EECS 373

Introduction to Embedded System Design

Robert Dick
University of Michigan

Lecture 4: Debugging complex systems, APB

25, 30 January 2024

RO

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

xPSR

Outline

Project idea areas

Memory-Mapped I/O Review
Compile-time error checking example
Debugging Complex Systems
Advanced Peripheral Bus

General project idea areas

* Biological monitoring and control
Cleaning

Emergency response

Fashion

Music

* Personal monitors and assistants
* Smart home and cooking

Sports and games

Translators

Transportation

Ul

Lecture tuning

Pace: 4 say slow down, 10 say keep as-is, 2 say speed up.

Resolution: slow down very slightly.
Examples: 11 say use fewer examples, 5 say keep as-is, 3 say more examples.
Resolution: Reduce % of time spent on examples and avoid marathon sessions, but don’t stop completely.

Slides and DocCam: 8 say clear, 5 say unclear.

Resolution: Check DocCam setup carefully.
Can hear professor: 13 say yes, 0 say no.

Can hear students: 4 say yes, 7 say no.

Resolution: Repeat student questions. Also, please ask loudly.

Synchronization: 7 say synchronized, 5 say not synchronized.

Will discuss synchronization in weekly staff meetings but not sure what to do about this one. Can’t do
perfectly with lab times spanning a week.

Professor cares about teaching me to be a better computer engineer: 16 yes, 1 no.

If it doesn’t seem to be the case, please come to office hours. | can help on most computer engineering
related topics.

Outline

Project idea areas

Memory-Mapped I/O Review
Compile-time error checking example
Debugging Complex Systems
Advanced Peripheral Bus

Example

#include <stdio.h>
#include <inttypes.h>

#define REG_FOO 0x40000140

int main(void) {
volatile uint32_t *reg = (uint32_t *)(REG_FO00);
*reg += 3;

print_uint(*reg);
return 0;

}

“*reg += 3" is turned into a Id, add, str sequence

* Load instruction.

* A bus read operation commences.

* The CPU drives the address “reg” onto the address bus.
The CPU indicated a read operation is in process (e.g., R/W#).
* Some “handshaking” occurs.
The target drives the contents of “reg” onto the data lines.
The contents of “reg” are loaded into a CPU register (e.qg., r0).
* Add instruction.

* An immediate add (e.g., add r0, #3) adds three to this value.

* Store instruction.
* A bus write operation commences.
The CPU drives the address “reg” onto the address bus.
The CPU indicated a write operation is in process (e.g., R/W#).
The CPU drives the contents of “r0" onto the data lines.
Some “handshaking” occurs.
The target stores the data value into address “reg”.

Outline

Project idea areas

Memory-Mapped I/O Review
Compile-time error checking example
Debugging Complex Systems
Advanced Peripheral Bus

Outline

Project idea areas

Memory-Mapped I/O Review
Compile-time error checking example
Debugging Complex Systems
Advanced Peripheral Bus

Design and debugging: computer systems are graphs

® This is quick and seems simple but it is actually deep
and important.

® A computer system is a graph.

® Each component, e.g., a line of code or transistor, is a
vertex (v).

® Fach effect that influences other components is an
edge (e).

® Complexity is a function of |v| + |e].

Graph sizes

Vertex count + edge count as a function of vertex count for fully connected graphs

* For undirected fully 45

connected graphs.
* lel=1|vi(lvl=-1)/2 40 |]

* Butit's much worse than that s | |
because your ability to =
analyze systems decreases 3 30 .
dramatically with system size. §

* So system complexity (debug ¢ ol |
time) is a superlinear function § 20 | -
of |v|, like |v]~. g

* kis generally >=2, and 3 o |
probably quite a bit bigger. 10 | 1

5 L 4

1 2 3 4 5 6 7 8 9 10
Vertex count

Best-case complexity

Worst-case complexity

Managing complexity

Incremental tested growth

Incremental tested growth

Incremental tested growth

Incremental tested growth

Incremental tested growth

Design and debugging: how to make your life easy and
make your embedded systems work

* Control |v|
* Get a very simple version of the system tested and
functioning and add to it in small pieces, testing after
each addition.
* Never build something big and then start testing.
* Control |e]
* Build and test isolated, side-effect free components
with narrow and easy-to-understand interfaces.

Start from the root

* Check the foundation before the roof.
* Check the power distribution network integrity before
checking the software.

Switch between information gathering and reasoning

* Search process.
* Large search space.
* Probing specific locations is expensive.
* Initial conditions.
* Don't have the data necessary to understand the
problem.
* Haven't done the analysis necessary to convert those
data to information.
* Don't neglect either weakness. Iterate.
* Conduct naive experiments to gather information.
* Stop testing and reason about problem, using
conclusions to devise additional tests.
* Most engineers are better at analysis or testing.
* Don't stay under the streetlight.

Outline

Project idea areas

Memory-Mapped I/O Review
Compile-time error checking example
Debugging Complex Systems
Advanced Peripheral Bus

Details of the bus “handshaking” depend
on the particular memory/peripherals involved

* SoC memory/peripherals
* AMBA AHB/APB

* NAND Flash
* Open NAND Flash Interface (ONFI)

* DDR SDRAM
* JEDEC JESD79, JESD79-2F, etc.

Modern embedded systems have multiple busses

0

o,
T S &
& & & RPER S 3
o2 e tA)
«¢«QC§ «dl S‘*‘? FREEHFTE s .;ép
MASTER — eo— S| A E
1131 | 143434 A Atmel SAM3U
TaT Systemn Controlier| | JTAG & Sarial Wira | | Tlr—.;ﬁchmér | [7
%:g + ¢ + * ¢ Regulag::;r
b PLLA In-Circuit Emulator UsSB
| SysTick Countar] N Device
UPLL v HS
:_). PMC Cortex-M32 Processor 1 MAND Flash
W= Fmax 96 MHz C Ggrgcroicl;gr
XOUT -e— 3-20
RC Osc NANDRDY
12074 M DO-D45
[WDT | MAND Flash AQNESO
L) uFrt?;LTg SRAM :;_ -
! [4KBytes) -
VODUTRM — Idanifier e
VODDCORE—| BOD 'L Nﬁg
FLASH ROM Peripheral || Peripheral 4-Channal NWRINWE
"RG 32K| g 2x128 KBytes 16 KByta DMA Bridge DMA NWR1/NBS1
GRS 1x128 KBytes Controller > NWAIT
XIN22 —pe] OSC |=—x 1254 KBytes 499
xourzze—] 22K [mrr | Nakipace
EWLP = - PoC POC POC PDC POC > ANDCLE
VDDBU——["POH] USARTO TCO ok
NASTE—3 13*;_“1"53‘ WOl | T USART1 pwm || T4 sel ssC HSMCI NCS2
ERASE—» RSTC || i Wit USARTZ TC2
MRST =€ c USART2 mimgﬁ.
Pos] | FF FEE T
[Fioc] P

I XX
o

I
TSP SE AL RDRINIB LW SIS P A OREL g

Advanced Microcontroller Bus Architecture (AMBA)
- Advanced High-performance Bus (AHB)
- Advanced Peripheral Bus (APB)

High-performance
ARM processor

High-bandwidth
on-chip RAM

High-bandwidth
Memory Interface

AHB

UART Timer

APB

mooO—20W

Keypad PIO

DMA bus
master AHB to APB Bridge

AHB

High performance
Pipelined operation
Burst transfers
Multiple bus initiators
Split transactions

APB

® | ow power

® | atched address/control

® Simple interface

® Suitable of many
peripherals

STM32 Block Diagram

STM32L4R5xx, STM32L4R7xx and STM32L4R9xx Description

Figure 1. STM32L4R5xx, STM32L4R7xx and STM32L4R9xx block diagram

], [owk Neg:1, N, N0,
Fioxb FECT .
s R o s Azs0.Dn0, NoE e,
NITRST, JTE - d
JTOOISWD, JTOO0
e Wic GLK, NCs. DS
TRAGEGIH] I e OctosPi memory merace
TRACED[30] B
ARM Cortox s
18us|<——) a4 e
Fiash
saus| () (K= Pl
LOD_R7.0], LCD_GI7:0], LCD, BI7:0} 5 H HSYNG, VSYNC,
o ey Lcu,ﬂ<:2> o = K s
Loo oK
- E 'SRAM1 192 KB
CrrowART 9] e e
owAZD I — Y S SRAZEIRE om
R e 1y B — Df VeSO
EA
or] 5
oo x> swomme [R— K A)
£l (o [yoo-17riosey
DMAz vss
OAT @vop @voD
g I |]
e VDDIO, VDDUSB
8 Groups of 4 channels max as AF Touch sensing controller H{ o i
e[%"]| <) |voon vssa
T ReLst }'_ VDD, VSS, NRST
patsio) {_ GPIO PORTA 1 [o]
" v N e e
2
H
PBI150] GPIO PORTB H @vop
i xaLosc " |0se
P15 GPIOPORT C g i osc_out
! H
{» woc
PD[15:0] GPIO PORTD S —
Standoy
- e PN S o
@veAr
PFI15:0] GPIO PORTF —) Esm i
xiacsziz |y y
=N oscaz_out
Pol150] GPIOPORTG e RTC I RiC_TS
% s Z
83 st |y e e
PH15:0] PO BORTH R—— £33 RTC ouT
PI[11:0) GPIOPORT | WBAT ST 0S8V
1
N gl s TIM2 “ 4 channels, ETR as AF
1 cRC 32
o ko 5 K> schamen s
@voor KDL e o[> s cnamn emmiasar

AoCT] 5 sz [4 chams, ETR asAF

—
e T kS e Ko D e R
K uwms KComoensRm s
s chivan [—— P
ETR BRI, BKIN2 25 K sre] > wosi miso, ok, Nss asar
3 compl. Channels (TIM1_CH[1:3]N),
mmmmw,] E—— kool ormmis Kl sot. son susamar
IN, BKIN2 as AF| WWDG K=
2 oy =
1 compl. channel, BKIN as AF| T
I s KD s son e
1 compl. channel, BKIN as AF| k= 12C4/SMBUS K "> scL, spa sMBAas AF
| ot
: - e
g hmar B iz 2 [oo]
E: PN R e
T, 0K OTS] A 3
e o I W
MOSI, MISO| 2 TIME 160 ¥
sor 2] sei .
4 SO A ST e KDl Rhel e K our .
sl P = g et our e
S A SO A EXTCIR s B -
MCLK_B, SD_B. FS_B, SCK_B ﬁs’g =i u OUT NN INP
SocNT0, So0ATINT T
] pesou
ostooe
N [
DSICKPIN| Zz DS! Host
VoDi2081 Vo8 ashel
\anos
g
voon v
NP 1NN, OUT coupt =) LPuARTI K= rox 1. c7s. Rrs asiae
—_— couea
[row k= N
(I e o KD monmeman
DAC1_OUT DAC2_OUT MSv49327V2

‘Yl DS12023 Rev 5 17/307

Bus terminology

Transactions have “initiators” and “targets”

* Potential initiators, sometimes called “masters”.
* In many cases there is only one bus master (single master
vs. multi-master).

* Non-initiators, sometimes called “slaves”. They
cant start transactions, but they carry them out
when a master initiates one.

* Some wires might be shared among all devices
while others might be point-to-point connections
(generally connecting the initiator to each target).

Driving shared wires

* Some shared wires might need to be driven by
multiple devices.

* In that case, we need a way to allow one device to
control the wires while the others “stay out of the
way".

* Most common solutions are
* tri-state drivers and
* open-collector connections.

Another option: avoid shared wires

® Expensive when connecting chips on a PCB as you are
paying for pins and wiring area.
® Doable but costs area and time on-chip.

Wire count

* Consider a single-initiator bus with 5 other devices
connected and a 32-bit data bus.

* Shared bus - 32 pins

* Separate buses
* Each target would need ___ pins for data
* The initiator would need __ pins for data

* Pins and wiring area cost money.

APB is designed for ease of use

* Low-cost.

* Low-power.

* Low-complexity.
* Low-bandwidth.
* Non-pipelined.

* |Ideal for peripherals.

Done.

	Slide 1
	Slide 2
	General project idea areas
	Lecture tuning
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

