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General project idea areas

* Biological monitoring and control
Cleaning

Emergency response

Fashion

Music

* Personal monitors and assistants
* Smart home and cooking

Sports and games

Translators

Transportation

Ul



Lecture tuning

Pace: 4 say slow down, 10 say keep as-is, 2 say speed up.

Resolution: slow down very slightly.
Examples: 11 say use fewer examples, 5 say keep as-is, 3 say more examples.
Resolution: Reduce % of time spent on examples and avoid marathon sessions, but don’t stop completely.

Slides and DocCam: 8 say clear, 5 say unclear.

Resolution: Check DocCam setup carefully.
Can hear professor: 13 say yes, 0 say no.

Can hear students: 4 say yes, 7 say no.

Resolution: Repeat student questions. Also, please ask loudly.

Synchronization: 7 say synchronized, 5 say not synchronized.

Will discuss synchronization in weekly staff meetings but not sure what to do about this one. Can’t do
perfectly with lab times spanning a week.

Professor cares about teaching me to be a better computer engineer: 16 yes, 1 no.

If it doesn’t seem to be the case, please come to office hours. | can help on most computer engineering
related topics.
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Example

#include <stdio.h>
#include <inttypes.h>

#define REG_FOO 0x40000140

int main(void) {
volatile uint32_t *reg = (uint32_t *)(REG_FO00);
*reg += 3;

print_uint(*reg);
return 0;

}



“*reg += 3" is turned into a Id, add, str sequence

* Load instruction.

* A bus read operation commences.

* The CPU drives the address “reg” onto the address bus.
The CPU indicated a read operation is in process (e.g., R/W#).
* Some “handshaking” occurs.
The target drives the contents of “reg” onto the data lines.
The contents of “reg” are loaded into a CPU register (e.qg., r0).
* Add instruction.

* An immediate add (e.g., add r0, #3) adds three to this value.

* Store instruction.
* A bus write operation commences.
The CPU drives the address “reg” onto the address bus.
The CPU indicated a write operation is in process (e.g., R/W#).
The CPU drives the contents of “r0" onto the data lines.
Some “handshaking” occurs.
The target stores the data value into address “reg”.
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Design and debugging: computer systems are graphs

® This is quick and seems simple but it is actually deep
and important.

® A computer system is a graph.

® Each component, e.g., a line of code or transistor, is a
vertex (v).

® Fach effect that influences other components is an
edge (e).

® Complexity is a function of |v| + |e].



Graph sizes

Vertex count + edge count as a function of vertex count for fully connected graphs
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connected graphs.
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Best-case complexity



Worst-case complexity




Managing complexity



Incremental tested growth



Incremental tested growth
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Incremental tested growth



Incremental tested growth




Design and debugging: how to make your life easy and
make your embedded systems work

* Control |v|
* Get a very simple version of the system tested and
functioning and add to it in small pieces, testing after
each addition.
* Never build something big and then start testing.
* Control |e]
* Build and test isolated, side-effect free components
with narrow and easy-to-understand interfaces.



Start from the root

* Check the foundation before the roof.
* Check the power distribution network integrity before
checking the software.



Switch between information gathering and reasoning

* Search process.
* Large search space.
* Probing specific locations is expensive.
* Initial conditions.
* Don't have the data necessary to understand the
problem.
* Haven't done the analysis necessary to convert those
data to information.
* Don't neglect either weakness. Iterate.
* Conduct naive experiments to gather information.
* Stop testing and reason about problem, using
conclusions to devise additional tests.
* Most engineers are better at analysis or testing.
* Don't stay under the streetlight.
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Details of the bus “handshaking” depend
on the particular memory/peripherals involved

* SoC memory/peripherals
* AMBA AHB/APB

* NAND Flash
* Open NAND Flash Interface (ONFI)

* DDR SDRAM
* JEDEC JESD79, JESD79-2F, etc.




Modern embedded systems have multiple busses
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Advanced Microcontroller Bus Architecture (AMBA)
- Advanced High-performance Bus (AHB)
- Advanced Peripheral Bus (APB)

High-performance
ARM processor

High-bandwidth
on-chip RAM

High-bandwidth
Memory Interface

AHB

UART Timer

APB

mooO—20W

Keypad PIO

DMA bus
master AHB to APB Bridge

AHB

High performance
Pipelined operation
Burst transfers
Multiple bus initiators
Split transactions

APB

® | ow power

® | atched address/control

® Simple interface

® Suitable of many
peripherals



STM32 Block Diagram

STM32L4R5xx, STM32L4R7xx and STM32L4R9xx Description

Figure 1. STM32L4R5xx, STM32L4R7xx and STM32L4R9xx block diagram
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Bus terminology

Transactions have “initiators” and “targets”

* Potential initiators, sometimes called “masters”.
* In many cases there is only one bus master (single master
vs. multi-master).

* Non-initiators, sometimes called “slaves”. They
cant start transactions, but they carry them out
when a master initiates one.

* Some wires might be shared among all devices
while others might be point-to-point connections
(generally connecting the initiator to each target).



Driving shared wires

* Some shared wires might need to be driven by
multiple devices.

* In that case, we need a way to allow one device to
control the wires while the others “stay out of the
way".

* Most common solutions are
* tri-state drivers and
* open-collector connections.



Another option: avoid shared wires

® Expensive when connecting chips on a PCB as you are
paying for pins and wiring area.
® Doable but costs area and time on-chip.



Wire count

* Consider a single-initiator bus with 5 other devices
connected and a 32-bit data bus.

* Shared bus - 32 pins

* Separate buses
* Each target would need ___ pins for data
* The initiator would need __ pins for data

* Pins and wiring area cost money.



APB is designed for ease of use

* Low-cost.

* Low-power.

* Low-complexity.
* Low-bandwidth.
* Non-pipelined.

* |Ideal for peripherals.



Done.
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