
UML Diagram Types

Dynamic Models
n activity diagrams
n statechart diagrams
n interaction diagrams

– sequence diagrams
– collaboration

diagrams

n use case diagrams

Structural Models
n class diagrams
n object diagrams
n packages
Architectural Models
n component diagrams
n deployment diagrams

Modeling Architecture Views

def’n: projection into organization and structure
of a system that is focused on a particular
aspect of that system

System Decomposition
n Design View: class level design
n H/W and S/W View: h/w and s/w physical

deployment
n Use Case View: system functionality view

Structural Family: Package

def’n: general purpose mechanism for
organizing modeling elements into groups

n control visibility
n present different views of system’s

architecture
n group elements that are semantically close,

and tend to change together
n cohesive within and loosely coupled between

(other packages)
n mechanism to organize things in a model
n no identity outside of system

Package

Convention
n tabbed folder (simple or path name)
n can be nested

– package name in a package implies that package in
question is nested in an enclosing package (e.g.,
sensors::vision::camera)

n package may own other elements
– classes, interfaces, components, nodes, other packages

n packages imply composition relationship
– destroying package destroys elements in the package

n all elements are owned by 0..1 package (element
cannot be owned by >1 package)

Visibility

n +public: visible to contents of any package that
imports element’s enclosing package
– public parts of components make up the interface
– strict definition of “interface” relevant in component

diagram

n #protected: only seen by children
– visible only to packages that inherit from a parent

package
n -private: cannot be seen outside of the package

in which declared

Importing and Exporting

Importing def’n: granting one-way permission for the
elements of one package to access elements in
another package

n not transitive
Convention
n dependency relationship with stereotype <<import>>

Exporting def’n: public part of a package
n visible only to the contents of those packages that

explicitly import the package

Generalization

n Used to specify families of packages
n Children inherit public (+) and protected (#) elements

of parent
n Can replace general elements and add new ones
n Specialized package can be used anywhere a more

general package can

Standard Elements
n facade: specifies a package that is only a view of

some other package
n framework: specifies a package consisting

mainly of patterns
n stub: specifies a package that serves as a proxy

for the public contents of another package
n subsystem: specifies a package representing an

independent part of the entire system being
modeled

n system: specifies representing the entire system
being modeled

Modeling Groups

n Look for clumps that are conceptually or
semantically close

n Surround with a package
n Distinguish public elements, mark all others

protected or private
n Draw explicit connections of packages via an

<<import>> dependency
n If possible, find generalizations and connect

families of packages

Hints and Tips

n Package represents a crisp boundary
around a set of related elements

n Package is loosely coupled with other
elements but highly cohesive within
package

n Are not nested deeper than 3 levels
n Is balanced (one package does not own

too much work)

