
UML Diagram Types

Dynamic Models
n activity diagrams
n statechart diagrams
n interaction diagrams

– sequence diagrams
– collaboration

diagrams

n use case diagrams

Structural Models
n class diagrams
n object diagrams
n packages
Architectural Models
n component diagrams
n deployment diagrams

Use Case

def’n: a description of a set of sequences of actions,
including variants, that a system performs to yield
an observable result of value to an actor

n every interesting system interacts with human or
automated actors

n specifies the behavior of a system or part of a system
n captures intended behavior, without specifying how

behavior is implemented
n aids common understanding of end users and domain

experts
n denote essential system or subsystem behavior
n basis for test cases as they evolve during development

Use Case Definition

n set of sequences : each sequence represents the
interaction of the things outside the system and within
the system

n system level functions that help visualize, construct,
and document the intended behavior of your system
during requirements capture and analysis

n represents functional requirements of system as a
whole

Use Case Definition

n interaction with actors: coherent set of roles external
to the system

n can be human, or automated

Use Case Definition

n variants : differences between closely related used
cases

n specialized versions of other use cases
n common parts of other use cases
n extend the behavior of other use cases

Use Case Definition

n tangible work: some measurable accomplishment
that, from the perspective of a given actor, is of value

n system level functions that help visualize, construct,
and document the intended behavior of your system
during requirements capture and analysis

n represents functional requirements of system as a
whole

Use Case

Convention
n ellipse
n simple name (name) or path name (package::name)
n may have attributes, operations, state behavior

Actor

def’n: a coherent set of roles that users play when
interacting with a use case

n role that a human, hardware device, or another
system plays with system

n live outside of the system
Convention
n stick figure
n actors can be specializations of each other
n connected to use case by association, indicating

communication between use case and actor

Flow of Events

n describe flow of events clearly enough for outsider to
understand

n include how/when a use case starts/ends
n when the use case interacts with actors
n what objects are exchanged
n basic flow of alternative flows of behavior
Convention
n informal structured text
n formal structured text (pre and post conditions)
n pseudocode

Scenarios

def’n: specific sequence of actions that illustrates
behavior

n scenarios:use cases as instances:classes
n first describe with text (flow of events)
n next, describe with interaction diagrams

– main flow
– exceptional flow

Organizing Use Cases

n generalization
– similar to generalization between classes

• e.g., child inherits behavior and meaning of
parent use case

• child may override or add to behavior of parent
• child may be substituted for parent

Organizing Use Cases con’t

n include
– base use case explicitly incorporates the behavior of

another use case at a location specified in the base
– included base class never stands alone, but is

instantiated as part of some larger base
– avoids redundant description of same flow of events

n Convention
– dependency from base use case to another use case
– stereotype <<include>> or <<uses>> on dependency

Organizing Use Cases con’t
n extend

– base use case implicitly incorporates the behavior of another
use case at a location specified indirectly by the extending use
case

– base use case may stand alone, but under certain conditions
behavior may be extended by behavior of another use case

– models part of a use case that the user may see as optional
behavior

• separates optional from mandatory behavior
• model a conditional subflow
• model several subflows that may be inserted at a certain

point

n Convention
– dependency from extended use case to base use case
– stereotype <<extend>> or <<extends>> on dependency

What it Means

n Generalizing a Set of Behavior
– use generalization

n Extracting Common Behavior
– use include

n Distinguishing Variants
– use extend

Modeling Techniques

n model behavior of an element
– entire system
– subsystem
– class

n focus on what, not how
n forum for domain experts and developers to meet on

common ground
n provide method of decomposition of complex problem
n basis for testing each element during development

To Model

n Identify actors that interact with the element
n Organize actors into general and specialized

roles
n Consider common interactions with use cases
n Consider exceptional interactions with use

cases
n Organize behaviors using include and extend

relationships

Hints and Tips

n Name a reasonable partition of the system
n Factor common behavior
n Factor variant behavior
n Describes flow of events clearly enough for

outsider to understand
n Use scenarios that specify normal and variant

behavior

