

EECS 373 Introduction to Embedded System Design

Robert Dick University of Michigan

Lecture 12: Power

14 March 2024

Review

- Memory
- PCB design

Outline

- Power and energy
- Power integrity

Definitions

- Why? Power, temperature, energy, performance, and reliability important and deeply connected.
- Understand
 - why system failing and
 - why it consumes power.
- Temperature: Average kinetic energy of particle.
- Heat: Transfer of this energy.
 - Heat flows from regions of higher temperature to regions of lower temperature.
- Particles move.
- What happens to a moving particle in a lattice?
- Power: Rate of energy transfer (watts).

Why do wires get hot?

- Scattering of electrons due to destructive interference with waves in the lattice.
- What are these waves?
- What happens to the energy of these electrons?
- What happens when wires start very, very cool?
- What is electrical resistance?
- What is thermal resistance?
- Why do metals often have low thermal resistances?

Why do transistors get hot?

- Scattering of electrons due to destructive interference with waves in the lattice.
- Where do these waves come from?
- Where do the electrons come from?
 - Intrinsic carriers.
 - Dopants.
- What happens as the semiconductor heats up?
 - Carrier concentration increases.
 - Carrier mobility decreases.
 - Threshold voltage decreases.

Power consumption trends

- Initial optimization at transistor level.
- Further research-driven gains at this level difficult.
- Research moved to higher levels, e.g., RTL.
- Trade area for performance and performance for power.
- Clock frequency gains linear.
- Voltage scaling V_{DD}^{2} very important.

Power consumption

•
$$P = P_{SWITCH} + P_{SHORT} + P_{LEAK}$$

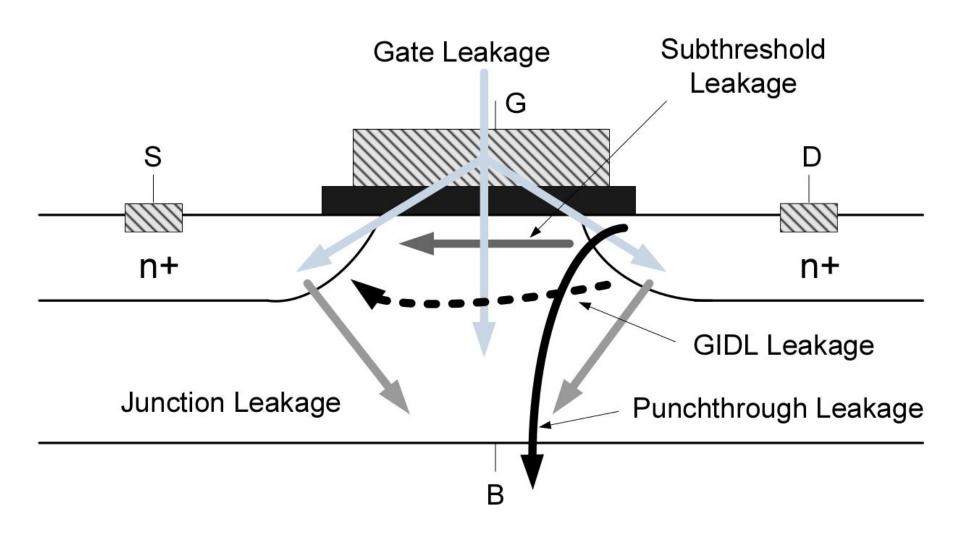
•
$$P_{\text{SWITCH}} = C \cdot V_{\text{DD}}^2 \cdot \mathbf{f} \cdot \mathbf{A}$$

•
$$P_{SHORT} = b/12 \cdot (V_{DD} - 2 \cdot VT)^3 \cdot f \cdot A \cdot t$$

•
$$P_{\text{LEAK}} = V_{\text{DD}} \cdot (I_{\text{SUB}} + I_{\text{GATE}} + I_{\text{JUNCTION}} + I_{\text{GIDL}})$$

- C : total switched capacitance
- V_{DD} : high voltage
- f : switching frequency
- A : switching activity
- b : MOS transistor gain
- V_{T} : threshold voltage
- t : rise/fall time of inputs
- + PSHORT usually \leq 10% of PSWITCH
- Smaller as $V_{DD} \rightarrow V_{T}$

DVFS

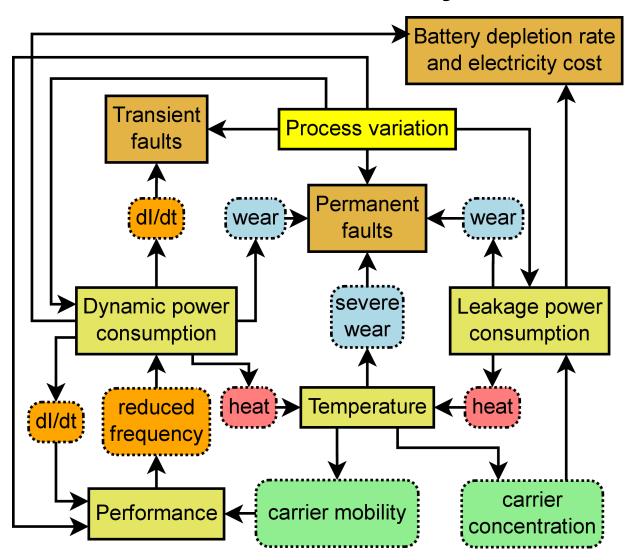

- Power drops superlinearly in V.
- Performance drops linearly in V.
- Double transistor count.
- Drop V.
- Drop f.
- Net result.
 - Reduced power.
 - Reduced energy, even though t increases.
- Fails when Vdd \rightarrow Vth.

Typical control policies

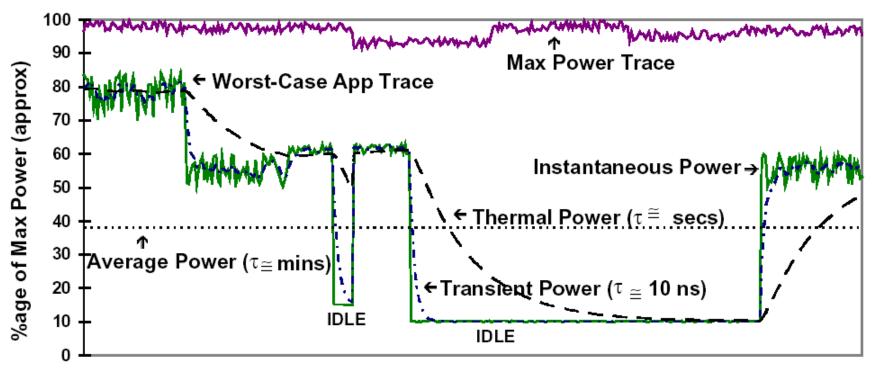
- If utilization < ~80%, drop V, f.
- If utilization > ~80%, increase V, f.
- Latency: >100ms in some cases.
- Based on flawed assumption for interactive systems.

- If device has been used within X minutes, keep on.
- Otherwise, put in lower power management state.

Leakage paths



Subthreshold leakage


•
$$I_{subthreshold} = A_s W/L v_T^2 (1 - exp(-V_{DS}/v_T))$$

 $exp((V_{GS} - V_{th}) / n v_T)$

- where A_s is a technology-dependent constant,
- V_{th} is the threshold voltage,
- L and W are the device effective channel length and width,
- V_{GS} is the gate-to-source voltage,
- n is the subthreshold swing coefficient for the transistor,
- V_{DS} is the drain-to-source voltage, and
- v_{τ} is the thermal voltage.

Power, temperature, performance, and reliability

Power time series

CPU Cycles

- Max Power: Artificial code generating max CPU activity
- Worst-case App Trace: Practical applications worst-case
- Thermal Power: Running average of worst-case app power
- over a time period corresponding to thermal time constant
- Average Power: Long-term average of typical apps (minutes)
- **Transient Power:** Variability in power consumption for supply net

Energy

- Power integrated over time.
- Average power multipled by time.
- J (mA-h for batteries, multiplies by V).rin

State-based power modeling

- For each component.
 - For each state.
 - Sum time spent in state × average power for state.
- Time-dependent state transitions are central.
- Big eaters
 - Displays.
 - Fluorescent tubes.
 - OLEDs.
 - Wireless interfaces.
 - Cellular.
 - WiFi.
 - Bluetooth.
 - CPU.

State-based power modeling

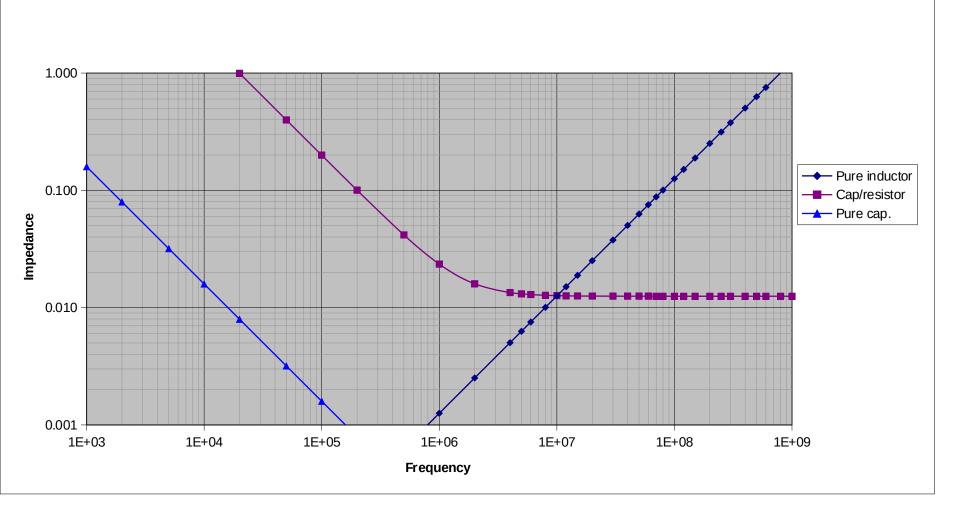
	Component						
	CPU	Wireless	Motor				
Power state	DFVS max 12W / 1%	Transmit 12W / 0.5%	On 20W / 2%				
	DVFS min 1W / 4%	Receive 10W / 10%	Off 0 W / 98%				
	Sleep 1uW / 95%	Standby 1W / 39.5%					
	Off OW / 0%	Off 0W / 50%					

 $A_{ps, dev}$ is the proportion of time *dev* spends in *ps*. $P_{ps,dev}$ is the power consumption of *dev* when in state *ps*. $P_{tot} = \sum_{ps \ \epsilon \ power \ states} \sum_{dev \ \epsilon \ devices} P_{ps, dev} \times A_{ps, dev}$

This is extraordinarily useful, and of shocking simplicity.

Outline

- Power and energy
- Power integrity


Power integrity

• Why? Get it wrong and board resets itself or worse for no apparent reason.

EECS 215/Physics 240 "review"

A look at impedance

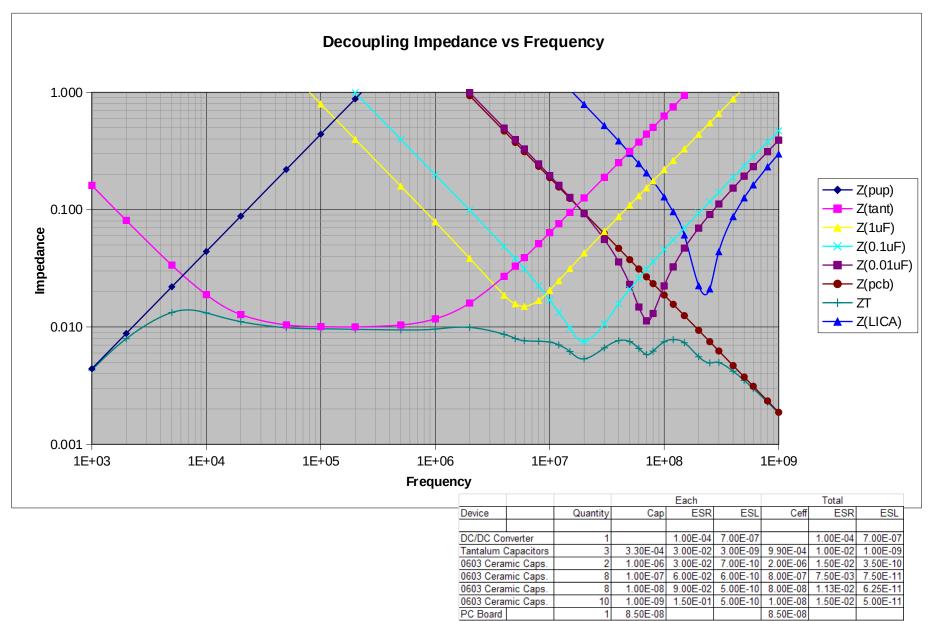
(with capacitors, inductors and resistors vs. frequency)

Notice the log scales!

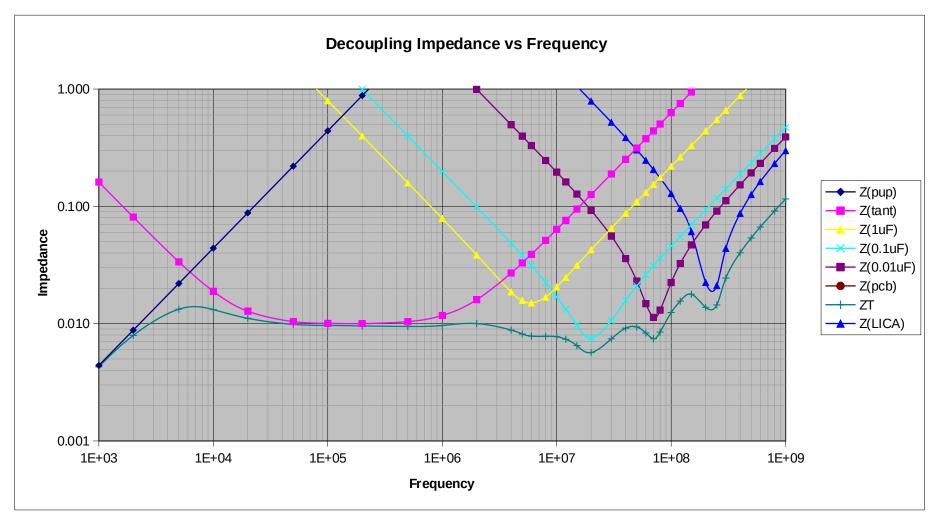
Power integrity related faults

- Even short "power droops" cause failure.
- Stable power = power Integrity.
- Does C fix?
 - No: parasitics.

Non-ideal devices

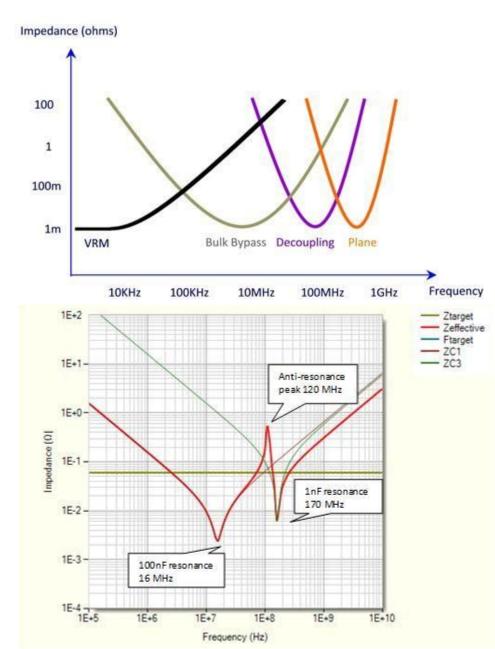

		Each			Total		
Device	Quantity	Сар	ESR	ESL	Ceff	ESR	ESL
DC/DC Converter	1		1.00E-04	7.00E-07		1.00E-04	7.00E-07
Tantalum Capacitors	3	3.30E-04	3.00E-02	3.00E-09	9.90E-04	1.00E-02	1.00E-09
0603 Ceramic Caps.	2	1.00E-06	3.00E-02	7.00E-10	2.00E-06	1.50E-02	3.50E-10
0603 Ceramic Caps.	8	1.00E-07	6.00E-02	6.00E-10	8.00E-07	7.50E-03	7.50E-11
0603 Ceramic Caps.	8	1.00E-08	9.00E-02	5.00E-10	8.00E-08	1.13E-02	6.25E-11
0603 Ceramic Caps.	10	1.00E-09	1.50E-01	5.00E-10	1.00E-08	1.50E-02	5.00E-11
PC Board	1	8.50E-08			8.50E-08		

- ESR is Effective Series Resistance
- ESL is Effective Series Inductance
- Ceff is the effective capacitance.
 How does quantity effect these values?
- Obviously impendence will be varying by frequency.


ESR/ESL contributors

- Bad solder jobs make ESR/ESL worse.
- Bad solder jobs make everything worse.
- Everything.
- Packaging has an impact.
- SMT eliminate wire parasitics.
- Pads can have an impact

Given the previous table



Removing the PCB

Staged capacitors

- Voltage regulator module
- Bulk bypass (tantalum) and decoupling capacitors (ceramic).
 - Instantaneous current.
 - Different frequencies.
- However sets of different capacitors cause problems!

Power integrity summary

- Use range of C values.
- Model frequency response.
 - Consider parasitics.
- SPICE works.

Other sources of information

- http://alternatezone.com/electronics/files/PCBDesignTutorialRevA.pdf
 - Very nice tutorial/overview
 - Seems to have strong viewpoint
- http://www.goldengategraphics.com/pcgloss.htm
 - Some definitions taken verbatim.

Done.