

1.5 V
, (4)

Rpullup =
3 V · 1 kΩ

1.5 V
− 1 kΩ, and (5)

Rpullup = 1 kΩ. (6)

The second sub-problem can be answered by solving Equation 2 for Rpullup with Vout = 0.5 V.

1 kΩ + Rpullup =
3 V · 1 kΩ

0.5 V
, (7)

Rpullup =
3 V · 1 kΩ

0.5 V
− 1 kΩ, (8)

Rpullup = 6 kΩ− 1 kΩ, and (9)

Rpullup = 5 kΩ. (10)

If this wasn’t clear, the concept can be reviewed in an introductory physics textbook. I would also be
very happy to explain it in detail in office hours.

Page 9



7 MMIO and logic (4 pts.)

You are designing an APB interface for an ultra-low-power device that supports reads from the following MMIO addresses:
0x0, 0x5, 0x6, 0x7, and 0xd. For each address, indicate the minimal number of bits that must be used as inputs to an AND
gate used for detecting an access to that address. Do not consider sharing AND gate logic: each address gets its own AND
gate. Do not assume that only the lowest-order bits are used: you may skip bits. You needn’t consider aliasing with other
devices because PSEL can handle that. Consider aliasing among the device’s own addresses. You must show your work to
receive credit.

1. 0x0

© 0 © 1 © 2 © 3 © 4 © 5 © 8

2. 0x5

© 0 © 1 © 2 © 3 © 4 © 5 © 8

3. 0x6

© 0 © 1 © 2 © 3 © 4 © 5 © 8

4. 0x7

© 0 © 1 © 2 © 3 © 4 © 5 © 8

5. 0xd

© 0 © 1 © 2 © 3 © 4 © 5 © 8

There are two parts to this problem: understanding the high-level problem and doing the discrete math
necessary to solve it.

The high-level problem is to distinguish between each of the addresses and all the alternatives. Fortunately,
we have PSEL to rule out aliasing of addresses outside the range for this peripheral so we only need to
distinguish each device address from the four other device addresses. This also assumes that invalid addresses
won’t be used, a reasonable assumption in this case.

The low-level problem is distinguishing numbers. Let’s rewrite them in binary for the sake of illustration.

(0x0) 0000 1
(0x5) 0101 3
(0x6) 0110 2
(0x7) 0111 2
(0xd) 1101 1

Considering 0000 column by column (0–3) , we see that its entry is unique in column 2: no other number
has a 0 in this column, i.e., X0XX, where X indicates a don’t-care condition. Therefore, we need a one-input
AND gate implementing function I2’. For 0101, we see that no single column of the number is unique, and
therefore consider two-column cases. It is not unique for any combination of two specified columns so we
move on to three columns, finding that 101X distinguishes it from other numbers. There may also be other
answers, but we have already demonstrated that no answer using fewer than three inputs is sufficient and
that there exists an answer using three inputs. Similar reasoning can be used for the remaining rows.

If this didn’t make sense to you, you can review my entry in the Encyclopedia of Algorithms on “Optimal Two-
Level Boolean Minimization”. It covers the terminology and foundational concepts needed to understand
specification and minimization of Boolean functions. I took great pains to keep it terse, formal, and precise
so it shouldn’t take much reading to finish, although it may take some thinking to digest.

Page 10



8 Cat (1 pt.)

Indicate the concept Figure 6 represents.

© Non-volatile memory.

© The customer’s view of me.

© The customer’s view of my early-stage product idea.

© My lab partner.

© The APB.

“The customer’s view of my early-stage product idea.” The problem I was trying to illustrate in lecture is
that potential customers may see substantial flaws in the product definition but be unwilling to share them
because doing so might seem impolite to the engineer, who they will generally have a favorable view of if
they agreed to an interview. Your job is to structure the interview to avoid this source of biased answers to
learn the cold, hard truth about actual customer needs.

Figure 6: An illustration of. . .

Page 11



Overflow space. We won’t look at this space unless you tell us to after the relevant question.

Page 12



References

Page 13



Page 14


	ABI (7 pts.)
	Assembly and memory layout (10 pts.)
	Interrupts (10 pts.)
	Build process (8 pts.)
	Debugging (4 pts.)
	Open-collector style buses and voltage division (5 pts.)
	MMIO and logic (4 pts.)
	Cat (1 pt.)

