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Review

 Power integrity
 Solenoids
 Motors

 DC
 Stepper
 Servo
 Linear
 H bridges

 Shaft encoders
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What’s left in the course

 4 April: Project Checkpoint 2: update report.
 Progress.
 Changes in plans.

 11, 16, 18 April: Student presentations.
 10-minutes / team.
 Report on current state of project, but can 

indicate plans for coming days.
 Send me slides by evening before presentation.
 We’ll assign dates via a Piazza post shortly.
 Must open with 30-second self-contained pitch.
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30-second pitch

 What problem are you trying to solve?
 How does your solution work from the perspective 

of the person with the problem?
 What was your technical approach?
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Outline

 Power supplies
 Voltage regulators
 Signal conditioning
 Wireless communication

6



Power supplies

 Goals (Why?).
 Always stably output desired voltage.
 V requirements may change w. time.

 Reality
 Available voltage wrong sometimes or always.
 High parasitics for raw energy source.

 L  dI/dt  = droops/spikes w. current var.→
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Battery discharge curve

 Beware startup peak.
 Parasitics matter.

 Rint, Rsd, Cint, Lint.
 T matters.
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AC-AC

 Winding ratio.
 Step up or down voltage.

  Expensive and bulky.
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AC-AC

 Winding ratio.
 Step up or down voltage.

  Expensive and bulky.
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AC-DC

 Vp/Vs = Np/Ns = Is/Ip.
 Need DC.
 Full-wave rectifier.
 What does this do to waveform?
 How to make stable? C.
 Tolerate changing input V? Zener.
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Outline

 Power supplies
 Voltage regulators
 Signal conditioning
 Wireless communication
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Linear DC-DC

●Simple, Zener-based.
● Inefficient for large V conversion.
●Will give reading material for review.
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Charge pump DC-DC

●Charge C.
●Stack with source.
●Repeat.
●Not great for high power.
●Good for communication.
●Can control charging period to control V.
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Buck switching DC-DC
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●Efficient.
●Step-down, only.
●Max output = Vin – Vloss.



Buck-boost switching DC-DC

16

 Efficient.
 Step up or down.

 0X  2X.→
 Inverting.



None
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 Don't always need regulator.
 They're only around 85% efficient.
 Terrible for usually-sleeping 

systems.
 Built-in battery C is useful.
 Can components can tolerate full 

swing?
 Consider LiIon start-up peak!

 See my paper with S. Kim at 
https://robertdick.org/publications/ 

 Also see DC-DC converter primer 
on website.



Outline

 Power supplies
 Voltage regulators
 Signal conditioning
 Wireless communication
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Signal conditioning

 Why? Bare sensor characteristics clash with ADC.
 Problems with many sensor outputs.

 High internal resistance.
 Voltage range mismatch.
 Unwanted frequencies.
 Fluctuating near-DC offset.

 Solutions.
 Low-pass/high-pass/notch filters.
 Amplifiers.
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Filter order



Designing the anti-aliasing filter

● w is in radians
● w = 2πf
● R = 1/(C2πf)  We can derive this.←

● Goal: cutoff f = 30 Hz. Given: C = 0.1 μF.
● Question: R = ?
● Example.



Designing the anti-aliasing filter

● w is in radians
● w = 2πf
● R = 1/(C2πf)  We can derive this.←

● Goal: cutoff f = 30 Hz. Given: C = 0.1 μF.
● w = 2πf, 1/(RC) = 2πf, R = 1/(2πfC) = 1/(2π[30 Hz][0.1μF])
● R = 53 kΩ



Op-amp model

● Nonlinear behavior not 
represented in model.

● Consider power supply V. 

+ V C C

-V C C

O ffse t  N u ll

V o u t

V - ,in

V + ,in

V - ,in

V + ,in
+

-

-
+

V o ffset

R i

+

-

vd

A vd

R o
V o

Ri < ∞
Voffset ≠ 0 V
A < ∞
R0 > 0 Ω

Ri = 2 MΩ
Voffset = 4 mV
A = 20M
R0 = 75 Ω



Ideal op-amp model
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Op-amp “Golden Rules”
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For negative feedback
● Gain is infinite so input voltages equal.
● Input resistance infinite so input current zero.
● I.e., op-amp does what is needed to make Vin- = Vin+.
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Nodal analysis for inverting case
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 Ideal assumptions simplify problem 
greatly.

 Dependent voltage source will work 
to set Vd=0V.

 Solve for current into Vd- node.
 Solve for Vo/Vin.
 Inverting: to make Vd=0V, Vo must 

be negative.
 Can also design non-inverting 

amplifiers.



First-order active inverting lowpass filter
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 Low-f: Impedance is determined 
by Rf.

 High-f: Impedance drops.
 -Zf/Zs → high-f attenuated.
 Can analyze in frequency- / s-

domain.



Cascading of active filters
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Create a higher-order filter by cascading.



Cascading active filters

Create band filters by cascading.



Instrumentation amplifiers

● Amplifies differential signal.
● Rejects ground (common-mode) noise.
● Most designs use multiple op amps.
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References

● Paul Horowitz and Winfield Hill, “The Art of 
Electronics.”

● Howard M. Berlin, “Design of OP-AMP Circuits.”
● Any decent introductory circuits book.
● Application notes from op amp manufacturers.
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Outline

 Power supplies
 Voltage regulators
 Signal conditioning
 Wireless communication
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Wireless communication

 Reliability.
 Power.

34



Wireless environment

 Noise.
 Absorption.
 Reflection.

 Multipath.
 Environmental conditions.
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Anisotropic radiation patterns

Credit to fpvlair.com for image.
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Wireless motion

● Antenna motion.
● Conductive material motion.
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Communication power

 
1. Antenna.
2. Electronics.
 



Radiated energy

 Radiated power depends on distance.
 Hit target SNR at receiver.
 Pr: received power.
 Pt: transmitted power.
 Pr α Pt (1/d)ɣ

.

 ɣ often around 3 or 4.
 Small antennas may be inefficient.
 Power into amp often > 4 times transmitted power.



Communication energy

 Circuit power is roughly constant and independent of 
distance. 

 On order of 1-10mW.
 For large distances, transmission energy dominates.
 For short distance, circuit energy should also be 

considered.



Communication energy

For a particular radio
● Const. on power consp.: 2 mW.
● Additional const. trans. power consp.: 10 mW.
● For zero output power.
● Power-dependent trans. efficiency: 25%

What is total power consumption for 10 mW 
output power? 



Communication power and multi-hop

 Are two hops better than one?
 Superlinear increase in energy with distance.
 Constant energy hit regardless of distance.



Processing vs. transmitting

 Transmitting 1-bit costs same as executing orders of 
magnitude more instructions.

 Can save on transmission costs by intelligently 
processing data before transmitting!

 Data aggregation/fusion.
 Local processing.
 See Embedded Intelligence in the Internet-of-Things 

article at https://robertdick.org/publications/ .

https://robertdick.org/publications/


Dynamic power management

 Dynamic power management also useful for 
communication power.

 Turn radio off when nothing to send/receive.
 Note while off can not receive.

 Taking into account DPM can change transceiver 
trade-offs.
 Better to send slow or send fast and sleep?



Hibernation

When to wake up?
 
Possibilities

1. At regular intervals. 
– Need synchronization.

   2.  Trigger by stimulus.
– E.g., heat-sensitive circuit. 



Course summary
 Early course

 State of computing (implementation technologies).
 Embedded system design challenges.
 Establishing product-market fit.

 Mid course
 Iterative design-debug process, design for debug.
 Understanding how embedded system building blocks work.
 Tried to draw on personal experience so you don’t suffer from the same 

mistakes I made.
 Late course

 Making your project work.
 Presenting your ideas to others.



Done.
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