|
‘ . UML Diagram Types

| “ Dynamic Models Structural Models
m activity diagrams m class diagrams
| = statechart diagrams = object diagrams
i | = interaction diagrams m packages
- sequence diagrams Architectural Models
| — cotlaboration m component diagrams

diagrams .
. = deployment diagrams
m use case diagrams

|
‘ . Activity Diagram

def'n: dynamic model showing the flow from
activity to activity (and action to action)

| activity: ongoing non-atomic execution within
‘Il astate machine

action: executable atomic computation that
\ ‘ results in a change in state of a system or the
return of a value
— call operation, send signal, create/destroy

L
Ll object, pure computation

|
‘ | Activity Diagram vs. Interaction Diagram

m Activity diagram
— models flow of control from activity to
‘ activity (and action to action)
' — interaction diagram turned inside out
— detailed view of an operation
\ \ m Interaction diagram
- — models flow of control from object to object

m — looks at objects that pass messages

|
‘ . Activity Diagram

m captures the critical path of the workflow
m kind of state machine
Convention

— modeled as vertices and arcs

‘ — text may be structured text, or specific
‘ syntax of programming language
| — may contain simple, composite states,

m forks, branches, joins

-
H . Contents of Activity Diagram

m Activity State

def'n: system state representing execution
‘ of (a series of) actions

‘M@ - can be decomposed
— can be interrupted
\ \ — has duration

— may have entry and exit action
- Y Y
LII

— Convention: lozenge shape

|
‘ = Contents of Activity Diagram

| “ m Action State

def'n: system state representing execution
‘ of an action (atomic computation)

' — cannot be decomposed
— cannot be interrupted
\ \ — execution time is insignificant

- — special case of activity state (cannot be
further decomposed)
|

— Convention: lozenge shape

|
‘ . Contents of Activity Diagram

m Transition

def'n: when action completes, flow of control
passes immediately to next action or
activity state

—triggerless: transition occurs once work in
source state is complete, if guard is true

— Convention: simple directed line

— Types include: branching, fork/join,
swimlanes

Transition Types

Branching
def'n: specification of alternate paths taken

based upon some Boolean expression

one incoming and two or more outgoing branches
Boolean expression on each outgoing transition that
is evaluated once (when entering branch)

can use “else”

can be used to indicate iteration

structured text, or specific programming language

Transition Types

Fork/Join
def'n: specification of concurrent paths

use synchronization bar to indicate
convention: thick horizontal or vertical line

fork: splitting of single flow of control into two or
more concurrent flows of control

join: synchronization of two or more concurrent flows
of control

joins and forks should balance

parallel flows may communicate via signals
(coroutines)

|
. Transition Types

‘ “ Swimlanes

| def'n: specific, named locus of activities
m no deep semantics

m may represent some real-world entity

 mevey activity belongs to one swimlane,
but transitions may cross lanes

|
‘ . Contents of Activity Diagram

m Object
— can specify objects that are created,
‘ destroyed, or modified as part of the flow of
\ \ ‘ control
— can show how its role, state, and attribute
‘ ‘ values change

\
‘ | Common Uses of Activity Diagrams

| “ m Model a workflow: focus on activities as
viewed by the actors that collaborate
| with the system (business systems
‘Il perspective)
m Model an operation: use as flowcharts
\ \ to model the details of a computation

m Model order: sequence within state of

| ;
m statechart diagram

Model an Operation

m Collect abstractions involved in the
operation (parameters, class)

m |dentify preconditions and
postconditions

m Model activities and actions over time
m Use branching for conditional paths

m Use forking and joining to indicate
concurrent paths

Model an Operation

m UML is not a visual programming
language

m Every operation can be flowcharted, but
why would one want to?

m Model operation behavior that is
complex and to difficult to understand
by looking at code

Methods of Modeling an Operation

m Activity diagram

m Statechart diagram

m Flowchart

m Nassi-Schneiderman chart
m Pseudo-code

m Prose

