
EECS 373
Introduction to Embedded System Design

Robert Dick
University of Michigan

Lecture 5: ABI, APB, and Build Process

30 Jan and 1 Feb 2024

Review based on questions in office hours / lab

● Bit-level manipulation
● Function calls and argument passing

Outline

● Application Binary Interface
● Advanced Peripheral Bus
● Deferred Details on Build Process

ABI summary

Detailed version
● Pass: r0-r3
● Return: r0 or r0-r1
● Callee saved variables: r4-r8, r11, maybe r9, r10
● Static base: r9 (might offset from this to write)
● Stack limit checking: r10 (SP >= r10)
● Veneers, scratch: r12 (lillypad)
● Stack pointer: r13
● Link register (function call return address): r14
● Program counter: r15

Simple version
● Callee preserves r4-r11 and r13
● Caller preserves r0-r3

ABI example

● main() calls f().
● f() calls g().
● g() calls h().

● What if f() clobbers r2?
● f() clobbers r5?
● g() clobbers r0?
● g() clobbers r4?
● h() clobbers r1?
● h() clobbers r6?

Outline

● Application Binary Interface
● Advanced Peripheral Bus
● Build Process

APB is designed for ease of use

 Low-cost.

 Low-power.

 Low-complexity.

 Low-bandwidth.

 Non-pipelined.

 Ideal for peripherals.

APB Writes: Notation

APB bus signals

 PCLK
 Clock.

 PADDR
 Address on bus.

 PWRITE
 1=Write, 0=Read.

 PWDATA
 Data from

processor.
 PRDATA

 Data to processor.

APB bus signals
 PSEL

 Asserted if the current bus
transaction is targeted to
this device.

 PENABLE
 High during entire

transaction other than the
first cycle. Distinguishes
between idle, setup, and
ready.

 PREADY
 Driven by target. Similar to

#ACK. Means target is
ready.

 Each target has it’s own
PREADY line.

Sharing
 Unshared.

 PSEL.
 PREADY.
 PRDATA.
 PSLVERR.

 Shared: everything else
 PCLK.
 PADDR.
 PWRITE.
 PENABLE.
 PWDATA.

What is happening?

Example setup

● Assume one initiator “CPU” and two target finite
state machines (D1 and D2)

● D1 is mapped to address 0x00001000-
0x0000100F

● D2 is mapped to 0x00001010-0x0000101F

CPU stores to 0x00001004 w.o. stalls

D1

D2

Design a device which writes to a register whenever
any address in its range is written

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

32-bit Reg
D[31:0]

EN Q[31:0]

 C

Assuming APB only gets lowest 8 bits of address

LSB of register controls LED

Reg A should be written at address 0x00001000
Reg B should be written at address 0x00001004

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

32-bit Reg A
D[31:0]

EN Q[31:0]

 C

Assuming APB only gets lowest 8 bits of address

32-bit Reg B
D[31:0]

EN Q[31:0]

 C

Reads

Each follower device has its own read data (PRDATA) bus.

Recall that “R” is from the initiator’s viewpoint—the device drives data when read.

Device provides data from switch for any of its
addresses

PRDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

Switch

Switch A for 0x00001000, B for 0x00001004

PRDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

Switch A

Switch B

All reads read from register, all writes write

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

PRDATA[31:0]

32-bit Reg
D[31:0]

 EN Q[31:0]

 C

Assuming APB only gets lowest 8 bits of address

Errors and stalling

 PSLVERR high on error.
 Otherwise, ground it.

 Use PREADY to stall.
 > a few cycles probably implies design flaw.

22

23

A write transfer with wait states

Setup phase begins
with this rising edge

Setup
Phase

Access
Phase

Wait
State

Wait
State

24

A read transfer with wait states

Setup phase begins
with this rising edge

Setup
Phase

Access
Phase

Wait
State

Wait
State

32-bit Reg
D[31:0]

 EN Q[31:0]

 C

Writes to 0x00000002 go to fast local servo,
writes to 0x00000004 go to slow remote servo

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

PRDATA[31:0]

32-bit Reg
D[31:0]

 EN Q[31:0]

 C

Assuming APB only gets lowest 8 bits of address

Two-bit Ctr

 Q1
 Async Clr

 Q0
 C

Timing diagram for 0x00000004 write

Additional capabilities

 There is another signal, PSLVERR which we can
drive high on failure.

 Tie that to 0 if failure impossible.
 Assuming that our device never stalls.

 We could stall if we needed.
 PREADY.

Verilog

/*** APB3 BUS INTERFACE ***/
input PCLK, // clock
input PRESERN, // system reset
input PSEL, // peripheral select
input PENABLE, // distinguishes access phase
output wire PREADY, // peripheral ready signal
output wire PSLVERR, // error signal
input PWRITE, // distinguishes read and write cycles
input [31:0] PADDR, // I/O address
input wire [31:0] PWDATA, // data from processor to I/O device (32 bits)
output reg [31:0] PRDATA, // data to processor from I/O device (32-bits)

/*** I/O PORTS DECLARATION ***/
output reg LEDOUT, // port to LED
input SW // port to switch
);

assign PSLVERR = 0;
assign PREADY = 1;

APB state machine

 IDLE
 Default APB state

 SETUP
 When transfer required
 PSELx is asserted
 Only one cycle

 ACCESS
 PENABLE is asserted
 Addr, write, select, and write

data remain stable
 Stay if PREADY = L
 Goto IDLE if PREADY = H and

no more data
 Goto SETUP is PREADY = H

and more data pending

Outline

● Application Binary Interface
● Advanced Peripheral Bus
● Build Process

Pickmin

● What does a Makefile do?
● Linker scripts.
● Refresher on build process.
● Two paths to executable (C, assembly).

Stack-Call

● Detailed walk-through on stack allocation and
deallocation.

● Double-word return.

Veneers

● Lillypad.
● PC contains current instruction + 8 bytes.

34

Weak references

 Allows you to conditionally call functions.
 May be useful in labs and projects.
 Understand linking better.

What does a weak symbol imply?
 Provides a default entry in a function vector.
 Why useful? Allows override at link time.

What does a call through a weak symbol imply?
 If the symbol exists, call function.
 If not, do nothing.
 Allows link-time conditional calls. No recompilation.

 Large projects w. libraries and multiple build versions.

Weak symbols

● Recall function pointers.
● Can define symbol that will be clobbered by

later definitions of same symbol.
● Useful for interrupt vectors or custom, e.g.,

cleanup code.

Done.

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

