
EECS 373
Introduction to Embedded System Design

Robert Dick
University of Michigan

Lecture 2: Architecture, Assembly, and ABI

16 and 18 January 2024

Review

● Course staff
● Implementation technology trends
● Application trends
● Course structure and grading
● Introduction to debugging

Outline

● ISA
● ABI
● Build process

Major elements of an Instruction Set Architecture
(registers, memory, word size, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #0x1

 ld r1, [r0,#5]

 r1=mem((r0)+5)

 bne loop

 subs r2, #1

Endianess

Endianness

 Memory Value
 Offset (LSB) (MSB)
 ====== ===========
uint8_t a = 1; 0x0000 01 02 FF 00
uint8_t b = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678; 0x0004 78 56 34 12

Little-Endian (default)
 LSB(yte) is at lower address

Big-Endian
 MSB(yte) is at lower address

 Memory Value
 Offset (LSB) (MSB)
 ====== ===========
uint8_t a = 1; 0x0000 01 02 00 FF
uint8_t b = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678; 0x0004 12 34 56 78

Addressing: Big Endian vs. Little Endian (370 slide)

 Endianness: ordering of bytes within a word
 Little - increasing numeric signi昀椀cance with increasing

memory addresses
 Big – the opposite, most signi昀椀cant byte 昀椀rst
 MIPS is big endian, x86 is little endian, ARM supports both

(generally little)

Instruction encoding

● Instructions are encoded in machine language opcodes

Instructions
movs r0, #10

movs r1, #0

A
R

M
v7

A

R
M

Register Value Memory Value
001|00|000|00001010 (LSB) (MSB)
(msb) (lsb) 0a 20 00 21
001|00|001|00000000

Assembly example

data:

 .byte 0x12, 20, 0x20, -1

func:

 mov r0, #0

 mov r4, #0

 movw r1, #:lower16:data

 movt r1, #:upper16:data

top:

 ldrb r2, [r1],#1

 add r1, r1, #1

 add r4, r4, r2

 add r0, r0, #1

 cmp r0, #4

 bne top

Instructions used

 mov
 Moves data from register or immediate.
 Or also from shifted register or immediate!
 the mov assembly instruction maps to a bunch of

different encodings!
 If immediate it might be a 16-bit or 32-bit instruction.
 Not all values possible
 why?

 movw
 Actually an alias to mov.
 “w” is “wide”
 hints at 16-bit immediate.

From the ARMv7-M Architecture Reference Manual
(posted on the website under references)

There are similar entries for

move immediate, move shifted

(which actually maps to different

instructions), etc.

Directives

 #:lower16:data
 What does that do?
 Why?

Loads

 ldrb -- Load register byte
 Note this takes an 8-bit value and moves it into a 32-bit

location!
 Zeros out the top 24 bits.

 ldrsb -- Load register signed byte
 Note this also takes an 8-bit value and moves it into a 32-

bit location!
 Uses sign extension for the top 24 bits.
 Why? Two’s complement makes math e昀케cient.
 -1 00000001 11111110 11111111→ → →

 Would otherwise become 255.

Addressing modes

 Offset addressing
 Offset is added or subtracted from base register
 Result used as effective address for memory access
 [<Rn>, <offset>]

 Pre-indexed addressing
 Offset is applied to base register
 Result used as effective address for memory access
 Result written back into base register
 [<Rn>, <offset>]!

 Post-indexed addressing
 The address from the base register is used as the EA
 The offset is applied to the base and then written back
 [<Rn>], <offset>

What does the program _do_?

data:

 .byte 0x12, 20, 0x20, -1

func:

 mov r0, #0

 mov r4, #0

 movw r1, #:lower16:data

 movt r1, #:upper16:data

top:

 ldrb r2, [r1],#1

 add r4, r4, r2

 add r0, r0, #1

 cmp r0, #4

 bne top
15

An ISA de昀椀nes the hardware/software interface

 A contract between architects and programmers
 Register set
 Instruction set

 Addressing modes
 Word size
 Data formats
 Operating modes
 Condition codes

 Calling conventions
 Really not part of the ISA (usually)
 Rather part of the ABI
 But the ISA often provides meaningful support.

ARM architecture roadmap

How to read the ARM ARM

 Skim pages 1-84.
 Read pages 85-154.
 Refer to pages 154-end.

A quick comment on the ISA:
From: ARMv7-M Architecture Reference Manual

ARM Cortex-M3 ISA

Register Set Address Space

Branching
Data processing

Load/Store
Exceptions

Miscellaneous

Instruction Set

32-bits 32-bits

Endianess Endianess

Mode dependent

Registers

Address space

Instruction encoding: ADD immediate

Branch

Data processing instructions

Many more!

Load/store instructions

Miscellaneous instructions

Addressing Modes (again)

 Offset Addressing
 Offset is added or subtracted from base register
 Result used as effective address for memory access
 [<Rn>, <offset>]

 Pre-indexed Addressing
 Offset is applied to base register
 Result used as effective address for memory access
 Result written back into base register
 [<Rn>, <offset>]!

 Post-indexed Addressing
 The address from the base register is used as the EA
 The offset is applied to the base and then written back
 [<Rn>], <offset>

<offset> options

 An immediate constant
 #10

 An index register
 <Rm>

 A shifted index register
 <Rm>, LSL #<shift>

 Lots of weird options…

Application Program Status Register (APSR)

Updating the APSR

 SUB Rx, Ry
 Rx = Rx - Ry
 APSR unchanged

 SUBS
 Rx = Rx - Ry
 APSR N, Z, C, V updated

 ADD Rx, Ry
 Rx = Rx + Ry
 APSR unchanged

 ADDS
 Rx = Rx + Ry
 APSR N, Z, C, V updated

Over昀氀ow and carry in APSR

unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);

signed_sum = SInt(x) + SInt(y) + UInt(carry_in);

result = unsigned_sum<N-1:0>; // == signed_sum<N-1:0>

carry_out = if UInt(result) == unsigned_sum then ’0’ else ’1’;

over昀氀ow = if SInt(result) == signed_sum then ’0’ else ’1’;

Conditional execution: append to many instructions for
conditional execution

The ARM architecture “books” for this class

The ARM software tools “books” for this class

Outline

● Embedded system
● ISA
● ABI
● Build process

ABI

Need conventions for processor, compilers, linkers,
and programmers to work in concert.

ABI summary

Detailed version
● Pass: r0-r3
● Return: r0 or r0-r1
● Callee saved variables: r4-r8, r11, maybe r9, r10
● Static base: r9 (might offset from this to write)
● Stack limit checking: r10 (SP >= r10)
● Veneers, scratch: r12 (lillypad)
● Stack pointer: r13
● Link register (function call return address): r14
● Program counter: r15

Simple version
● Callee preserves r4-r11 and r13
● Caller preserves r0-r3

ABI details

 A subroutine must preserve the contents of the
registers r4-r8, r11, maybe r9-r10

 Arguments are passed though r0 to r3
 If you need more, we put a pointer into memory in one of

the registers.
 Return value is placed in r0 or r0-r1
 Allocate space on stack as needed. Use it as

needed.
 Reset stack pointer when done
 Word align

Outline

● Embedded system
● ISA
● ABI
● Build process

.equ STACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:

.word STACK_TOP, start

start:

movs r0, #10

movs r1, #0

loop:

adds r1, r0

subs r0, #1

bne loop

deadloop:

b deadloop

.end

An ARM assembly language program for GNU

all:

arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o

arm-none-eabi-objcopy -Obinary example1.out example.bin

arm-none-eabi-objdump -S example1.out > example1.list

A simple Make昀椀le

.equ STACK_TOP,

0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:

.word STACK_TOP, start

start:

movs r0, #10

movs r1, #0

loop:

An ARM assembly language program for GNU

example1.out: file format elf32-littlearm

Disassembly of section .text:

00000000 <_start>:

 0: 20000800 .word 0x20000800

 4: 00000000 .word 0x00000000

00000008 <start>:

 8: 200a movs r0, #10

 a: 2100 movs r1, #0

0000000c <loop>:

 c: 1809 adds r1, r1, r0

 e: 3801 subs r0, #1

 10: d1fc bne.n c <loop>

00000012 <deadloop>:

 12: e7fe b.n 12 <deadloop>

Disassembled object code

How does an assembly language program
get turned into a executable program image?

Assembly
files (.S)

Object
files (.o)

as
(assembler)

ld
(linker)

Memory
layout

Memory
layout

Linker
script (.ld)

Executable
image file

Binary program
file (.bin)

Disassembled
code (.lst)

ob
jc
op
y

objdump

What are the real GNU executable names for the ARM?

 Just add the pre昀椀x “arm-none-eabi-” pre昀椀x
 Assembler (as)
 arm-none-eabi-as

 Linker (ld)
 arm-none-eabi-ld

 Object copy (objcopy)
 arm-none-eabi-objcopy

 Object dump (objdump)
 arm-none-eabi-objdump

 C Compiler (gcc)
 arm-none-eabi-gcc

 C++ Compiler (g++)
 arm-none-eabi-g++

all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o
arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o
arm-none-eabi-objcopy -Obinary example1.out example1.bin
arm-none-eabi-objdump -S example1.out > example1.lst

A simple (hardcoded) Make昀椀le example

What information does the disassembled 昀椀le provide?

.equ STACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:
.word STACK_TOP, start

start:
movs r0, #10
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne loop

deadloop:
b deadloop
.end

example1.out: file format elf32-littlearm

Disassembly of section .text:

00000000 <_start>:
 0: 20000800 .word 0x20000800
 4: 00000000 .word 0x00000000

00000008 <start>:
 8: 200a movs r0, #10
 a: 2100 movs r1, #0

0000000c <loop>:
 c: 1809 adds r1, r1, r0
 e: 3801 subs r0, #1
 10: d1fc bne.n c <loop>

00000012 <deadloop>:
 12: e7fe b.n 12
<deadloop>

all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o
arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o
arm-none-eabi-objcopy -Obinary example1.out example1.bin
arm-none-eabi-objdump -S example1.out > example1.lst

.equ STACK_TOP, 0x20000800 /* Equates symbol to value */

.text /* Tells AS to assemble region */

.syntax unified /* Means language is ARM UAL */

.thumb /* Means ARM ISA is Thumb */

.global _start /* .global exposes symbol
 _start label is the beginning
 of the program region */

.type start, %function /* Specifies start is a function
 start label is reset handler */
_start:

.word STACK_TOP, start /* Inserts word 0x20000800
 Inserts word (start) */
start:

movs r0, #10
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne loop

deadloop:
b deadloop
.end

Elements of assembly language program?

$ arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

How are assembly 昀椀les assembled?

 $ arm-none-eabi-as
 Useful options
 -mcpu
 -mthumb
 -o

How does a mixed C/Assembly program
get turned into a executable program image?

Assembly
files (.s)

Object
files (.o)

as
(assembler)

gcc
(compile
+ link)

Memory
layout

Memory
layout

Linker
script (.ld)

Executable
image file

Binary program
file (.bin)

Disassembled
Code (.lst)

ob
jc
op
y

objdump

ld
(linker)

Library object
files (.o)

C files (.c)

Done.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	What does the program _do_?
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

