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General project idea areas
 * Biological monitoring and control

 Cleaning

 Emergency response

 Fashion

 Music

 * Personal monitors and assistants

 * Smart home and cooking

 Sports and games

 Translators

 Transportation

 UI



Lecture tuning
 Pace: 4 say slow down, 10 say keep as-is, 2 say speed up.

- Resolution: slow down very slightly.

 Examples: 11 say use fewer examples, 5 say keep as-is, 3 say more examples.

- Resolution: Reduce % of time spent on examples and avoid marathon sessions, but don’t stop completely.

 Slides and DocCam: 8 say clear, 5 say unclear.

- Resolution: Check DocCam setup carefully.

 Can hear professor: 13 say yes, 0 say no.

 Can hear students: 4 say yes, 7 say no.

- Resolution: Repeat student questions. Also, please ask loudly.

 Synchronization: 7 say synchronized, 5 say not synchronized.

- Will discuss synchronization in weekly staff meetings but not sure what to do about this one. Can’t do 
perfectly with lab times spanning a week.

 Professor cares about teaching me to be a better computer engineer: 16 yes, 1 no.

- If it doesn’t seem to be the case, please come to office hours. I can help on most computer engineering 
related topics.
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#include <stdio.h>
#include <inttypes.h>

#define REG_FOO 0x40000140

int main(void) {
  volatile uint32_t *reg = (uint32_t *)(REG_FOO);
  *reg += 3;

  print_uint(*reg);
  return 0;  
}

Example



“*reg += 3” is turned into a ld, add, str sequence

 Load instruction.
 A bus read operation commences.
 The CPU drives the address “reg” onto the address bus.
 The CPU indicated a read operation is in process (e.g., R/W#).
 Some “handshaking” occurs.
 The target drives the contents of “reg” onto the data lines.
 The contents of “reg” are loaded into a CPU register (e.g., r0).

 Add instruction.
 An immediate add (e.g., add r0, #3) adds three to this value.

 Store instruction.
 A bus write operation commences.
 The CPU drives the address “reg” onto the address bus.
 The CPU indicated a write operation is in process (e.g., R/W#).
 The CPU drives the contents of “r0” onto the data lines.
 Some “handshaking” occurs.
 The target stores the data value into address “reg”.
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Design and debugging: computer systems are graphs

● This is quick and seems simple but it is actually deep 
and important.

● A computer system is a graph.
● Each component, e.g., a line of code or transistor, is a 

vertex (v).
● Each effect that influences other components is an 

edge (e).
● Complexity is a function of |v| + |e|.



Graph sizes

 For undirected fully 
connected graphs.
 |e| = |v|(|v| – 1) / 2

 But it's much worse than that 
because your ability to 
analyze systems decreases 
dramatically with system size.

 So system complexity (debug 
time) is a superlinear function 
of |v|, like |v|k.

 k is generally >= 2, and 
probably quite a bit bigger.



Best-case complexity



Worst-case complexity



Managing complexity



Incremental tested growth
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Incremental tested growth



Design and debugging: how to make your life easy and
make your embedded systems work

 Control |v|
 Get a very simple version of the system tested and 

functioning and add to it in small pieces, testing after 
each addition.

 Never build something big and then start testing.
 Control |e|

 Build and test isolated, side-effect free components 
with narrow and easy-to-understand interfaces.



Start from the root

 Check the foundation before the roof.
 Check the power distribution network integrity before 

checking the software.



Switch between information gathering and reasoning

 Search process.
 Large search space.
 Probing specific locations is expensive.
 Initial conditions.

 Don't have the data necessary to understand the 
problem.

 Haven't done the analysis necessary to convert those 
data to information.

 Don't neglect either weakness. Iterate.
 Conduct naïve experiments to gather information.
 Stop testing and reason about problem, using 

conclusions to devise additional tests.
 Most engineers are better at analysis or testing.

 Don’t stay under the streetlight.
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Details of the bus “handshaking” depend
on the particular memory/peripherals involved 

 SoC memory/peripherals
 AMBA AHB/APB

 NAND Flash
 Open NAND Flash Interface (ONFI)

 DDR SDRAM
 JEDEC JESD79, JESD79-2F, etc.



Modern embedded systems have multiple busses

Atmel SAM3U



Advanced Microcontroller Bus Architecture (AMBA)
- Advanced High-performance Bus (AHB)
- Advanced Peripheral Bus (APB)

AHB
● High performance
● Pipelined operation
● Burst transfers
● Multiple bus initiators
● Split transactions

APB
● Low power
● Latched address/control
● Simple interface
● Suitable of many 

peripherals



STM32 Block Diagram



Bus terminology

Transactions have “initiators” and “targets”
 
 Potential initiators, sometimes called “masters”.

 In many cases there is only one bus master (single master 
vs. multi-master).

 Non-initiators, sometimes called “slaves”. They 
can't start transactions, but they carry them out 
when a master initiates one.

 Some wires might be shared among all devices 
while others might be point-to-point connections 
(generally connecting the initiator to each target).



Driving shared wires

 Some shared wires might need to be driven by 
multiple devices.

 In that case, we need a way to allow one device to 
control the wires while the others “stay out of the 
way”.

 Most common solutions are 
 tri-state drivers and
 open-collector connections.



Another option: avoid shared wires

● Expensive when connecting chips on a PCB as you are 
paying for pins and wiring area.

● Doable but costs area and time on-chip.



Wire count

 Consider a single-initiator bus with 5 other devices 
connected and a 32-bit data bus.

 Shared bus  32 pins→
 Separate buses

 Each target would need ____ pins for data
 The initiator would need ____ pins for data

 Pins and wiring area cost money. 



APB is designed for ease of use

 Low-cost.

 Low-power.

 Low-complexity.

 Low-bandwidth.

 Non-pipelined.

 Ideal for peripherals.



Done.
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