
EECS 373
Introduction to Embedded System Design

Robert Dick
University of Michigan

Lecture 4: Debugging complex systems, APB

25, 30 January 2024

Outline

● Project idea areas
● Memory-Mapped I/O Review
● Compile-time error checking example
● Debugging Complex Systems
● Advanced Peripheral Bus

General project idea areas
 * Biological monitoring and control

 Cleaning

 Emergency response

 Fashion

 Music

 * Personal monitors and assistants

 * Smart home and cooking

 Sports and games

 Translators

 Transportation

 UI

Lecture tuning
 Pace: 4 say slow down, 10 say keep as-is, 2 say speed up.

- Resolution: slow down very slightly.

 Examples: 11 say use fewer examples, 5 say keep as-is, 3 say more examples.

- Resolution: Reduce % of time spent on examples and avoid marathon sessions, but don’t stop completely.

 Slides and DocCam: 8 say clear, 5 say unclear.

- Resolution: Check DocCam setup carefully.

 Can hear professor: 13 say yes, 0 say no.

 Can hear students: 4 say yes, 7 say no.

- Resolution: Repeat student questions. Also, please ask loudly.

 Synchronization: 7 say synchronized, 5 say not synchronized.

- Will discuss synchronization in weekly staff meetings but not sure what to do about this one. Can’t do
perfectly with lab times spanning a week.

 Professor cares about teaching me to be a better computer engineer: 16 yes, 1 no.

- If it doesn’t seem to be the case, please come to office hours. I can help on most computer engineering
related topics.

Outline

● Project idea areas
● Memory-Mapped I/O Review
● Compile-time error checking example
● Debugging Complex Systems
● Advanced Peripheral Bus

#include <stdio.h>
#include <inttypes.h>

#define REG_FOO 0x40000140

int main(void) {
 volatile uint32_t *reg = (uint32_t *)(REG_FOO);
 *reg += 3;

 print_uint(*reg);
 return 0;
}

Example

“*reg += 3” is turned into a ld, add, str sequence

 Load instruction.
 A bus read operation commences.
 The CPU drives the address “reg” onto the address bus.
 The CPU indicated a read operation is in process (e.g., R/W#).
 Some “handshaking” occurs.
 The target drives the contents of “reg” onto the data lines.
 The contents of “reg” are loaded into a CPU register (e.g., r0).

 Add instruction.
 An immediate add (e.g., add r0, #3) adds three to this value.

 Store instruction.
 A bus write operation commences.
 The CPU drives the address “reg” onto the address bus.
 The CPU indicated a write operation is in process (e.g., R/W#).
 The CPU drives the contents of “r0” onto the data lines.
 Some “handshaking” occurs.
 The target stores the data value into address “reg”.

Outline

● Project idea areas
● Memory-Mapped I/O Review
● Compile-time error checking example
● Debugging Complex Systems
● Advanced Peripheral Bus

Outline

● Project idea areas
● Memory-Mapped I/O Review
● Compile-time error checking example
● Debugging Complex Systems
● Advanced Peripheral Bus

Design and debugging: computer systems are graphs

● This is quick and seems simple but it is actually deep
and important.

● A computer system is a graph.
● Each component, e.g., a line of code or transistor, is a

vertex (v).
● Each effect that influences other components is an

edge (e).
● Complexity is a function of |v| + |e|.

Graph sizes

 For undirected fully
connected graphs.
 |e| = |v|(|v| – 1) / 2

 But it's much worse than that
because your ability to
analyze systems decreases
dramatically with system size.

 So system complexity (debug
time) is a superlinear function
of |v|, like |v|k.

 k is generally >= 2, and
probably quite a bit bigger.

Best-case complexity

Worst-case complexity

Managing complexity

Incremental tested growth

Incremental tested growth

Incremental tested growth

Incremental tested growth

Incremental tested growth

Design and debugging: how to make your life easy and
make your embedded systems work

 Control |v|
 Get a very simple version of the system tested and

functioning and add to it in small pieces, testing after
each addition.

 Never build something big and then start testing.
 Control |e|

 Build and test isolated, side-effect free components
with narrow and easy-to-understand interfaces.

Start from the root

 Check the foundation before the roof.
 Check the power distribution network integrity before

checking the software.

Switch between information gathering and reasoning

 Search process.
 Large search space.
 Probing specific locations is expensive.
 Initial conditions.

 Don't have the data necessary to understand the
problem.

 Haven't done the analysis necessary to convert those
data to information.

 Don't neglect either weakness. Iterate.
 Conduct naïve experiments to gather information.
 Stop testing and reason about problem, using

conclusions to devise additional tests.
 Most engineers are better at analysis or testing.

 Don’t stay under the streetlight.

Outline

● Project idea areas
● Memory-Mapped I/O Review
● Compile-time error checking example
● Debugging Complex Systems
● Advanced Peripheral Bus

Details of the bus “handshaking” depend
on the particular memory/peripherals involved

 SoC memory/peripherals
 AMBA AHB/APB

 NAND Flash
 Open NAND Flash Interface (ONFI)

 DDR SDRAM
 JEDEC JESD79, JESD79-2F, etc.

Modern embedded systems have multiple busses

Atmel SAM3U

Advanced Microcontroller Bus Architecture (AMBA)
- Advanced High-performance Bus (AHB)
- Advanced Peripheral Bus (APB)

AHB
● High performance
● Pipelined operation
● Burst transfers
● Multiple bus initiators
● Split transactions

APB
● Low power
● Latched address/control
● Simple interface
● Suitable of many

peripherals

STM32 Block Diagram

Bus terminology

Transactions have “initiators” and “targets”

 Potential initiators, sometimes called “masters”.

 In many cases there is only one bus master (single master
vs. multi-master).

 Non-initiators, sometimes called “slaves”. They
can't start transactions, but they carry them out
when a master initiates one.

 Some wires might be shared among all devices
while others might be point-to-point connections
(generally connecting the initiator to each target).

Driving shared wires

 Some shared wires might need to be driven by
multiple devices.

 In that case, we need a way to allow one device to
control the wires while the others “stay out of the
way”.

 Most common solutions are
 tri-state drivers and
 open-collector connections.

Another option: avoid shared wires

● Expensive when connecting chips on a PCB as you are
paying for pins and wiring area.

● Doable but costs area and time on-chip.

Wire count

 Consider a single-initiator bus with 5 other devices
connected and a 32-bit data bus.

 Shared bus 32 pins→
 Separate buses

 Each target would need ____ pins for data
 The initiator would need ____ pins for data

 Pins and wiring area cost money.

APB is designed for ease of use

 Low-cost.

 Low-power.

 Low-complexity.

 Low-bandwidth.

 Non-pipelined.

 Ideal for peripherals.

Done.

	Slide 1
	Slide 2
	General project idea areas
	Lecture tuning
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

