
EECS 373 - Homework #3

Name: unique name:

This assignment is optional and there will be no penalty for not submitting it. If you complete it,

the grade will be averaged in with your other homework grades. Due 11:59am on 22 March via

Gradescope. We’ll release solutions shortly after the deadline to enable review before the

second midterm exam. Please use the answer boxes provided for text answers. You can upload

a scan or separate page for the diagram. Typed and neat handwritten answers are both

acceptable.

Question 1
Short answer questions: [20 points, 4 each]

A) What is an interrupt vector table?

B) Why should the time to execute an ISR be as short as possible? How many clock cycles

does it typically take to enter an ISR?

C) What are the hexadecimal addresses of (1) Reset_Handler and (2) USART1_Handler?

D) For the diagram below, which interrupt has the higher priority and which method is being

used to improve interrupt latency. Must answer both parts to get full credit.

E) When an interrupt signal is generated, what will be done by the processor automatically

before the processor starts to execute the corresponding interrupt service routine?

Question 2 [10 points]
A) (5 points) Explain the difference between a Capture timer and a Compare timer, and give

examples of what they are used for.

B) (5 points) Pulse Width Modulation. Suppose a HSE (High Speed External Clock) of 16MHz
is selected as the clock of the timer. In order to generate a 1Hz square wave with a duty cycle of
50%, how would you set up the timer? Indicate your counting mode and show the value of ARR,
CCR and PSC registers.

Question 3 [10 points]
You are working on a design for our STM32L4R5 which has 5 interrupt sources: A, B, C, D, and

E. Recall that the STM32L4R5 only implements the 4 highest priority bits, the other 4 are

ignored. You want the following to be true:

 A should be able to preempt any interrupt other than B and C.

 B should be able to preempt any interrupt.

 C should be able to preempt any interrupt other than A and B. C should have a priority

higher than A.

 D should be able to preempt only E.

 E should not be able to preempt anything.

Part A [4 points]

List all PRIGROUP setting or settings you could use in this case. Assume no two interrupts can

be assigned the same priority. Provide your answer in 3-digit binary and explain. [3]

Part B [6 points, one each]

Assuming you are using the STM32L4iIndicate, in 4-bit binary, what priorities you will assign to

each interrupt. Let us know which PRIGROUP setting you are using (mainly if you have more

than one PRIGROUP listed above). Again, no two interrupts may be assigned the same

priority.

PRIGROUP= (3-digit binary)

 A priority= (4-digit binary)

 B priority= (4-digit binary)

 C priority= (4-digit binary)

 D priority= (4-digit binary)

 E priority= (4-digit binary)

Question 4: NES Controller Design

The NES (Nintendo Entertainment System) game controller is essentially a shift register that

loads the state of the 8 buttons on the rising edge of the “LATCH” signal and shifts the value out

serially on the “DATA” line with subsequent rising edges of “PULSE” as shown in the timing

diagram below. The data is easily read by the game processor with another shift register. The

data is persistent at each transition so each button value can be latched and shifted into a shift

register on each falling edge of pulse. However the first value, must be latched in using the

Latch signal instead of the Pulse signal. For example, the A button can be read on the falling

edge of Latch, the B button can be read on the first falling edge of Pulse, the Select button read

on the second falling edge of pulse and so on.

Pin Description

Pin # Pin Name Pin Type Function

1 GND Power Ground

2 PULSE Input Pulse (aka Clock)

3 LATCH Input Rising edge causes state of the buttons to be latched
into the NES game controller

4 DATA Output

5 NC - No Connect (pin not used)

6 NC - No Connect (pin not used)

7 +5V Power Power

Timing Diagram

Your task is to design a system that will read the NES game controller using interrupts. You

should read the entire problem thoroughly before starting.

Your task is to design a memory-mapped IO interface to the N8 that will capture the button

values and generate a hardware interrupt signal “NES-INT” after each read is done.

 Writing to location 0x40050000 is to cause the start of a read of the NES controller.

Once the read has been done an interrupt should be generated letting the core know

that the value is ready to be read. The data sent with the write to this address does not

matter. You may assume no read to this location will occur while in the process of doing

another read.

 Reading from location 0x40050000 should return the value of the last complete

transaction of the controller. This should be a 32-bit binary value where the lower 8 bits

indicate the value of the buttons (A being the msb and Right being the lsb of that 8-bit

value). You may assume no write will occur to this location while a read to that location

is in progress.

Once that hardware has been designed, you are to write two C functions.

 An ISR that gets called when “NES-INT” is asserted and puts the 8-bit value read from

the NES controller into a global variable called “NES_value” and sets the global variable

“NES_ready” to 1.

 A C function that when called checks the value of NES_ready. If that value is a 0, it is to

just return a -1. If instead NES_ready is a 1 it is to:

o Set NES_ready to be a 0

o Start a new read of the NES controller.

Part 1: NES Module [25]

Note: The logic which generates the Latch and Pulse signals is given to you (you don’t have to

design it!).

You are to design this module in schematic form. The following components are available. You

may use as many of each device as you need unless otherwise indicated.

1. One serial shift register with a serial data

input, an enable, and a clock input. It has an

8-bit parallel output that reflects the values

in the shift register. The register shifts data

to the right on every rising edge in which EN

is 1.

2. One Latch/Pulse device. It generates Latch

and Pulse as described whenever the signal

“Start” is found to be asserted (“1”) on the

rising edge of it’s clock. It will start

immediately. PCLK must be given as its

clock input. This device will not function

correctly if “Start” is asserted while the

device is in the process of generating latch

and pulse.

3. AND, OR, XOR and NOT gates.

4. Tri-State drivers.

5. DFFs with Enable (clock enable) and DFF connected as a registers

6. You may also you a “AND Mask” to for the PAddress to simply drawing complicated

AND gates.

You may represent buses as a single wire, but indicate which signals it carries. For example,

PADDR[3:0]. Further, you may show signal connections with a signal label instead of a line. For

example, you can write PCLK wherever a PCLK is needed rather than drawing lines connecting

all the places PCLK is needed.

Use the space on the following page to draw your schematic. All inputs are shown on the left
and all outputs on the right.

Part 2: Interrupt Handler [10 points]

Write an ISR that gets called when NES-INT is asserted and puts the 8-bit value read from the

NES controller into a global unsigned char called “NES_value” and sets the global int

“NES_ready” to 1.

__attribute__ ((interrupt)) void IRQHandler(void) {

Part 3: Read function [10 points]

Write a C function called “NES_read” that when called checks the value of NES_ready. If that

value is a 0, it is to just return a -1. If instead NES_ready is a 1 it is to do the following tasks:

o Set NES_ready to be a 0

o Start a new read of the NES controller.

o Return the value last read from the NES controller.

int NES_read(void) {

