
1

EECS 373
Introduction to Embedded System Design

Robert Dick
University of Michigan

Lecture 6: Declarations and Interrupts.

6 February 2024

2

On a bus stall, does PENABLE immediately go low?

 Immediately?
 Only after next rising clock edge?
 Not until later, when the stall is finished?

3

Outline

 Assembler directives review
 Volatile, const, and function pointers
 PWM
 Interrupts

4

Assembler directives

 Assembler directions don't necessary generate any
instructions.

 Convenience to allow more modular and organized
code, e.g., .equ .

 Generates no code.
 Acts like a proceprocessor macro (#define) in C.

 Provide information about data to include, e.g., .word .
 Tell assembler which symbols are global, e.g., .global .
 Indicate where in memory things (code and data)

should sit, e.g., .text

5

Assembler directives example

@ “#define”-like
.equ STACK_TOP, 0x20000800
.equ SYSREG_SOFT_RST_CR, 0xE0042030

@ Make _start externally visible (to ld).
.global _start

@ “a”: allocatable
@ %progbits: section contains data
@ .int_vector: section name. link.ld uses this.
.section .int_vector, "a", %progbits

_start:
 .word STACK_TOP, main

6

Outline

 Assembler directives review
 Volatile, const, and function pointers
 Interrupts

7

Volatile keyword

Needed for safe C code that plays with IO devices.

Definition: this value may be changed by something
outside this linkage unit (object).

Examples
 #define LED_ADDR ((volatile const unsigned *)(8))
 volatile const unsigned *led_addr = 0x8;

Otherwise, compiler might optimize away accesses.

8

Const keyword

 Value (accessed via this pointer) won’t be modified
(through this pointer).

 Makes debugging easier.
 Get right the first time to avoid type conflicts.
 Default to const pointers.

9

Pointers and function pointers
 Function pointers to pass code around dynamically among

functions and build vector tables in C.
 Pointers

 Type-safe addresses.
 Avoid void * unless really needed.
 When would you use this?
 The type of the object cannot be known at compile time.

10

Void *, a short illustrative script

Compiler: Excuse me, sir. May I suggest using a round peg?

Programmer: Shut up! I don't care! Just do it!

Compiler: As you wish, sir.

OS: Here’s a 64 GB core dump file?

11

Function pointers

// Can use for generic functions.
int apple_checker(const void *x);

int orange_checker(const void *x);

int check_stuff(void *stuff_array,
int (*checker)(const void *);

// Can use for jump tables.
int (*func_ptr[3])(const void *) = {func1, func2, func3};

// If function pointers differ, then use void pointers.
void (*func_ptr[3]) = {func1, func2, func3};

12

Cdecl

 http://cdecl.org/ is great!
 int (*f)(const int *)

 declare f as pointer to function (pointer to const int)
returning int

 int (*f)[3](const int *)
 declare f as pointer to array 3 of function (pointer to

const int) returning int (which is not valid in C)
 int (*f)(const int *)[4]

 declare f as pointer to function (pointer to const int)
returning array 4 of int

http://cdecl.org/

13

Outline

 Assembler directives review
 Volatile, const, and function pointers
 Interrupts

Interrupts summary

14

 Exceptions happen when something outside the normal flow
of the program occurs.

 Interrupts are a type of exception generally triggered by
hardware, not the program.

 Interrupt vector allows specification of ISRs for particular
interrupts.

 Separate processor mode and stack for interrupts with some
registers duplicated and aliased.

 Can disable interrupts or prioritize responses to later
interrupts.

 No need to change processor mode when going from one
ISR to another.

 Shouldn’t allow time-critical sections of code to be
interrupted.

 Should get through time-critical sections of code ASAP.

Interrupts

Why do these matter?
 Informs a program of (usually) external event.
 Interrupts execution flow.
 Enables event-driven system design!!!

 Low-power.
 Often simpler.

Key questions:
 Where do interrupts come from?
 How to save state for later continuation?
 How to ignore interrupts?
 How to prioritize interrupts?
 How to share interrupts?

15

I/O data transfer

Two key questions to determine how data are
transferred to/from non-trivial I/O device.

1. How does the CPU know when data is available?
a. Polling
b. Interrupts

2. How is data transferred into and out of the

device?
a. Programmed I/O
b. Direct Memory Access (DMA)

Interrupts

Interrupt (a.k.a. exception or trap)
• Stop executing program.
• Execute interrupt handler / service routine (ISR).
• Resume program.

Similar to procedure calls, but
• Occur between any two instructions.
• Transparent to the running program (usually).
• Not generally explicitly called by program.
• Pick procedure (ISR) based on interrupt #.

Instruction interrupts

● TLB miss.
● Illegal/unimplemented instruction.
● Divide by 0.
● Names: trap, exception.

External interrupts

● Reset button.
● Timer expires.
● Power failure.
● System error.
● Names: interrupt, external interrupt.

Interrupt process

 Something tells the processor.
 E.g., input pin.

 Processor transfers control to ISR.
 Use interrupt vector or jump table.

 ISR executes.
 Resumes prior program at same location.
 Doing this right is complex.

20

Interrupts complicate processor design

 Which ISR to call?

 How to resume program when done?
 Instruction pointer? Other state?

 What about partially executed instructions in the
pipeline?

 What if we get an interrupt while we are processing
our interrupt?
 What if we are in a “critical section?”

21

Where

 If you know the interrupt source.
 Interrupt vector (ARM).
 Jump table.

 If not.
 Must poll all sources to find out.

22

Returning

 Need to store the return address somewhere.
 Stack would involve a load/store that might

cause another interrupt.
 Dedicated register in || with R14 (link register).

 What if there is another interrupt?
 Turns off interrupts.
 If manually reenabled, another interrupt can

clobber return address.
 System mode (not IRQ mode) fixes this.

 Interrupt mode duplicates some registers, e.g.,
PC and R14 (R8-R14).

 Pushes/pops all eight registers on stack.

23

Implications of architectural optimizations

 Out-of-order execution
 If any state of a “too fast” instruction made its

way out of the processor before an interrupt,
system state corrupted.

 Need to clean things up before/in ISR.
 Generally a concern for microarchitect, not you.

24

Nested interrupts
 What if it is handled immediately?

 If a dedicated interrupt return IP register is being used,
how many do we need?

 What if the ISR is half-way through a precisely timed
bus transaction?

 Ignore it: Bad if it is important.
 Prioritize.

 Take more important interrupts.
 Ignore the rest
 Still have dedicated register problems.
 Have to consider possibility of ISR failing due to

timing problems.
 In reality, good designers get through critical portions

fast, and if there are more time consuming operations,
defer them to allow interrupts to be turned on again.

 Implies switching back to user mode to protect link
register and emptying the IRQ stack.

25

Critical section

 Ignore less important interrupts.
 Take more important interrupts.
 Avoid causing exceptions in interrupt code.
 Keep as short as possible.

 E.g., write a value to memory that informs the
program of something.

 Program deals with it at a good time.

26

Example: generally bad

void isr(void) {
 Do something complex/slow.
}

27

Example: generally good

volatile int button_pressed;

void isr(void) {
 ++(*button_pressed);
}

int superloop(void) {
 while (1) {
 if (*button_pressed) {
 --(*button_pressed);
 button_service();
 }
 Do other stuff, like AI.
 Could also sleep.
 }
}

28

Our processor

 Over 100 interrupt sources
 E.g., power-on reset, bus errors, I/O pins changing state,

data on a serial bus.
 Need a great deal of control

 Ability to enable and disable interrupt sources
 Ability to control where to branch to for each interrupt
 Ability to set interrupt priorities

 Who wins in case of a tie
 Can interrupt A interrupt the ISR for interrupt B?

 If so, A can “preempt” B.
 All that control will involve memory mapped I/O.

29

30

Interrupt vectors

g_pfnVectors:
 .word _estack
 .word Reset_Handler
 .word NMI_Handler
 .word HardFault_Handler
 .word MemManage_Handler
 .word BusFault_Handler
 .word UsageFault_Handler
 .word 0
 .word 0
 .word 0
 .word 0
 .word SVC_Handler
 .word DebugMon_Handler
 .word 0
 .word PendSV_Handler
 .word SysTick_Handler
 .word WdogWakeup_IRQHandler
 .word BrownOut_1_5V_IRQHandler
 .word BrownOut_3_3V_IRQHandler
.............. (they continue)

31

Interrupt handlers

32

Pending interrupts

33

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

From The Definitive Guide to the ARM Cortex-M3, Section 7.4

34

In this case, the processor never took the interrupt because we cleared the
IPS by hand (via a memory-mapped I/O register)

Untaken interrupts

35

Active status set during handler execution

36

Interrupt request not cleared

Answer

37

Interrupt pulses before entering ISR

38

Answer

39

40

New interrupt request after pending cleared

Tail chaining

● Processor can serve multiple interrupts without returning.
● Improves response latency.
● No need for state save/restore.

41

42

Configuring the NVIC

43

Configuring the NVIC (2)

44

Configuring the NVIC (3)

Interrupt priorities

 If multiple interrupts arrive at same time, prioritize.
 3 fixed highest priorities.
 Up to 256 programmable priorities and 128 preemption

levels.
 Particular processors support a subset of priorities.
 Higher priorities preempt lower.
 Priority can be sub-divided into groups.

 Splits register into preempt priority and subpriority.
 Subpriority used if two interrupts with same preempt

priority arrive at same time.

45

46

7

Interrupt priorities (2)

47

Use
PRIGROUP
field to control
split.

Preemption priority and subpriority

PRIMASK, FAULTMASK, and BASEPRI

48

 Quickly disable all interrupts.
 Write 1 into PRIMASK to disable everything but hard

fault and NMI.
 mov r0, #1
 msr PRIMASK, ro

 FAULTMASK for everything but NMI.

 Disable everything below P.
 Write P into BASEPRI.

Masking

49

50

Interrupt service routines

The xPSR register layout

52

WFI: Wait For Interrupt

53

 Puts processor in low-power mode and waits for interrupt.
 Why?

Two stacks? MSP and PSP

54

 OS always uses MSP.
 Can configure processor so program uses PSP.
 Makes it harder for application code to corrupt OS/superloop state.

EXC_RETURN

55

 Why is my LR 0xfffffff9?
 Part magic number.
 Part source context status.
 Real return address at SP-24.

Interrupts summary

56

 Exceptions happen when something outside the normal flow of the
program occurs.

 Interrupts are a type of exception generally triggered by hardware, not
the program.

 Interrupt vector allows specification of ISRs for particular interrupts.
 Separate processor mode and stack for interrupts with some registers

duplicated and aliased.
 Can disable interrupts or prioritize responses to later interrupts.
 No need to change processor mode when going from one ISR to

another.
 Shouldn’t allow time-critical sections of code to be interrupted.
 Should get through time-critical sections of code ASAP.

57

Done.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

