EECS 373
 Introduction to Embedded System Design

Robert Dick
University of Michigan

Lecture 14: Interface circuits and wireless

2 April 2024

Review

- Power integrity
- Solenoids
- Motors
- DC
- Stepper
- Servo
- Linear
- H bridges
- Shaft encoders

What's left in the course

- 4 April: Project Checkpoint 2: update report.
- Progress.
- Changes in plans.
- 11, 16, 18 April: Student presentations.
- 10-minutes / team.
- Report on current state of project, but can indicate plans for coming days.
- Send me slides by evening before presentation.
- We'll assign dates via a Piazza post shortly.
- Must open with 30-second self-contained pitch.

30-second pitch

- What problem are you trying to solve?
- How does your solution work from the perspective of the person with the problem?
- What was your technical approach?

Outline

- Power supplies
- Voltage regulators
- Signal conditioning
- Wireless communication

Power supplies

- Goals (Why?).
- Always stably output desired voltage.
- V requirements may change w. time.
- Reality
- Available voltage wrong sometimes or always.
- High parasitics for raw energy source.
- $\mathrm{L} \rightarrow \mathrm{dl} / \mathrm{dt}=$ droops/spikes w . current var.

Battery discharge curve

- Beware startup peak.
- Parasitics matter.
- Rint, Rsd, Cint, Lint.
- T matters.

- Winding ratio.
- Step up or down voltage.
- Expensive and bulky.

- Winding ratio.
- Step up or down voltage.
- Expensive and bulky.

AC-DC

- Vp/Vs = Np/Ns = Is/lp.
- Need DC.
- Full-wave rectifier.
-What does this do to waveform?
- How to make stable? C.
- Tolerate changing input V? Zener.

Outline

- Power supplies
- Voltage regulators
- Signal conditioning
- Wireless communication

Linear DC-DC

- Simple, Zener-based.
- Inefficient for large V conversion.
- Will give reading material for review.

Charge pump DC-DC

- Charge C.
- Stack with source.
- Repeat.
- Not great for high power.
- Good for communication.
- Can control charging period to control V.

Buck switching DC-DC

- Efficient.
- Step-down, only.
- Max output = Vin - Vloss.

Buck-boost switching DC-DC

- Efficient.
- Step up or down.
- $0 X \rightarrow 2 X$.
- Inverting.

None

- Don't always need regulator.
- They're only around 85\% efficient.
- Terrible for usually-sleeping systems.
- Built-in battery C is useful.
- Can components can tolerate full swing?
- Consider Lilon start-up peak!

- See my paper with S. Kim at https://robertdick.org/publications/
- Also see DC-DC converter primer on website.

Outline

- Power supplies
- Voltage regulators
- Signal conditioning
- Wireless communication

Signal conditioning

- Why? Bare sensor characteristics clash with ADC.
- Problems with many sensor outputs.
- High internal resistance.
- Voltage range mismatch.
- Unwanted frequencies.
- Fluctuating near-DC offset.
- Solutions.
- Low-pass/high-pass/notch filters.
- Amplifiers.

Filter order

Designing the anti-aliasing filter

- Goal: cutoff $\mathrm{f}=30 \mathrm{~Hz}$. Given: $\mathrm{C}=0.1 \mu \mathrm{~F}$.
- Question: R = ?
- Example.

Designing the anti-aliasing filter

- w is in radians
- $w=2 \pi f$
- $R=1 /(C 2 \pi f) \leftarrow$ We can derive this.
- Goal: cutoff $f=30 \mathrm{~Hz}$. Given: $\mathrm{C}=0.1 \mu \mathrm{~F}$.
- $w=2 \pi f, 1 /(R C)=2 \pi f, R=1 /(2 \pi f C)=1 /(2 \pi[30 \mathrm{~Hz}][0.1 \mu F])$
- $\mathrm{R}=53 \mathrm{k} \Omega$

Op-amp model

$\mathrm{Ri}=2 \mathrm{M} \Omega$
Voffset $=4 \mathrm{mV}$
A $=20 \mathrm{M}$
$R 0=75 \Omega$

- Nonlinear behavior not represented in model.
- Consider power supply V.
$\mathrm{Ri}<\infty$
Voffset $\neq 0 \mathrm{~V}$
A $<\infty$
$\mathrm{R} 0>0 \Omega$

Ideal op-amp model

Op-amp "Golden Rules"

For negative feedback

- Gain is infinite so input voltages equal.
- Input resistance infinite so input current zero.
- I.e., op-amp does what is needed to make $\mathrm{Vin}^{-}=\mathrm{Vin}^{+}$.

Nodal analysis for inverting case

- Ideal assumptions simplify problem greatly.
- Dependent voltage source will work to set $\mathrm{Vd}=0 \mathrm{~V}$.
- Solve for current into Vd- node.
- Solve for Vo/Vin.
- Inverting: to make Vd=0V, Vo must be negative.
- Can also design non-inverting amplifiers.

First-order active inverting lowpass filter

- Low-f: Impedance is determined by Rf.
- High-f: Impedance drops.
- -Zf/Zs \rightarrow high-f attenuated.
- Can analyze in frequency- / sdomain.

Cascading of active filters

Create a higher-order filter by cascading.

Cascading active filters

Create band filters by cascading.

(a) Bandpass filter

(b) Bandreject filter

Instrumentation amplifiers

- Amplifies differential signal.
- Rejects ground (common-mode) noise.
- Most designs use multiple op amps.

References

- Paul Horowitz and Winfield Hill, "The Art of Electronics."
- Howard M. Berlin, "Design of OP-AMP Circuits."
- Any decent introductory circuits book.
- Application notes from op amp manufacturers.

Outline

- Power supplies
- Voltage regulators
- Signal conditioning
- Wireless communication

Wireless communication

- Reliability.
- Power.

Wireless environment

- Noise.
- Absorption.
- Reflection.
- Multipath.
- Environmental conditions.

Figure 6.10: Comparison of measured and simulated RSSIs with nodes sitting on the ground.

Figure 6.11: Comparison of measured and simulated RSSIs with nodes raised 0.95 m from ground.

Anisotropic radiation patterns

Credit to fpvlair.com for image.

Wireless motion

- Antenna motion.
- Conductive material motion.

Table 2.3: Classification Performance

Environment	Sensitivity (\%)	Specificity (\%)
Office I	99.6	96.5
Office II	100.0	87.7
Cafeteria	91.4	86.6
Outdoor	95.9	61.1

Communication power

1. Antenna.
2. Electronics.

Radiated energy

- Radiated power depends on distance.
- Hit target SNR at receiver.
- P_{r} : received power.
- P_{t} : transmitted power.
- $P_{r} \propto P_{t}(1 / d)^{\gamma}$.
- γ often around 3 or 4.
- Small antennas may be inefficient.
- Power into amp often > 4 times transmitted power.

Communication energy

- Circuit power is roughly constant and independent of distance.
- On order of 1-10mW.
- For large distances, transmission energy dominates.
- For short distance, circuit energy should also be considered.

Communication energy

For a particular radio

- Const. on power consp.: 2 mW .
- Additional const. trans. power consp.: 10 mW .
- For zero output power.
- Power-dependent trans. efficiency: 25\%

What is total power consumption for 10 mW output power?

Communication power and multi-hop

- Are two hops better than one?
- Superlinear increase in energy with distance.
- Constant energy hit regardless of distance.

Processing vs. transmitting

- Transmitting 1-bit costs same as executing orders of magnitude more instructions.
- Can save on transmission costs by intelligently processing data before transmitting!
- Data aggregation/fusion.
- Local processing.
- See Embedded Intelligence in the Internet-of-Things article at https://robertdick.org/publications/ .

Dynamic power management

- Dynamic power management also useful for communication power.
- Turn radio off when nothing to send/receive.
- Note while off can not receive.
- Taking into account DPM can change transceiver trade-offs.
- Better to send slow or send fast and sleep?

Hibernation

When to wake up?
Possibilities

1. At regular intervals.

- Need synchronization.

2. Trigger by stimulus.
-E.g., heat-sensitive circuit.

Course summary

- Early course
- State of computing (implementation technologies).
- Embedded system design challenges.
- Establishing product-market fit.
- Mid course
- Iterative design-debug process, design for debug.
- Understanding how embedded system building blocks work.
- Tried to draw on personal experience so you don't suffer from the same mistakes I made.
- Late course
- Making your project work.
- Presenting your ideas to others.

Done.

