

EECS 373 Introduction To Embedded System Design

Robert Dick University of Michigan

Lecture 13: Power and Mechatronics

19 March 2024

Solenoids

- Motors
 - DC
 - Stepper
 - Servo
 - Linear
- H bridges
- Shaft encoders

Solenoids

- Why?
 - Release kibble.
 - Ring bells.
 - Kick ball.
 - Open binary valve.
- Electromagnet-based actuator.
- Typically linear.
- Typically binary.
- Typically very fast.
- Poor controllability.
- Heat dissipation is major concern.
 - Only when on.
- Major E and EM noise source!

- Solenoids
- Motors
 - DC
 - Stepper
 - Servo
 - Linear
- H bridges
- Shaft encoders

DC motors

- General purpose: turn things.
- Must switch magnetic field polarity during turn.
 - Brushed: carbon common, wears out.
 - Brushless: solid-state DC \rightarrow AC converter first.
- Back-EMF
 - Motors are also generators.
 - When turning, opposes applied voltage.
 - Speed-dependent: bigger when moving.
 - Noise source.
 - Permits current regulation.

Drone/disc motors

Big advanced for UAVs/drones.

- Wide instead of long. Better heat dissipation.
- High-efficiency.
- High-torque.
- Require special drivers.
- Require sensors.

- Solenoids
- Motors
 - DC
 - Stepper
 - Servo
 - Linear
- H bridges
- Shaft encoders

Stepper motors

- Position at precise orientation.
- Toothed magnets.
 - Moves in small increments.
- High torque when stationary.
- Torque drops a lot at high speed.
- Works w.o. sensors / back EMF based control.
 - Don't use open-loop anywhere near limits.
- Reliable.
- Lock-in requires continued power.
- Use for precise orientation control.

- Solenoids
- Motors
 - DC
 - Stepper
 - Servo
 - Linear
- H bridges
- Shaft encoders

Servo motors

- Position at very precise (continuous) orientation.
- Requires sensors for closed-loop control system.
- Zero power once at rest.
- Expensive.

- Solenoids
- Motors
 - DC
 - Stepper
 - Servo
 - Linear
- H bridges
- Shaft encoders

Linear motors/actuators

- Increasing force, but with reduced speed.
- Moving objects along long paths.
- Unwind stator \rightarrow linear array of electromagnets can be used.
- Leadscrews and rotary motors are more common.

- Solenoids
- Motors
 - DC
 - Stepper
 - Servo
 - Linear
- H bridges
- Shaft encoders

H bridges

- Why? Control direction of current through device.
- How? BJTs or FETs on "H" legs.

H bridge diodes

- What can go wrong?
 - Switch suddenly.
 - Inductors buck change in current.
 - Stored energy in coil produces large reverse voltage until discharged.
 - If FETs are off (they are), can be destroyed.

H bridge diodes

- Use diode in || with each switch.
- May be free w. MOSFETs.
- Where does current go when FET off?

- Solenoids
- Motors
 - DC
 - Stepper
 - Servo
 - Linear
- H bridges
- Shaft encoders

Shaft encoders

- Why? Know relative or absolute orientation.
- Linear arrangement of binary numbers.
- Can reuse numbers.
 - Lose absolute position.
- Adjacency essential.
 - Race conditions.

Shaft encoders

- How to design?
 - Adjacency map cycle.
 - 000 \rightarrow 001 \rightarrow 011 \rightarrow
 - 010 \rightarrow 110 \rightarrow 111 \rightarrow
 - 101 → 100 →
 - 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 fine, too.
- How to read?
 - LED+photodetector.
 - Reflective or transmissive.

Summary: you don't know motors

- You do know enough to get started.
- Have some understanding of uses.
- Strengths and weaknesses.

Done.