Vil

EECS 373

Introduction to Embedded System Design

Robert Dick
University of Michigan

Lecture 8: Hazards, Setup and Hold

13 February 2023

Review

* Timers

* Uses.

* HW/SW implementation.
* Subpreemption priorities

Anatomy of a timer system

Applications

Application Software

Operating System

Timer Abstractions and Virtualization

Low-Level Timer Subsystem Device Drivers

Software
R/W R/W R/W
Hardware
—| Compare 4+ Counter +> Capture (€=
Prescaler
Clock Driver
Internal I
External
<
/0 1/0

R Vilk

timer_t timerX;
initTimer();

startTimerOneShot (timerX, 1024);

stopTimer (timerX);

typedef struct timer {
timer_handler_t handler;
uint32_t time;
uint8_t mode;
timer_t* next_timer;

} timer_t;

timer_tick:
ldr ro, count;
add ro, ro, #1

module timer(clr, ena, clk, alrm);
input clr, ena, clk;
output alrm;
reg alrm;
reg [3:0] count;

always @(posedge clk) begin
alrm <= 0;
if (clr) count <= 0;
else count <= count+1;
end
endmodule

Xtal/Osc —\J) ‘

Position in course

* Introduction

* Arch, assem, ABI, debugger
* Project, MMIO

* Assem, MMIO, APB

* APB

* Interrupts

* Timers (You Are Here)

* Serial

* ADCs, DACs, datasheets
* Analog and PCB

* Power

* Filters and amps

* Project

Main topics covered before midterm exam

* Embedded system definition and market
* Technology trends

* Embedded applications

* ARM architecture, assembly, and ABI

* MMIO

* Debugging

* APB

* Build process

* Aspects of ANSI C related to embedded systems
* Interrupts

* Timers

Lab/project comment: compensated probes

Required waveform
as seen on oscilloscope
o] —
High frequency response
too low
.

High frequency response
too high

Worst-
case

Outline

® Hazards
® Setup and hold times

Hazards EITN

Vil

* Race between variable transitions.
* May, not must, produce a glitch.
* Glitch
* Static glitch: transient pulse of incorrect
value when output should be stable.
* Dynamic glitch: transient pulse of incorrect
value when output should be changing.
* Consider a minimal implementation of
* f(a, b, c) =a'b'c + a'bc + abc + abc'

Hazards

Vil

* Consider a minimal implementation of
* f(a, b, c) =ab'c+abc +abc + abc'

0 |G | D] o
0 [0 |G| D

* f(a,b,c)=ac+ab
* Whatif b=1, c=17?

Hazards

R Vilk

* How to eliminate
* Limit logic to two levels
* Cover all transitions

bc

o |3 |/ o
0| 0 1)

* f(a,b,c)=ac+ab+bc
* What if b=1, c=17?

Effect of hazards EITN

Vil

* Can sometimes ignore in
synchronous systems.

* Only sampling on clock edges. _ % -

* Make clocks slow enough so

N
glitching done before next edge. = | fet

* Wastes energy. z Y e -l

* Causes major problems in S E NS°

asynchronous systems. —HxJ

* Different design style required. gy i

H3 -

1D/ EX/

EX Mem

When hazards need special attention e

Vil
PRE
* Asynchronous resets = =
* No glitching on (p)reset. S
* Could use flip-flop on the input. _R Q
* Instead, use synchronous reset. L
* Clocks CLR

Traditionally, CLR is used
to indicate async reset. “R”
or “reset” for sync. reset.

* Hazards can produce spurious edges.

in out

cond :D_|—>
clk

If clk is high and cond

glitches, you get extra
edges!

Simple design rules

* Understand implications of asynchronous
resets.
* Don't drive clock with hazardous logic.
* Hazard-free guarantee.
* Only two levels.
* Cover transitions.
* Literal or complement, not both.
* Example.

R Vilk

PRE

N out

cond
clk

Glitches
ik Vil

* Async clock used in our bus .o

[7] _
example. Dere)
* Safe: REQ drops after ADS[4]
glitches done. ADS[]
* Might be safe in other pelo
circumstances. REQ#

* Need detailed analysis to

DATA[T]
know.

Outline

® Hazards
® Setup and hold times

Setup and hold time Cicnioan |
Vil
Setup, Hold Time
* What if clock and data change at e
same time? _‘ =
* Data latched is unclear. - —
* Often worse for registers than 20000, 00000
single flip-flops. paal I

* Inconsistent state.

* Use temporal guard band around
clock edge.

* Setup time.

* Hold time.

So what happens if we violate set-up or hold time?

Vil

* Often, get one of the two values.
* Consider getting a button press from the user.
* Fine in this case.
* Can be harmful.
* Flip-flop may not settle to a “0” or a “1” quickly.
* Could cause setup time violations for later gates.
* Different fanout gates may see different outputs.
* May see mix of old and new values on different bits.

Example TR

R Vilk

* A common thing to do is reset a state machine
using a button.
* User can “reset” the system.

* Assume setup/hold time violation.

* State machine bits reset in different cycles.

Methods of synchronizing TR

R Vilk

* Dealing asynchronous inputs complex.
* Can violate setup/hold times if not done properly.
* Can synchronize with circuit.
* First flip-flop might have problems.
* Second should be fine.
* Or do it right: explicitly design an AFSM.
* | have been criticized by the department chair (at another
univeristy) for teaching AFSM design to undergrads, but

may do so if there is interest. Synchronization Register Chain
j'f ‘\.\i
I
Data_In D Q : D Q D QF :
Clock1l > : |,> > :
I |
Clock2 " ;

Figure from http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues, we use the same thing to deal with external inputs too!

http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues

Example synchronization circuit

Synchronization Register Chain

Data_In

Clockl

/* Synchonization of Asynchronous switch input */

always@(posedge clk)

begin
swO_pulse[0] <= sw_port[0];
swO_pulse[1l] <= swO_pulse[0];
sw0_pulse[2] <= swO_pulse[1];

end

always @(posedge clk) SSELr <= {SSELr[1:0], SSEL};

R Vilk

Example synchronization circuit

Vil

* Embedded system definition and market
* Technology trends

* Embedded applications

* ARM architecture, assembly, and ABI

* MMIO

* Debugging

* APB

* Build process

* Aspects of ANSI C related to embedded systems
* Interrupts

* Timers

R Vilk

Done.

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

