
1

EECS 373
Introduction to Embedded System Design

Robert Dick
University of Michigan

Lecture 8: Hazards, Setup and Hold

13 February 2023

Review

 Timers
 Uses.
 HW/SW implementation.

 Subpreemption priorities

Anatomy of a timer system

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Position in course
 Introduction
 Arch, assem, ABI, debugger
 Project, MMIO
 Assem, MMIO, APB
 APB
 Interrupts
 Timers (You Are Here)
 Serial
 ADCs, DACs, datasheets
 Analog and PCB
 Power
 Filters and amps
 Project

Main topics covered before midterm exam
 Embedded system definition and market
 Technology trends
 Embedded applications
 ARM architecture, assembly, and ABI
 MMIO
 Debugging
 APB
 Build process
 Aspects of ANSI C related to embedded systems
 Interrupts
 Timers

Lab/project comment: compensated probes

Worst-
case

Outline

● Hazards
● Setup and hold times

 Race between variable transitions.
 May, not must, produce a glitch.
 Glitch
 Static glitch: transient pulse of incorrect

value when output should be stable.
 Dynamic glitch: transient pulse of incorrect

value when output should be changing.
 Consider a minimal implementation of

 f(a, b, c) = a'b'c + a'bc + abc + abc'

Hazards

 Consider a minimal implementation of
 f(a, b, c) = a'b'c + a'bc + abc + abc'

 f(a, b, c) = a'c + ab
 What if b=1, c=1?

Hazards

 How to eliminate
 Limit logic to two levels
 Cover all transitions

 f(a, b, c) = a'c + ab + bc
 What if b=1, c=1?

Hazards

Effect of hazards

 Can sometimes ignore in
synchronous systems.

 Only sampling on clock edges.
 Make clocks slow enough so

glitching done before next edge.
 Wastes energy.
 Causes major problems in

asynchronous systems.
 Different design style required.

When hazards need special attention

 Asynchronous resets
 No glitching on (p)reset.
 Could use flip-flop on the input.
 Instead, use synchronous reset.

 Clocks
 Hazards can produce spurious edges. Traditionally, CLR is used

to indicate async reset. “R”
or “reset” for sync. reset.

If clk is high and cond
glitches, you get extra
edges!

Simple design rules

 Understand implications of asynchronous
resets.

 Don't drive clock with hazardous logic.
 Hazard-free guarantee.

 Only two levels.
 Cover transitions.
 Literal or complement, not both.
 Example.

X
X

Glitches

 Async clock used in our bus
example.

 Safe: REQ drops after
glitches done.

 Might be safe in other
circumstances.

 Need detailed analysis to
know.

Outline

● Hazards
● Setup and hold times

Setup and hold time

 What if clock and data change at
same time?

 Data latched is unclear.
 Often worse for registers than

single flip-flops.
 Inconsistent state.

 Use temporal guard band around
clock edge.

 Setup time.
 Hold time.

So what happens if we violate set-up or hold time?

 Often, get one of the two values.
 Consider getting a button press from the user.
 Fine in this case.

 Can be harmful.
 Flip-flop may not settle to a “0” or a “1” quickly.
 Could cause setup time violations for later gates.
 Different fanout gates may see different outputs.
 May see mix of old and new values on different bits.

Example

 A common thing to do is reset a state machine
using a button.
 User can “reset” the system.

 Assume setup/hold time violation.
 State machine bits reset in different cycles.

Methods of synchronizing

 Dealing asynchronous inputs complex.
 Can violate setup/hold times if not done properly.

 Can synchronize with circuit.
 First flip-flop might have problems.
 Second should be fine.

 Or do it right: explicitly design an AFSM.
 I have been criticized by the department chair (at another

univeristy) for teaching AFSM design to undergrads, but
may do so if there is interest.

Figure from http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues, we use the same thing to deal with external inputs too!

http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues

Example synchronization circuit

/* Synchonization of Asynchronous switch input */

always@(posedge clk)
begin
 sw0_pulse[0] <= sw_port[0];
 sw0_pulse[1] <= sw0_pulse[0];
 sw0_pulse[2] <= sw0_pulse[1];
end

always @(posedge clk) SSELr <= {SSELr[1:0], SSEL};

Example synchronization circuit

 Embedded system definition and market
 Technology trends
 Embedded applications
 ARM architecture, assembly, and ABI
 MMIO
 Debugging
 APB
 Build process
 Aspects of ANSI C related to embedded systems
 Interrupts
 Timers

Done.

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

