

EECS 373 Introduction to Embedded System Design

Robert Dick University of Michigan

Lecture 14: Interface circuits and wireless

2 April 2024

Review

- Power integrity
- Solenoids
- Motors
 - DC
 - Stepper
 - Servo
 - Linear
 - H bridges
- Shaft encoders

What's left in the course

- 4 April: Project Checkpoint 2: update report.
 - Progress.
 - Changes in plans.
- 11, 16, 18 April: Student presentations.
 - 10-minutes / team.
 - Report on current state of project, but can indicate plans for coming days.
 - Send me slides by evening before presentation.
 - We'll assign dates via a Piazza post shortly.
 - Must open with 30-second self-contained pitch.

30-second pitch

- What problem are you trying to solve?
- How does your solution work from the perspective of the person with the problem?
- What was your technical approach?

Outline

Power supplies

- Voltage regulators
- Signal conditioning
- Wireless communication

Power supplies

- Goals (Why?).
 - Always stably output desired voltage.
 - V requirements may change w. time.
- Reality
 - Available voltage wrong sometimes or always.
 - High parasitics for raw energy source.
 - L \rightarrow dI/dt = droops/spikes w. current var.

Battery discharge curve

- Beware startup peak.
- Parasitics matter.
 - Rint, Rsd, Cint, Lint.
- T matters.

AC-AC

- Winding ratio.
 - Step up or down voltage.
- Expensive and bulky.

AC-AC

- Winding ratio.
 - Step up or down voltage.
- Expensive and bulky.

AC-DC

- Vp/Vs = Np/Ns = Is/Ip.
- Need DC.
- Full-wave rectifier.
- What does this do to waveform?
- How to make stable? C.
- Tolerate changing input V? Zener.

Outline

- Power supplies
- Voltage regulators
- Signal conditioning
- Wireless communication

Linear DC-DC

- Simple, Zener-based.
- Inefficient for large V conversion.
- Will give reading material for review.

Charge pump DC-DC

- Charge C.
- Stack with source.
- Repeat.
- Not great for high power.
- Good for communication.
- Can control charging period to control V.

Buck switching DC-DC

- Efficient.
- Step-down, only.
- Max output = Vin Vloss.

Buck-boost switching DC-DC

- Efficient.
- Step up or down.
 - $0X \rightarrow 2X$.
- Inverting.

None

- Don't always need regulator.
- They're only around 85% efficient.
- Terrible for usually-sleeping systems.
- Built-in battery C is useful.
- Can components can tolerate full swing?
 - Consider Lilon start-up peak!
- See my paper with S. Kim at https://robertdick.org/publications/
- Also see DC-DC converter primer on website.

Outline

- Power supplies
- Voltage regulators
- Signal conditioning
- Wireless communication

Signal conditioning

- Why? Bare sensor characteristics clash with ADC.
- Problems with many sensor outputs.
 - High internal resistance.
 - Voltage range mismatch.
 - Unwanted frequencies.
 - Fluctuating near-DC offset.
- Solutions.
 - Low-pass/high-pass/notch filters.
 - Amplifiers.

Filter order

Designing the anti-aliasing filter

• Example.

Designing the anti-aliasing filter

Op-amp model

Ri = 2 M Ω Voffset = 4 mV A = 20M R0 = 75 Ω

- Nonlinear behavior not represented in model.
- Consider power supply V.
- Ri < ∞ Voffset ≠ 0 V A < ∞ R0 > 0 Ω

Ideal op-amp model

Op-amp "Golden Rules"

For negative feedback

- Gain is infinite so input voltages equal.
- Input resistance infinite so input current zero.
- I.e., op-amp does what is needed to make Vin⁻ = Vin⁺.

Nodal analysis for inverting case

- Ideal assumptions simplify problem greatly.
- Dependent voltage source will work to set Vd=0V.
- Solve for current into Vd- node.
- Solve for Vo/Vin.
- Inverting: to make Vd=0V, Vo must be negative.
- Can also design non-inverting amplifiers.

First-order active inverting lowpass filter

- Low-f: Impedance is determined by Rf.
- High-f: Impedance drops.
- $-Zf/Zs \rightarrow$ high-f attenuated.
- Can analyze in frequency- / sdomain.

Cascading of active filters

Create a higher-order filter by cascading.

Cascading active filters

Create band filters by cascading.

Instrumentation amplifiers

- Amplifies differential signal.
- Rejects ground (common-mode) noise.
- Most designs use multiple op amps.

References

- Paul Horowitz and Winfield Hill, "The Art of Electronics."
- Howard M. Berlin, "Design of OP-AMP Circuits."
- Any decent introductory circuits book.
- Application notes from op amp manufacturers.

Outline

- Power supplies
- Voltage regulators
- Signal conditioning
- Wireless communication

Wireless communication

- Reliability.
- Power.

Wireless environment

- Noise.
- Absorption.
- Reflection.
 - Multipath.
- Environmental conditions.

Figure 6.10: Comparison of measured and simulated RSSIs with nodes sitting on the ground.

Anisotropic radiation patterns

Credit to fpvlair.com for image.

Wireless motion

- Antenna motion.
- Conductive material motion.

Table 2.3: Classification Performance

Environment	Sensitivity (%)	Specificity (%)
Office I	99.6	96.5
Office II	100.0	87.7
Cafeteria	91.4	86.6
Outdoor	95.9	61.1

Communication power

- 1. Antenna.
- 2. Electronics.

Radiated energy

- Radiated power depends on distance.
 - Hit target SNR at receiver.
 - P_r: received power.
 - P_t: transmitted power.
 - P_r α P_t (1/d)^γ.
 - y often around 3 or 4.
- Small antennas may be inefficient.
- Power into amp often > 4 times transmitted power.

Communication energy

- Circuit power is roughly constant and independent of distance.
 - On order of 1-10mW.
- For large distances, transmission energy dominates.
- For short distance, circuit energy should also be considered.

Communication energy

For a particular radio

- Const. on power consp.: 2 mW.
- Additional const. trans. power consp.: 10 mW.
- For zero output power.
- Power-dependent trans. efficiency: 25%

What is total power consumption for 10 mW output power?

Communication power and multi-hop

- Are two hops better than one?
- Superlinear increase in energy with distance.
- Constant energy hit regardless of distance.

Processing vs. transmitting

- Transmitting 1-bit costs same as executing orders of magnitude more instructions.
- Can save on transmission costs by intelligently processing data before transmitting!
- Data aggregation/fusion.
- Local processing.
- See Embedded Intelligence in the Internet-of-Things article at <u>https://robertdick.org/publications/</u>.

Dynamic power management

- Dynamic power management also useful for communication power.
- Turn radio off when nothing to send/receive.
- Note while off can **not** receive.
- Taking into account DPM can change transceiver trade-offs.
 - Better to send slow or send fast and sleep?

Hibernation

When to wake up?

Possibilities

- 1. At regular intervals.
- Need synchronization.
 - 2. Trigger by stimulus.
- -E.g., heat-sensitive circuit.

Course summary

- Early course
 - State of computing (implementation technologies).
 - Embedded system design challenges.
 - Establishing product-market fit.
- Mid course
 - Iterative design-debug process, design for debug.
 - Understanding how embedded system building blocks work.
 - Tried to draw on personal experience so you don't suffer from the same mistakes I made.
- Late course
 - Making your project work.
 - Presenting your ideas to others.

Done.